When determining if a layer would require a different shader to be
generated it needs to check a certain set of state changes and it
needs to check whether the texture target is different. However it was
checking whether texture texture was different only if the other state
was also different which doesn't make any sense. It also only checked
the texture difference if that was the only state change which meant
that effectively the code was impossible to reach. Now it does the
texture target check indepent of the other state changes.
The fixed pipeline backend wasn't correctly flushing the combine
constant because it was using the wrong flag to determine if the
combine constant has changed since the last flushed material.
When enabling a unit that was disabled from a previous flush pipeline
it was forgetting to rebind the right texture unit so it wouldn't
work. This was causing the redhand to disappear when using the fixed
function backend in test-cogl-multitexture if anything else is added
to the scene.
For shader generation backends we don't need to worry about changes to
the texture object and changing the user matrix. The missing user
matrix flag was causing test-cogl-multitexture to regenerate the
shader every frame.
Having ctx here produces a warning on GLES. However it's needed for Big
GL as we have at the top of the file:
#ifdef HAVE_COGL_GL
#define glClientActiveTexture ctx->drv.pf_glClientActiveTexture
#endif
This reverts commit 27a3a2056a.
That what happens when you test things only with 2 configure options
instead of 3. The 2 tested compile, the third one breaks. Another good
catch for the eglx bot!
With glib 2.28, we'll be able to have one GSource per device manager
with child sources for earch device. Make a note to update the code
in a few months.
An array is used to translate the button to its mask. Clutter defines
the masks for button 1 to 5 but we report BTN_LEFT..BTN_TASK ie
0x110..0x117. We need to pad the array for the translation not to access
random data for buttons between 0x115 and 0x117.
Discarding the event without any warning when the device has no
associated stage makes it hard to find the bug for people implementing
new event backends. We should really warn for that abnormal condition in
_clutter_input_device_update().
We know support EV_REL events comming from evdev devices. This addition
is pretty straigthforward, it adds a x,y per GSource listening to a
evdev device, updates from EL_REL (relative) events and craft new
ClutterMotionEvents. As for buttons, BTN_LEFT..BTN_TASK are translated
to ClutterButtonEvents with 1..8 as button number.
Even with udev, the read fails before udev has a chance to signal the
change. Hence (and to handle errors gracefully anyway), let's remove the
device from the device manager in case of a read() error.
The device manager now fully owns the GSources corresponding to the
devices it manages. This will allow not only to remove the source when
udev signals a device removal but also handle read() errors gracefully
by removing the faulty device from the manager.
Just connect to the GUdevClient "uevent" signal and deals with
"add"/"remove" commands. This drives the installation/removal of
GSource to listen to the device.
Let's use the sysfs path of the device to make sure we only load evdev
device, not legacy mousedev ones for instance. We rely on the sysfs
API/ABI guarantees and look for devices finishing by /input%d/event%d.
This backend is a event backend that can be enabled for EGL (for now).
It uses udev (gudev) to query input devices on a linux system, listens to
keyboard events from input devices and xkbcommon to translate raw key
codes into key keysyms.
This commit only supports key events, more to follow.
Looking at what the X11 backend does: the unicode value is being
translated to the unicode codepoint of the symbol if possible. Let's do
the same then.
Before that, key events for say KEY_Right (0xff53) had the unicode_value
set to the keysym, which meant "This key event is actually printable and
is Unicode codepoint is 0xff53", which lead to interesting results.
The wayland client code has support for translating raw linux input
device key codes coming from the wayland compositor into key symbols
thanks to libxkbcommon.
A backend directly listening to linux input devices (called evdev, just
like the Xorg one) could use exactly the same code for the translation,
so abstract it a bit in a separate file.
In 6246c2bd6 I moved the code to add the boilerplate to a shader to a
separate function and also made it so that the common boilerplate is
added as a separate string to glShaderSource. However I didn't notice
that the #define for the vertex and fragment shaders already includes
the common part so it was being added twice. Mesa seems to accept this
but it was causing problems on the IMG driver because COGL_VERSION was
defined twice.
Don't calculate an extra layout in clutter_text_get_preferred_height for
single-line strings, when it's unnecessary. There's no need to set the
width of a layout when in single-line mode, as wrapping will not happen.
Previously when the shader effect is used with a new actor it would
end up throwing away the old program. I don't think this is neccessary
and it means if you use an effect to temporarily bind to an actor then
it will recompile the shader whenever it is applied.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2454
When a new actor is set for ClutterOffscreenEffect it would throw away
the old material. I don't think there is anything specifically tied to
the actor in the material so throwing away just loses Cogl's cached
state about the material. This ends up relinking the shader every time
a new actor is set in ClutterShaderEffect.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2454
Do not use the compiler to zero the first field of the GValue member,
since it's apparently non-portable. As we're allocating memory anyway we
can let the slice allocator do the zero-ing for us.
Mentioned in: http://bugzilla.clutter-project.org/show_bug.cgi?id=2455
Before commit 49898d43 CoglPipeline would compare whether a pipeline
layer's texture is equal by fetching the underlying GL handle. I
changed that so that it would only compare the CoglHandles because
that commit removes the GL handle texture overrides and sliced
textures instead log the underlying primitive texture. However I
forgot that the primitives don't always use
_cogl_texture_foreach_sub_texture_in_region when the quad fits within
the single texture so it won't use a texture override. This meant that
atlas textures and sub textures get logged with the atlas handle so
the comparison still needs to be done using the GL handles. It might
be nice to add a CoglTexture virtual to get the underlying primitive
texture instead to avoid having the pipeline poke around with GL
handles.
If we have to make override changes to the user's source material to
handle cogl_polygon then we need to make sure we unref the override
material at the end.
Previously we used the layers->backend_priv[] members to determine when
to notify backends about layer changes, but it entirely up to the
backends if they want to associate private state with layers, even
though they may still be interested in layer change notifications (they
may associate layer related state with the owner pipeline).
We now make the observation that in
_cogl_pipeline_backend_layer_change_notify we should be able to assume
there can only be one backend currently associated with the layer
because we wouldn't allow changes to a layer with multiple dependants.
This means we can determine the backend to notify by looking at the
owner pipeline instead.
Previously whenever the size of the FBO changes it would create a new
material and attach the texture to it. This is not good for Cogl
because it throws away any cached state for the material. In
test-rotate the size of the FBO changes constantly so it effectively
uses a new material every paint. For shader effects this also ends up
relinking the shader every paint because the linked programs are part
of the material state.
The features_cached member of CoglContext is intended to mark when
we've calculated the features so that we know if they are ready in
cogl_get_features. However we always intialize the features while
creating the context so features_cached will never be FALSE so it's
not useful. We also had the odd behaviour that the COGL_DEBUG feature
overrides were only applied in the first call to
cogl_get_features. However there are other functions that use the
feature flags such as cogl_features_available that don't use this
function so in some cases the feature flags will be interpreted before
the overrides are applied. This patch makes it always initialize the
features and apply the overrides immediately while creating the
context. This fixes a problem with COGL_DEBUG=disable-arbfp where the
first material flushed is done before any call to cogl_get_features so
it may still use ARBfp.
Now that the GLSL backend can generate code it can effectively handle
any pipeline unless there is an ARBfp program. However with current
open source GL drivers the ARBfp compiler is more stable so it makes
sense to prefer ARBfp when possible. The GLSL backend is also lower
than the fixed function backend on the assumption that any driver that
supports GLSL will also support ARBfp so it's quicker to try the fixed
function backend next.
This adds COGL_DEBUG=disable-fixed to disable the fixed function
pipeline backend. This is needed to test the GLSL shader generation
because otherwise the fixed function backend would always override it.
We don't want to use gl_PointCoord to implement point sprites on big
GL because in that case we already use glTexEnv(GL_COORD_REPLACE) to
replace the texture coords with the point sprite coords. Although GL
also supports the gl_PointCoord variable, it requires GLSL 1.2 which
would mean we would have to declare the GLSL version and check for
it. We continue to use gl_PointCoord for GLES2 because it has no
glTexEnv function.
The GLES2 wrapper no longer needs to generate any fragment shader
state because the GLSL pipeline backend will always give the wrapper a
custom fragment shader. This simplifies a lot of the state comparison
done by the wrapper. The fog generation is also removed even though
it's actually part of the vertex shader because only the fixed
function pipeline backend actually calls the fog functions so it would
be disabled when using any of the other backends anyway. We can fix
this when the two shader backends also start generating vertex
shaders.
GLES2 has no glAlphaFunc function so we need to simulate the behaviour
in the fragment shader. The alpha test function is simulated with an
if-statement and a discard statement. The reference value is stored as
a uniform.
Previously the flag to mark the differences for the alpha test
function and reference value were conflated into one. However this is
awkward when generating shader code to simulate the alpha testing for
GLES 2 because in that case changing the function would need a
different program but changing the reference value just requires
updating a uniform. This patch makes the function and reference have
their own state flags.
The GLSL shader generation supports layer combine constants so there's
no need to disable it for GLES2. It looks like there was also code for
it in the GLES2 wrapper so I'm not sure why it was disabled in the
first place.
The GLSL pipeline backend can now generate code to represent the
pipeline state in a similar way to the ARBfp backend. Most of the code
for this is taken from the GLES 2 wrapper.
_cogl_shader_compile_real had some code to create a set of strings to
combine the boilerplate code with a shader before calling
glShaderSource. This has now been moved to its own internal function
so that it could be used from the GLSL pipeline backend as well.
need_texture_combine_separate is moved to cogl-pipeline.c and renamed
to _cogl_pipeline_need_texture_combine_separate. The function is
needed by both the ARBfp and GLSL codegen backends so it makes sense to
share it.
The code for finding the arbfp authority for a pipeline should be the
same as finding the GLSL authority. So that the code can be shared the
function has been moved to cogl-pipeline.c and renamed to
_cogl_pipeline_find_codegen_authority.
Only one of the material backends can be generating code at the same
time so it seems to make sense to share the same source buffer between
arbfp and glsl. The new name is fragment_source_buffer in case we
later want to create a new buffer for the vertex shader. That probably
couldn't share the same buffer because it will likely need to be
generated at the same time.
Use the internal child list for the default map/unmap vfuncs. This removes
the requirement for non-container composite actors to implement their own
map/unmap functions.
Unrealizing an actor is a recursive process that needs to traverse the
children of an actor to ensure they are also unrealized. This maintains
the invariant that if any given actor is marked as unrealized then you
know that all its children have also been unrealized.
The previous implementation would use the container interface's
foreach_with_internals vfunc to explicitly traverse the children of
container actors but this didn't consider composite actors that aren't
containers.
Since clutter-actor now maintains an explicit list of children we can
also handle composite actors that aren't containers using
_clutter_actor_traverse.
This makes it possible to choose the traversal order; either depth first
or breadth first and when visiting actors in a depth first order there
is now a callback called before children are traversed and one called
after. Some tasks such as unrealizing actors need to explicitly control
the traversal order to maintain the invariable that all children of an
actor are unrealized before we actually mark the parent as unrealized.
The callbacks are now passed the relative depth in the graph of the
actor being visited and instead of only being able to return a boolean
to bail out of further traversal it can now do one of: continue,
skip_children or break. To implement something like unrealize it's
desirable to skip children that you find have already been unrealized.
ClutterX11TexturePixmap watches for configure events to tell when it
needs to name a new pixmap for the window. However, ConfigureEvents
occur on moves in addition to resizes, and doing round trips and
naming new pixmaps every time a window is moved is a real performance
killer.
Add clutter_x11_texture_pixmap_sync_window_internal() that takes the
size/position of the window as arguments rather than always calling
XGetWindowAttributes. This allows us to bypass all work other than
notifying the window-x/window-y properties when we get a ConfigurEvent
for a move.
The last received width/height is saved to allow us to also omit
XGetWindowAttributes on MapNotify events.
The public clutter_x11_texture_pixmap_sync_window() becomes a bit less
efficient since we no longer combine the roundtrips for
XGetWindowAttributes() and XCompositeNameWindowPixmap(), but it appears
to have no callers in current publicly available code.
Several FIXME's are added for areas where there are still weird things
going on in the code or improvements could be made.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2356
* cogl_texture_get_data() is converted to use
_cogl_texture_foreach_sub_texture_in_region() to iterate
through the underlying textures.
* When we need to read only a portion of the underlying
texture, we set up a FBO and use _cogl_read_pixels()
to read the portion we need. This is enormously more
efficient for reading a small portion of a large atlas
texture.
* The CoglAtlasTexture, CoglSubTexture, and CoglTexture2dSliced
implementation of get_texture() are removed.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2414
Previously in cogl_read_pixels we assume the format of the framebuffer
is always premultiplied because that is the most likely format with
the default Cogl blend mode. However when the framebuffer is bound to
a texture we should be able to make a better guess at the format
because we know the texture keeps track of the premult status. This
patch adds an internal format member to CoglFramebuffer. For onscreen
framebuffers we still assume it is RGBA_8888_PRE but for offscreen to
textures we copy the texture format. cogl_read_pixels uses this to
determine whether the data returned by glReadPixels will be
premultiplied.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2414
When converting the data in cogl_read_pixels it was using bmp_format
instead of the format passed in to the function. bmp_format is the
same as the passed in format except that it always has the premult bit
set. Therefore the conversion would not handle premultiply correctly.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2414
This is the same as _cogl_read_pixels except that it takes a rowstride
parameter for the destination buffer. Under OpenGL setting the
rowstride this will end up calling GL_ROW_LENGTH so that the buffer
region can be directly written to. Under GLES GL_ROW_LENGTH is not
supported so it will use an intermediate buffer as it does if the
format is not GL_RGBA.
cogl_read_pixels now just calls the full version of the function with
the rowstride set to width*bpp.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2414
This function is the same as cogl_offscreen_new_to_texture but it
takes a level parameter and a set of flags so that FBOs can be used to
render to higher mipmap levels and to disable the depth and stencil
buffers. cogl_offscreen_new_to_texture now just calls the new function
with the level set to zero. This function could be useful in a few
places in Cogl where we want to use FBOs as an implementation detail
such as when copying between textures.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2414
In clutter_stage_real_queue_redraw we were checking to see if the
backend will ignore any subsequent redraw_clip so we can avoid the cost
of projecting the paint-volume of an actor into stage coordinates, but
we weren't ensuring that a full redraw would be queued instead we just
bailed out immediately. This makes sure to call
_clutter_stage_window_add_redraw_clip (stage_window, NULL) in this case
to make sure the backend will do an un-clipped redraw.
This tweaks the semantics of the has_redraw_clips vfunc so we can assume
that at the start of a new frame there is an implied, initial,
redraw_clip that clips everything (i.e. nothing would be redrawn) so in
that case we would expect the has_redraw_clips vfunc to return True at
the start of a new frame for backends that support clipping.
Previously there was an ambiguity when this function returned False
since it could either mean a full screen redraw had been queued or it
could mean that the clip state wasn't yet initialized for that frame.
This would result in _clutter_stage_has_full_redraw_queued() returning
True at the start of a new frame even before any actors have been
updated, which in turn meant we would incorrectly ignore queue_redraw
requests for actors, believing them to be redundant.
Previously we were leaving it up to the default implementation of
get_paint_volume in ClutterGroup to handle the stage by determining the
bounding box of all contained children. This isn't the true bounding box
of the stage though since the stage is responsible for clearing the
entire framebuffer at the start of the frame. This adds a
get_paint_volume implementation for ClutterStage which simply returns
False which means Clutter has to assume it covers everything.
When we handle Expose events we try and queue a clipped redraw of the
stage, but for some reason we were also redundantly calling
clutter_actor_queue_redraw for the stage which would negate the request
to queue a clipped redraw.
When uploading a 3D texture with an awkward rowstride, on GLES Cogl
will copy the images to an intermediate buffer to pass to GL. However
it was using the wrong height when copying the data so it would end up
overflowing the buffer and crashing.
Since we're using CoglPipelineWrapModeInternal in the internal API
anyway, and the compiler complains loudly when comparing two enumeration
types without casting, the PipelineLayer struct should store the
wrap modes using the internal enumeration.
The last_paint_box for an actor represents its "normal" position - we
shouldn't update it or use it to cull drawing if we are painting
a clone of the actor. Tracking whether we are painting a clone is
done by adding _clutter_actor_push/pop_clone_paint() and a global
"clone paint level".
http://bugzilla.clutter-project.org/show_bug.cgi?id=2396
When using clip planes and we we have to project some vertices into
screen coordinates we used to transform those by the modelview and then
the projection matrix separately. Now we combine the modelview and
projection matrix and then use that to transform the vertices in one
step instead.
When logging quads in the journal it used to be possible to specify a
mask of fallback layers (layers where a default white texture should be
used in-place of the corresponding texture in the current source
pipeline). Since we now handle fallbacks for cogl_rectangle* primitives
when validating the pipeline up-front before logging in the journal we
no longer need the ability for the journal to apply fallbacks too.
When transforming a paint-volume or transforming allocation vertices we
are transforming more than one point at a time so we can batch those
together with cogl_matrix_transform_points instead of
cogl_matrix_transform_point. Also in both of these cases we don't need
to do a projective transform so using cogl_matrix_transform_points also
lets us reduce the per-vertex computation.
This add two new function that allows us to transform or project an
array of points instead of only transforming one point at a time. Recent
benchmarking has shown cogl_matrix_transform_point to be a bottleneck
sometimes, so this should allow us to reduce the overhead when
transforming lots of vertices at the same time, and also reduce the cost
of 3 component, non-projective transforms.
For now they are marked as experimental (you have to define
COGL_ENABLE_EXPERIMENTAL_API) because there is some concern that it
introduces some inconsistent naming. cogl_matrix_transform_point would
have to be renamed cogl_matrix_project_point to be consistent, but that
would be an API break.
Switch _cogl_rectangles_with_multitexture_coords to using
_cogl_pipeline_foreach_layer to iterate the layers of a pipeline when
validating instead of iterating the pipelines internal list, which is
risky since any modifications to pipelines (even to an override pipeline
derived from the original), could potentially corrupt the list as it is
being iterated.
This removes the possibility to specify wrap mode overrides within a
CoglPipelineFlushOptions struct since the right way to handle these
overrides is by copying the user's material and making the changes to
that copy before flushing. All primitives code has already switched away
from using these wrap mode overrides so this patch just removes unused
code and types. It also remove the wrap_mode_overrides argument for
_cogl_journal_log_quad.
The CSS Color Module 3, available at:
http://www.w3.org/TR/css3-color/
allows defining colors as:
rgb ( r, g, b )
rgba ( r, g, b, a)
along with the usual hexadecimal and named notations.
The r, g, and b channels can be:
• integers between 0 and 255
• percentages, between 0% and 100%
The alpha channel, if included using the rgba() modifier, can be a
floating point value between 0.0 and 1.0.
The ClutterColor parser should support this notation.
With the refactoring to centralize code into CoglBuffer,
_cogl_buffer_fini() was never actually implemented, so all GL
vertex and index buffer objects were leaked.
The duplicate call to glDeleteBuffers() in CoglPixelArray is
removed (it wasn't paying attention to whether the buffer had been
allocated as a PBO or not.)
http://bugzilla.clutter-project.org/show_bug.cgi?id=2423
This adds egl backend support for handling clipped redraws. This uses
the EGL_NOK_swap_region extension to enable the EGL backend to present a
subregion from the back buffer to the front so we don't always have to
redraw the entire stage for small updates.
This adds a COGL_DEBUG=wireframe option to visualize the underlying
geometry of the primitives being drawn via Cogl. This works for triangle
list, triangle fan, triangle strip and quad (internal only) primitives.
It also works for indexed vertex arrays.
In cogl_vertex_buffer_indices_get_for_quads() we sometimes have to
extend the length of an existing array, but when we came to unref the
previous array we didn't first check that it wasn't simply NULL.
This adds an optional data argument for cogl_vertex_array_new() since it
seems that mostly every case where we use this API we follow up with a
cogl_buffer_set_data() matching the size of the new array. This
simplifies all those cases and whenever we want to delay uploading of
data then NULL can simply be passed.
The Behaviour class and its implementations have been replaced by the
new animation framework API and by the constraints for layout-related
animations.
Currently, we need to make tests build, so we undef DISABLE_DEPRECATED
in specific test cases while they get ported.
The paint volume structure is cached in the Actor it references, and
this causes a reference cycle.
The paint volume is going to be used when painting, so the actor must
still be valid - otherwise Clutter will bail out far before than
accessing the actor pointer in ClutterPaintVolume.
Otherwise, we could have used dispose() to check for a valid actor and
remove a reference if the actor field is !NULL; it feels less clean,
though, since we're effectively managing an extra reference on
ourselves.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2431
Starting from the 2.27 cycle, GLib is exposing a monotonic clock with
microseconds granularity throughout the time-based API. We can start
using it, given that the old, non-monotonic version is going to be
deprecated by the same cycle.
GLib 2.28 will deprecate GTimeVal and related API in favour of
standardizing on microseconds granularity for all time-based API.
Clutter should switch too.
All of the current users of GTimeVal convert to milliseconds when
doing time operations, and use GTimeVal only as storage. This can
effectively be replaced by a gint64.
The Master Clock uses a microsecond resolution, except when interacting
with the main loop itself, since the main loop has a millisecond
resolution - at least until Ryan Lortie manages to switch that too to
microseconds on Linux.
The clutter_timeline_do_tick() function was erroneously not privatized,
but it was still assumed to be private; we should just remove it from
the public symbols.
For internal usage, writing:
clutter_actor_get_name (actor) != NULL
? clutter_actor_get_name (actor)
: G_OBJECT_TYPE_NAME (actor)
is overly verbose and does two type checks. A simple, internal method
for getting the same result without type checks would be much more
appreciated.
The "watch" function functionality in xsettings-client.c is designed
for setups like GDK where filters are per-window. If we are going
to pass all events to _clutter_xsettings_client_process_event()
anyways, we can just pass in NULL for watch.
This avoids a nasty infinite loop where an event would get processed
triggering removing a filter and adding a new filter, which would
immediately run and remove a filter and add another and so on
ad-infinitum.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2415
The same behavior can be achieved by capturing events on stage while
button is pressed. This fixes a problem when using click and drag
actions on the same actor as there no grabs involved.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2409
There's no longer any need to use the GL handle in the callback for
_cogl_texture_foreach_sub_texture_in_region because it can now work in
terms of primitive cogl textures so it has now been removed. This
would be helpful if we ever want to make the foreach function public
so that apps could implement their own primitives using sliced
textures.
Since d5634e37 the sliced texture backend now works in terms of
CoglTexture2Ds so there's no need to have special casing for
overriding the texture of a pipeline layer with a GL handle. Instead
we can just use cogl_pipeline_set_layer_texture with the
CoglHandle. The special _cogl_pipeline_set_layer_gl_texture_slice
function has now been removed and parts of the code for comparing
materials have been simplified.
The cogl_texture_foreach_sub_texture_in_region virtual for the sliced
texture backend was previously passing the CoglHandle of the sliced
texture to the callback. Since d5634e37 the slice texture backend now
works in terms of 2D textures so it's possible to pass the underlying
slice texture as a handle too. This makes all of the foreach callbacks
consistent in that they pass a CoglHandle of the primitive texture
type that matches the GL handle.
When COGL_ENABLE_EXPERIMENTAL_2_0_API is defined cogl.h will now include
cogl2-path.h which changes cogl_path_new() so it can directly return a
CoglPath pointer; it no longer exposes a prototype for
cogl_{get,set}_path and all the remaining cogl_path_ functions now take
an explicit path as their first argument.
The idea is that we want to encourage developers to retain path objects
for as long as possible so they can take advantage of us uploading the
path geometry to the GPU. Currently although it is possible to start a
new path and query the current path, it is not convenient.
The other thing is that we want to get Cogl to the point where nothing
depends on a global, current context variable. This will allow us to one
day define a sensible threading model if/when that is ever desired.
For now this new define is simply an alias for
COGL_ENABLE_EXPERIMENTAL_API but the intention is that we will also use
it to start experimenting with changes that need to break the existing
Cogl API in incompatible ways.
Since EGA colors are apparently all the rage in other toolkits, Clutter
should not be left out. On top of the usual CGA/EGA palette the static
colors also include the Tango Icon palette, which at least is more
pleasant to the eye.
Static colors are accessed through an enumeration by using
clutter_color_get_static(), or using the short-hand pre-processor
macros.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2066
We now prepend a set of defines to any given GLSL shader so that we can
define builtin uniforms/attributes within the "cogl" namespace that we
can use to provide compatibility across a range of the earlier versions
of GLSL.
This updates test-cogl-shader-glsl.c and test-shader.c so they no longer
needs to special case GLES vs GL when splicing together its shaders as
well as the blur, colorize and desaturate effects.
To get a feel for the new, portable uniform/attribute names here are the
defines for OpenGL vertex shaders:
#define cogl_position_in gl_Vertex
#define cogl_color_in gl_Color
#define cogl_tex_coord_in gl_MultiTexCoord0
#define cogl_tex_coord0_in gl_MultiTexCoord0
#define cogl_tex_coord1_in gl_MultiTexCoord1
#define cogl_tex_coord2_in gl_MultiTexCoord2
#define cogl_tex_coord3_in gl_MultiTexCoord3
#define cogl_tex_coord4_in gl_MultiTexCoord4
#define cogl_tex_coord5_in gl_MultiTexCoord5
#define cogl_tex_coord6_in gl_MultiTexCoord6
#define cogl_tex_coord7_in gl_MultiTexCoord7
#define cogl_normal_in gl_Normal
#define cogl_position_out gl_Position
#define cogl_point_size_out gl_PointSize
#define cogl_color_out gl_FrontColor
#define cogl_tex_coord_out gl_TexCoord
#define cogl_modelview_matrix gl_ModelViewMatrix
#define cogl_modelview_projection_matrix gl_ModelViewProjectionMatrix
#define cogl_projection_matrix gl_ProjectionMatrix
#define cogl_texture_matrix gl_TextureMatrix
And for fragment shaders we have:
#define cogl_color_in gl_Color
#define cogl_tex_coord_in gl_TexCoord
#define cogl_color_out gl_FragColor
#define cogl_depth_out gl_FragDepth
#define cogl_front_facing gl_FrontFacing
The profiling support was broken - probably during the restructuring of
the build environment, but I'm too lazy to bisect that.
The fix is trivial, and everything works as it should.
When converting the virtual coordinates of the underlying texture for
a slice to virtual coordinates for the whole texture it was using the
size and offset of the intersection as the size of the child
texture. This would be incorrect if the texture contains waste or the
texture coordinates are not the default. Instead the sliced foreach
function now passes the CoglSpan to the callback instead of the
intersection.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2398
Previously in the tests/tools directory we build a disable-npots
library which was used as an LD_PRELOAD to trick Cogl in to thinking
there is no NPOT texture extension. This is a little awkward to use so
it seems much simpler to just define a COGL_DEBUG option to disable
npot textures.
Instead of waiting until clutter_actor_paint to check if there are any
handlers connected to the "paint" signal, we now do the check whenever
the paint-volume is requested in _actor_get_paint_volume_mutable().
Previously we checked in clutter_actor_paint(), but at that time we may
already be using a stage clip that could be derived from an invalid
paint-volume. We used to try and handle that by queuing a follow up,
unclipped, redraw but anyway there was an additional problem with the
previous approach because the checking wasn't enough to always catch
invalid volumes involved in culling (considering that containers may
derive their volume from children that haven't yet been painted)
By moving the check to _get_paint_volume time not only do we now
correctly check children in cases where a container derives its volume
from its children's volumes but we no longer need to queue follow up
redraws to cover up artefacts.
Since we now never queue follow up redraws, this in turn means we should
no longer clobber redraws queued with an explicit clip which was
something affecting gnome-shell since it connects a handler to the paint
signal of the stage.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2388
In some micro-benchmarks testing journal throughput the list
manipulation jumps pretty high in the profile. This replaces the GSList
usage with a GArray instead which is effectively a grow only allocation
that means we avoid ongoing allocations while manipulating the stack
mid-scene.
During _cogl_pipeline_needs_blending_enabled we were always checking the
current lighting properties (ambient,diffuse,specular,emission) which
had a notable impact during micro-benchmarks that exercise journal
throughput of simple colored rectangles. This #if 0's the offending code
considering that Cogl doesn't actually support lighting currently and
when it actually does then we will be able to optimize this by avoiding
the checks when lighting is disabled.
When using cogl_set_source_color4ub there is a notable difference
between colors that require blending and those that dont. When trying to
modify the color of pipeline referenced by the journal we don't force a
flush of the journal unless the color change will also change the
blending state. By using two separate pipeline objects for handing
opaque or transparent colors we can avoid ever flushing the journal when
repeatedly using cogl_set_source_color and jumping between opaque and
transparent colors.
This reworks _cogl_texture_quad_multiple_primitives so instead of using
the CoglPipelineWrapModeOverrides mechanism to force the clamp to edge
repeat mode we now derive an override pipeline using cogl_pipeline_copy
instead. This avoids a relatively large, unconditional, memset.
This avoids using the wrap mode overrides mechanism to implement
_cogl_multitexture_quad_single_primitive which requires memsetting a
fairly large array. This updates it to use cogl_pipeline_foreach_layer()
and we now derive an override_material to handle changes to the wrap
modes instead of using the CoglPipelineWrapModeOverrides.
Previously there was a check to avoid filling the path if there are
zero nodes. However the tesselator also won't generate any triangles
if there are less than 3 nodes so we might as well bail out in that
case too. If we don't emit any triangles then we would end up trying
to create an empty VBO. Although I don't think this should necessarily
be a problem, this seems to cause Mesa to segfault in version 7.8.1
when calling glBufferSubData (although not in
master). test-cogl-primitives tries to fill a path with only two
points so it's convenient to be able to avoid the crash in this case.
When adding a new entry to the journal a reference is now taken on the
current clip stack. Modifying the current clip state no longer causes
a journal flush. The journal flushing code now has an extra stage to
compare the clip state of each entry. The comparison can simply be
done by comparing the pointers. Although different clip states will
still end up with multiple draw calls this at leasts allows a scene
comprising of multiple different clips to be upload with one vbo. It
also lays the groundwork to do certain tricks when drawing clipped
rectangles such as modifying the geometry instead of setting a clip
state.
This adds a flag to avoid flushing the clip state when flushing the
framebuffer state. This will be used by the journal to manage its own
clip state flushing.
Flushing the clip state no longer does anything that would cause the
journal to flush. The clip state is only flushed when flushing the
framebuffer state and in all cases this ends up flushing the journal
in one way or another anyway. Avoiding flushing the journal will make
it easier to log the clip state in the journal.
Previously when trying to set up a rectangle clip that can't be
scissored or when using a path clip the code would use cogl_rectangle
as part of the process to fill the stencil buffer. This is now changed
to use a new internal _cogl_rectangle_immediate function which
directly uses the vertex array API to draw a triangle strip without
affecting the journal. This should be just as efficient as the
previous journalled code because these places would end up flushing
the journal immediately before and after submitting the single
rectangle anyway and flushing the journal always creates a new vbo so
it would effectively do the same thing.
Similarly there is also a new internal _cogl_clear function that does
not flush the journal.
Previously we tracked whether the clip stack needs flushing as part of
the CoglClipState which is part of the CoglFramebuffer state. This is
a bit odd because most of the clipping state (such as the clip planes
and the scissor) are part of the GL context's state rather than the
framebuffer. We were marking the clip state on the framebuffer dirty
every time we change the framebuffer anyway so it seems to make more
sense to have the dirtiness be part of the global context.
Instead of a just a single boolean to record whether the state needs
flushing, the CoglContext now holds a reference to the clip stack that
was flushed. That way we can flush arbitrary stack states and if it
happens to be the same as the state already flushed then Cogl will do
nothing. This will be useful if we log the clip stack in the journal
because then we will need to flush unrelated clip stack states for
each batch.
Instead of having a separate CoglHandle for CoglClipStack the code is
now expected to directly hold a pointer to the top entry on the
stack. The empty stack is then the NULL pointer. This saves an
allocation when we want to copy the stack because we can just take a
reference on a stack entry. The idea is that this will make it
possible to store the clip stack in the journal without any extra
allocations.
The _cogl_get_clip_stack and set functions now take a CoglClipStack
pointer instead of a handle so it would no longer make sense to make
them public. However I think the only reason we would have wanted that
in the first place would be to save the clip state between switching
FBOs and that is no longer necessary.
CoglVertexAttribute has an internal draw function that is used by the
CoglJournal to avoid the call to cogl_journal_flush which would
otherwise end up recursively flushing the journal forever. The
enable_gl_state function called by this was previously also calling
_cogl_flush_framebuffer_state. However the journal code tries to
handle this function specially by calling it with a flag to disable
flushing the modelview matrix. This is useful because the journal
handles flushing the modelview itself. Without this patch the journal
state ends up getting flushed twice. This isn't a particularly big
problem currently because the matrix stack has caching to recognise
when it would push the same state twice and bails out. However if we
later want to use the framebuffer flush flags to override a particular
state of the framebuffer (such as the clip state) then we need to make
sure the flush isn't called twice.
Unless the CoglBuffer is being used for texture data then it's
relatively unlikely that the data will contain an array of bytes. For
example if it's used as a vertex array then it's more likely to be
floats or some vertex struct. In that case it's much more convenient
if set_data and map use void* pointers so that we can avoid a cast.
The convenience constructors for the builtin vertex structs were
creating the primitive and then immediately destroying it and
returning the pointer. I think the intention was to unref the
attributes instead. This adds an internal wrapper around the
new_with_attributes_array constructor which unrefs the attributes
instead of the primitive. The convenience constructors now use that.
The GLES2 wrapper was referring to COGL_MATERIAL_PROGRAM_TYPE_GLSL but
this has since been renamed to COGL_PIPELINE_PROGRAM_TYPE_GLSL so the
GLES2 backend wouldn't compile.
The gles2 wrapper functions don't understand about the CoglBuffer API so
they don't support attributes stored in a CoglVertexArray. Instead of
teaching the backend about buffers we are going to wait until we have
overhauled the GLES 2 backend. We are currently making progress
consolidating the GLES 2 backend with a new GLSL backend for
CoglMaterial. This will hugely simplify the GLES 2 support and share
code with the OpenGL backend. In the end it's hoped that this problem
will simply go away so it doesn't make much sense to solve it with the
current design.
This applies an API naming change that's been deliberated over for a
while now which is to rename CoglMaterial to CoglPipeline.
For now the new pipeline API is marked as experimental and public
headers continue to talk about materials not pipelines. The CoglMaterial
API is now maintained in terms of the cogl_pipeline API internally.
Currently this API is targeting Cogl 2.0 so we will have time to
integrate it properly with other upcoming Cogl 2.0 work.
The basic reasons for the rename are:
- That the term "material" implies to many people that they are
constrained to fragment processing; perhaps as some kind of high-level
texture abstraction.
- In Clutter they get exposed by ClutterTexture actors which may be
re-inforcing this misconception.
- When comparing how other frameworks use the term material, a material
sometimes describes a multi-pass fragment processing technique which
isn't the case in Cogl.
- In code, "CoglPipeline" will hopefully be a much more self documenting
summary of what these objects represent; a full GPU pipeline
configuration including, for example, vertex processing, fragment
processing and blending.
- When considering the API documentation story, at some point we need a
document introducing developers to how the "GPU pipeline" works so it
should become intuitive that CoglPipeline maps back to that
description of the GPU pipeline.
- This is consistent in terminology and concept to OpenGL 4's new
pipeline object which is a container for program objects.
Note: The cogl-material.[ch] files have been renamed to
cogl-material-compat.[ch] because otherwise git doesn't seem to treat
the change as a moving the old cogl-material.c->cogl-pipeline.c and so
we loose all our git-blame history.
Instead of using the CoglHandle type for material variables this updates
the pango code to use CoglMaterial * instead. CoglHandle is the old
typename which is being phased out of the API.
The pango-display-list code was calling cogl_set_source in numerous
places and it didn't appear to be saving the users source to restore
later. This could result in the user inadvertantly drawing a primitive
with one of these internally managed materials instead of one that they
chose. To rectify this the code now uses cogl_{push,pop}_source to save
and restore the users source.
This updates the implementation of cogl_polygon so it sits on the new
CoglVertexArray and CoglVertexAttribute apis. This lets us minimize the
number of different drawing paths we have to maintain in Cogl.
Since the sliced texture support for cogl_polygon has been broken for a
long time now and no one has complained this patch also greatly
simplifies the code by not doing any special material validation so
cogl_polygon will be restricted in the same way as
cogl_draw_vertex_attributes. (i.e. sliced textures not supported).
Instead of using raw OpenGL in the journal we now use the vertex
attributes API instead. This is part of an ongoing effort to reduce the
number of drawing paths we maintain in Cogl.
The functionality of cogl_vertex_buffer_indices_get_for_quads is now
provided by cogl_get_rectangle_indices so this reworks the former to now
work in terms of the latter so we don't have duplicated logic.
As part of an ongoing effort to reduce the number of draw paths we have
in Cogl this re-works CoglVertexBuffer to use the CoglVertexAttribute
and CoglPrimitive APIs instead of using raw GL.
This adds a way to mark that a primitive is in use so that modifications
will generate a warning. The plan is to use this mechanism when batching
primitives in the journal to warn users that mid-scene modifications of
primitives is not allowed.
This adds convenience primitive constructors named like:
cogl_primitive_new_p3 or
cogl_primitive_new_p3c4 or
cogl_primitive_new_p3t2c4
where the letters correspond to the interleved vertex attributes layouts
such as CoglP3Vertex which is a struct with 3 float x,y,z members for
the [p]osition, or CoglP3T2C4Vertex which is a struct with 3 float x,y,z
members for the [p]osition, 2 float s,t members for the [t]exture
coordinates and 4 unsigned byte r,g,b,a members for the [c]olor.
The hope is that people will find these convenient enough to replace
cogl_polygon.
A CoglPrimitive is a retainable object for drawing a single primitive,
such as a triangle strip, fan or list.
CoglPrimitives build on CoglVertexAttributes and CoglIndices which
themselves build on CoglVertexArrays and CoglIndexArrays respectively.
A CoglPrimitive encapsulates enough information such that it can be
retained in a queue (e.g. the Cogl Journal, or renderlists in the
future) and drawn at some later time.
A CoglVertexAttribute defines a single attribute contained in a
CoglVertexArray. I.e. a CoglVertexArray is simply a buffer of N bytes
intended for containing a collection of attributes (position, color,
normals etc) and a CoglVertexAttribute defines one such attribute by
specifying its start offset in the array, its type, the number of
components and the stride etc.
CoglIndices define a range of indices inside a CoglIndexArray. I.e. a
CoglIndexArray is simply a buffer of N bytes and you can then
instantiate multiple CoglIndices collections that define a sub-region of
a CoglIndexArray by specifying a start offset and an index data type.
This adds a new CoglVertexArray object which is a subclass of CoglBuffer
used to hold vertex attributes. A later commit will add a
CoglVertexAttribute API which will be used to describe the attributes
inside a CoglVertexArray.
A CoglIndexArray is a subclass of CoglBuffer and will be used to hold
vertex indices. A later commit will add a CoglIndices API which will
allow describing a range of indices inside a CoglIndexArray.
This adds an internal mechanism to mark that a buffer is in-use so that
a warning can be generated if the user attempts to modify the buffer.
The plans is for the journal to use this mechanism so that we can warn
users about mid-scene modifications of buffers.
We now make _cogl_buffer_bind return a base pointer for the bound buffer
which can be used with OpenGL. The pointer will be NULL for GPU based
buffers or may point to an malloc'd buffer. Since OpenGL expects an
offset instead of a pointer when dealing with buffer objects this means
we can handle fallback malloc buffers and GPU buffers in a consistent
way.
This allows _cogl_material_flush_gl_state to bail out faster if
repeatedly asked to flush the same material and we can see the material
hasn't changed.
Since we can rely on the material age incrementing when any material
property changes or any associated layer property changes then we can
track the age of the material after flushing so it can be compared with
the age of the material if it is subsequently re-flushed. If the age is
the same we only have to re-assert the texture object state.
MaterialNodes are used for the sparse graph of material state and layer
state. In the case of materials there is the idea of weak materials that
don't take a reference on their parent and in that case we need to be
careful not to unref our parent during
_cogl_material_node_unparent_real. This adds a has_parent_reference
member to the CoglMaterialNode struct so we now know when to skip the
unref.
If there is private data associated with a CoglObject then there may be
a user_data_array that needs to be freed. The code was mistakenly
freeing the array inside the loop that was actually iterating over the
user data array notifying the objects destruction instead of waiting
until all the data entries had been destroyed.
Once an actor had _clutter_stage_queue_redraw_entry_invalidate()
called on it once, then priv->queue_redraw_entry would point to
an entry with entry->actor NULL. _clutter_stage_queue_actor_redraw()
doesn't handle this case and no further redraws would be queued.
To fix this, NULL out priv->queue_redraw_entry() and then make sure
we free the invalidated entry in
_clutter_stage_maybe_finish_queue_redraws() just as we do for
still valid entries.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2389
Previously when trying to destroy all of the stages in the backend
dispose function it would poke directly in the ClutterStageManager
struct to get the list. In 8613013ab0 the defintion of
ClutterStageManager moved to a different header which isn't included
by the Win32 backend so it wouldn't compile. In that commit the X11
backend was changed to unref the stage manager instead of poking in
the internals so we should do the same for the win32 backend.
One of the ideas behind _internal() functions is to be able to have a
version of the original one without checks (among other things). As
these functions are either static or private to the library, we control
the arguments given to it, and thus no need for checking them again
here.
Telling the user about files not found when loading a ClutterScript with
ClutterTextures in it is very useful and can save a few minutes (or
hours) of frustation because it "does not work".
This merges the two implementations of CoglProgram for the GLES2 and
GL backends into one. The implementation is more like the GLES2
version which would track the uniform values and delay sending them to
GL. CoglProgram is now effectively just a GList of CoglShaders along
with an array of stored uniform values. CoglProgram never actually
creates a GL program, instead this is left up to the GLSL material
backend. This is necessary on GLES2 where we may need to relink the
user's program with different generated shaders depending on the other
emulated fixed function state. It will also be necessary in the future
GLSL backends for regular OpenGL. The GLSL and ARBfp material backends
are now the ones that create and link the GL program from the list of
shaders. The linked program is attached to the private material state
so that it can be reused if the CoglProgram is used again with the
same material. This does mean the program will get relinked if the
shader is used with multiple materials. This will be particularly bad
if the legacy cogl_program_use function is used because that
effectively always makes one-shot materials. This problem will
hopefully be alleviated if we make a hash table with a cache of
generated programs. The cogl program would then need to become part of
the hash lookup.
Each CoglProgram now has an age counter which is incremented every
time a shader is added. This is used by the material backends to
detect when we need to create a new GL program for the user program.
The internal _cogl_use_program function now takes a GL program handle
rather than a CoglProgram. It no longer needs any special differences
for GLES2. The GLES2 wrapper function now also uses this function to
bind its generated shaders.
The ARBfp shaders no longer store a copy of the program source but
instead just directly create a program object when cogl_shader_source
is called. This avoids having to reupload the source if the same
shader is used in multiple materials.
There are currently a few gross hacks to get the GLES2 backend to work
with this. The problem is that the GLSL material backend is now
generating a complete GL program but the GLES2 wrapper still needs to
add its fixed function emulation shaders if the program doesn't
provide either a vertex or fragment shader. There is a new function in
the GLES2 wrapper called _cogl_gles2_use_program which replaces the
previous cogl_program_use implementation. It extracts the GL shaders
from the GL program object and creates a new GL program containing all
of the shaders plus its fixed function emulation. This new program is
returned to the GLSL material backend so that it can still flush the
custom uniforms using it. The user_program is attached to the GLES2
settings struct as before but its stored using a GL program handle
rather than a CoglProgram pointer. This hack will go away once the
GLSL material backend replaces the GLES2 wrapper by generating the
code itself.
Under Mesa this currently generates some GL errors when glClear is
called in test-cogl-shader-glsl. I think this is due to a bug in Mesa
however. When the user program on the material is changed the GLSL
backend gets notified and deletes the GL program that it linked from
the user shaders. The program will still be bound in GL
however. Leaving a deleted shader bound exposes a bug in Mesa's
glClear implementation. More details are here:
https://bugs.freedesktop.org/show_bug.cgi?id=31194
Previously cogl_set_source_color and cogl_set_source_texture modified
a single global material. If an application then mixes using
cogl_set_source_color and texture then the material will constantly
need a new ARBfp program because the numbers of layers alternates
between 0 and 1. This patch just adds a second global material that is
only used for cogl_set_source_texture. I think it would still end up
flushing the journal if cogl_set_source_texture is used with multiple
different textures but at least it should avoid a recompile unless the
texture target also changes. It might be nice to somehow attach a
material to the CoglTexture for use with cogl_set_source_texture but
it would be difficult to implement this without creating a circular
reference.
This moves the CoglIndicesType and CoglVerticesMode typedefs from
cogl-vertex-buffer.h to cogl-types.h so they can be shared with the
anticipated cogl vertex attribute API.
This renames the BufferBindTarget + BufferUsageHint enums to match the
anticipated new APIs for "index arrays" and "vertex arrays" as opposed
to using the terms "vertices" or "indices".
previously we would silently bail out if the given offset + data size
would overflow the buffer size. Now we use g_return_val_if_fail so we
get a warning if we hit this case.
This adds a store_created bit field to CoglBuffer so we know if the
underlying buffer has been allocated yet. Previously the code was trying
to do something really wrong by accidentally using the
COGL_PIXEL_ARRAY_FLAG_IS_SET macro (note "PIXEL_ARRAY") and what is more
odd was the declaration of a CoglPixelArray *pixel_array in
cogl-buffer.c which the buffer was being cast too before calling using
the macro. Probably this was the fall-out of some previous code
re-factoring.
All the macros get used for are to |= (a new flag bit), &= ~(a flag bit)
or use the & operator to test if a flag bit is set. I haven't found the
code more readable with these macros, but several times now I've felt
the need to double check if these macros do anything else behind the
hood or I've forgotten what flags are available so I've had to go to the
macro definition to see what the full enum names are for the flags (the
macros use symbol concatenation) so I can search for the definition of
all the flags. It turns out they are defined next to the macro so you
don't have to search far, but without the macro that wouldn't have been
necessary.
The more common use of the _IS_SET macro is actually more concise
expanded and imho since it doesn't hide anything in a separate header
file the code is more readable without the macro.
This is a counter part for _cogl_material_layer_get_texture which takes
a layer index instead of a direct CoglMaterialLayer pointer. The aim is
to phase out code that directly iterates the internal layer pointers of
a material since the layer pointers can change if any property of any
layer is changed making direct layer pointers very fragile.
This adds internal _cogl_material_get_layer_filters and
_cogl_material_get_layer_{min,mag}_filter functions which can be used to
query the filters associated with a layer using a layer_index, as
opposed to a layer pointer. Accessing layer pointers is considered
deprecated so we need to provide layer_index based replacements.
When we come to submitting the users given attributes we sort them into
different types of buffers. Previously we had three types; strided,
unstrided and multi-pack. Really though unstrided was just a limited
form of multi-pack buffer and didn't imply any hind of special
optimization so this patch consolidates some code by reducing to just
two types; strided and multi-pack.
This is a counter part for _cogl_material_layer_pre_paint which takes a
layer index instead of a direct CoglMaterialLayer pointer. The aim is to
phase out code that directly iterates the internal layer pointers of a
material since the layer pointers can change if any property of any
layer is changed making direct layer pointers very fragile.
This exposes the idea of a stack of source materials instead of just
having a single current material. This allows the writing of orthogonal
code that can change the current source material and restore it to its
previous state. It also allows the implementation of new composite
primitives that may want to validate the current source material and
possibly make override changes in a derived material.
* private-cleanup:
Add copyright notices
Clean up clutter-private.h/6
Clean up clutter-private.h/5
Clean up clutter-private.h/4
Clean up clutter-private.h/3
Clean up clutter-private.h/2
Clean up clutter-private.h/1
Correct the argument order and replace all occurrences of
clutter_state_change() with the appropriate clutter_state_set_state() or
clutter_state_warp_to_state().
If you warp to a state, it should be immediately set. Check if the
animation is in progress when warping to a state and don't short-circuit
in the already-set check if we're not animating.
Add special behaviour when you set the key of the current target state:
- If the state is transitioning, add/modify the interval so that the new
key transitions from the current time (taking into account pre-delay) to
its target final property
- If the state is set but has already finished animating/was warped to,
set the property immediately
If ClutterState is in the middle of a transition and you remove all the
keys from the target state, the target state will be destroyed without
stopping the animation/unsetting the target state. This caused an invalid
memory access.
Allow setting a %NULL state. This has the effect of unsetting the current
state and stopping all animation. This allows you to, for example, start
a state transition, set the state to NULL, alter the state transition
and then resume it again, by just setting it.
* wip/path-constraint:
docs: Add PathConstraint
tests: Add a PathConstraint interactive test
Add ClutterPathConstraint
actor-box: Add setters for origin and size
ClutterPathConstraint is a simple Constraint implementation that
modifies the allocation of the Actor to which is has been applied using
a progress value and a ClutterPath.
There was previously a flag that gets set when this function was
called but nothing checked it so the function effectively did
nothing. Also the flag was a member of the backend struct but this
can't be used because the function should be called before
clutter_init so the backend is not ready yet. This patch makes the
event disabling work more like the X11 backend and set a global
variable instead.
This function handles a single windows message. The idea is that it
could be used by clutter-gtk to forward on events from a
GdkEventFilter. The function replaces the old message_translate()
function. That function didn't translate the event anymore anyway and
instead it could generate multiple events so
clutter_win32_handle_event seems like a more appropriate name. The
function returns TRUE or FALSE depending on whether the event was
completely handled instead of setting call_window_proc.
When handling an allocation on the stage, Clutter uses the oppurtunity
to inform Cogl of the new size of the framebuffer so that it can
handle the viewport correctly. It queries the size of the window
implementation using a backend virtual function. However it was doing
this before letting the backend handle the allocation so on Win32 it
would end up using the previous framebuffer size. This wasn't
affecting the X11 backend because in that case the resizes are
asynchronous so setting the stage size causes one allocation which
ends up sending a window size request. Eventually a ConfigureNotify is
received which causes the size of the stage to be set again and
another allocation is fired meaning the framebuffer size will be set
again this time with the correct size. In Win32 the resizes are
synchronous so we don't have this second allocation.
When compiling for non-glx platforms the winsys feature data array
ends up empty. Empty arrays cause problems for MSVC so this patch adds
a stub entry so that the array always has at least one entry.
Based on a patch by Ole André Vadla Ravnås
There was an array whose length was define by a static const int
variable. GCC seems to consider this a variable-length array so it
will cause warnings now that -Wvla is enabled. We might as well make
this constant a #define instead to avoid the warning.
Instead of directly manipulating GL textures itself,
CoglTexture2DSliced now works in terms of CoglHandles. It creates the
texture slices using cogl_texture_new_with_size which should always
end up creating a CoglTexture2D because the size should fit. This
allows us to avoid replicating some code such as the first pixel
mipmap tracking and it better enforces the separation that each
texture backend is the only place that contains code dealing with each
texture target.
This adds two new internal functions to create a foreign texture for
the texture 2d and rectangle backends. cogl_texture_new_from_foreign
will now use one of these backends directly if there is no waste
instead of always using the sliced texture backend.
Move the private Backend API to a separate header.
This also allows us to finally move the class vtable and instance
structure to a separate file and plug the visibility hole that left
the Backend class bare for everyone to poke into.
Since we allow compiling Clutter without the XComposite extension
available, we need to protect the calls to the XComposite API with
the guards provided by the configure script.
Currently, the memory management in ClutterScript is overly complicated.
The basic design tenet should be:
- ClutterScript owns a reference on every object it creates
This allows the Script instance to reliably handle the lifetime of the
instances from creation to disposal.
In case of unmerge, the Script instance should destroy any Actor
instance, except for the Stage, and release the reference it owns. The
Stage is special because it's really owned by Clutter itself, and it
should be destroyed explicitly.
When disposing the Script itself, it should just release the reference;
any parented actor, or any InitiallyUnowned instance, will then be
managed by the parent object, as they should, while every GObject
instance will go away, as documented.
This commit is based on a patch by:
Henrik Hedberg <hhedberg@innologies.fi>
http://bugzilla.clutter-project.org/show_bug.cgi?id=2316
By using a new signal, ::create-surface (width, height), it should be
possible for third party code and sub-classes to override the default
surface creation code in CairoSurface.
This commit takes a bit of the patch from:
http://bugzilla.clutter-project.org/show_bug.cgi?id=1878
which cleans up CairoTexture; the idea, mutuated from that bug, is that
the CairoTexture actor checks whether the surface it has it's an image
one, and in that case it uses a Cogl texture as the backing store. In
case the surface is not an image one we assume that the surface itself
has some way of updating the GL state and flush the surface.
Always use pageflipping, but avoid full repaint by copying back dirty
regions from front to back. Additionally, we dealy copying back until
we're ready to paint the new frame, so we can avoid copying areas that
will be repainted anyway.
This is the least amount of copying per frame we can get away with at all
and at the same time we don't have to worry about stalling the GPU on
synchronized blits since we always pageflip.
When we don't use a window system drawable, we can't query the color
masks at context initialization time. Do it lazily so we're sure to have
a current context with a valid framebuffer.
We need to make sure that redraws queued for actors on a stage are for
actors actually in the stage. So in clutter_actor_unparent() descend
through the children and remove redraws. Just removing the actor itself
isn't good enough since an entire hierarchy can be removed from the
stage without breaking it up into individual actors.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2359
This is based on an original patch from Owen Taylor who debugged the
root cause of this bug; thanks.
In the case that an unclipped redraw of an actor is queued after a
clipped we should update any existing ClutterStageQueueRedrawEntry
so entry->has_clip = FALSE and free the previous clip.
Instead of using the allocation-changed signal, use the queue-relayout
signal on the source to queue a relayout on the actor to which the
BindConstraint has been attached to.
The ::allocation-changed signal is not always enough, given that a
BindConstraint can use the position as well as the size of an actor to
drive the allocation of another; in this regard, it's much similar
to a ClutterClone, which requires a notification on every change, even
potential, and not just real ones, given the short-circuiting done
inside ClutterActor.
Instead of delegating the check for the ActorMeta:enabled property to
the sub-classes of ClutterActorMeta, ClutterActor can do the check prior
to using the ClutterActorMeta instances.
The interpolate() method does what it says on the tin: it interpolates
between two colors using the given factor.
ClutterColor uses it to register a progress function for Intervals.
When picking a size for the last slice in a texture, Cogl would always
pick the biggest power of two size that doesn't create too much
waste and is less than or equal to the previous slice size. However
this can end up creating a texture that is bigger than needed if there
is a smaller power of two.
For example, if the maximum waste is 127 (the current default) and we
try to create a texture that is 257 pixels wide it will decide that
the next power of two (512) is too much waste (255) so it will create
the first slice at 256 pixels wide. Then we only have 1 pixel left to
allocate but Cogl would pick the next smaller size that has a small
enough waste which is 128. But of course 1 is already a power of two
so that's redundantly oversized by 127.
This patch fixes it so that whenever it finds a size that would be big
enough, instead of using exactly that it picks the next power of two
up from the size we need to fill.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2355
A Clone:source property might be NULL, and we should not penalize
performance when we can just bail out early, because that would kind of
defeat the point.
Whenever the allocation is changed on a child of a ClutterTableLayout
and animations are not in effect then it would store a copy of the
allocation in the child meta data. However it was not freeing the old
copy of the allocation so it would end up with a small leak.
Instead of just changing it to free the old value this patch makes it
store the allocation inline in the meta data struct because it seems
that the size of an actor box is already quite small compared to the
size of the meta data struct so it is probably not worth having a
separate allocation for it. To detect the case when there has not yet
been an allocation a separate boolean is used instead of storing NULL.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2358
All the nifty things you discover when translating strings not exposed
to anyone. First the clutter-wide record of the number of typos in one
string. Second, ClutterTexture happened to have the only property blurbs
ending with a '.', remove them.
the "position" property of ClutterText is really the position of the
cursor. Rename the nick accordingly not to confuse it with the position
of the actor itself and be consistent with all the other cursor-related
properties.
The descriptions for the 'y-align' and 'x-align' properties talk about a
layer and a layer manager. It seems that these properties are the
alignement factors relative to the BinLayout, so document them
accordingly.
There are ordering issues in the pixmap destruction with current and
past X11 server, Mesa and dri2. Under some circumstances, an X pixmap
might be destroyed with the GLX pixmap still referencing it, and thus
the X server will decide to destroy the GLX pixmap as well; then, when
Cogl tries to destroy the GLX pixmap, it gets BadDrawable errors.
Clutter 1.2 used to trap + sync all calls to glXDestroyPixmap(), but
then we assumed that the ordering issue had been solved. So, we're back
to square 1.
I left a Big Fat Comment™ right above the glXDestroyPixmap() call
referencing the bug and the reasoning behind the trap, so that we don't
go and remove it in the future without checking that the issue has been
in fact solved.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2324
After commit 8dd8fbdb some errors appear if you try work directly
against cally:
* cally.pc.in removed some elements. After install clutter, doing
pkg-config --cflags cally-1.0
fails due missing winsys
* cally headers were moved from clutter-1.0/cally to
clutter-1.0/clutter/cally. Applications using it (yes I know,
nobody is officially using it) would require to:
* Change their include.
* Add directly a dependency to cally, in order to use the cally.pc
file with the correct directory include.
Note: Take into account that accessibility support still works (ie:
clutter_get_accessibility_enabled). This bug only prevents
applications to work directly against cally (ie: create a CallyActor
subclass)
http://bugzilla.clutter-project.org/show_bug.cgi?id=2353
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Landing the paint-box branch accidentally added two slots to the
ClutterEffectClass vtable, plus the get_paint_volume() function
pointer. This is an ABI break from 1.4.
Like we do for the Quartz backend, we should turn on the -xobjective-c
compiler flag for the Fruity backend.
This does not mean that the backend actually works.
The marshaller was defined as OBJECT,OBJECT,PARAM but the signal
definition used only two arguments. Since the signal never worked
and we never got any report about it, nobody could be possibly
using the ::child-notify signal.
Since we added child properties to the Container interface we made a
guarantee that the ::child-notify signal would be emitted whenever a
property was set using clutter_container_child_set*().
We were lying.
The child_notify virtual function was not implemented, and the signal
was never emitted.
We also used a G_LIKELY() macro while checking for non-NULL on a
function pointer that was by default set to NULL, thus making the
setting of child properties far less efficient than needed.
The clutter stage has a list of entries of actors waiting to be redrawn.
Each entry has a "clip" ClutterPaintVolume member which represents which
how much of the actor needs to get redrawn. It's possible for there to
be no clip associated with the entry. In this case, the clip member is
invalid, the has_clip member should be set to false.
This commit fixes a bug where the has_clip member was not being
initially, explicitly set to false for new entries, and not being
explicitly set to false in the event the clip associated with the entry
is freed.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2350
Signed-off-by: Robert Bragg <robert@linux.intel.com>
In all the changes made recently to how we handle redraws and adding
support for paint-volumes we stopped looking at explicit clip regions
passed to _clutter_actor_queue_redraw_with_clip.
In _clutter_actor_finish_queue_redraw we had started always trying to
clip the redraw to the paint-volume of the actor, but forgot to consider
that the user may have already determined the clip region for us!
Now we first check if the given clip != NUll and if so we don't need to
calculate the paint-volume of the actor.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2349
One of the later changes made on the paint volume branch before merging
with master was to make paint volumes opt in only since we couldn't make
any safe assumptions about how custom actors may constrain their
painting. We added very conservative implementations for the existing
Clutter actors - including for ClutterTexture which
ClutterX11TexturePixmap is a sub-class of - but we were conservative to
the extent of explicitly checking the GType of the actor so we would
avoid making any assumptions about sub-classes. The upshot was that we
neglected to implement the get_paint_volume vfunc for
ClutterX11TexturePixmap.
This patch provides an implementation that simply reports the actor's
allocation as its paint volume. Also unlike for other core actors it
doesn't explicitly check the GType so we are assuming that all existing
sub-classes of ClutterX11TexturePixmap constrain their drawing to the
actor's transformed allocation. If anyone does want to draw outside the
allocation in future sub-classes, then they should also provide an
updated get_paint_volume implementation.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2349
When using the debug function _cogl_debug_dump_materials_dot_file to
write a dot file representing the sparse graph of material state we now
only show a link between materials and layers when the material directly
owns that layer reference (i.e. just those referenced in
material->layer_differences) This makes it possible to see when
ancestors of a material are being deferred too for layer state.
For example when looking at the graph if you see that a material has an
n_layers of 3 but there is only a link to 2 layers, then you know you
need to look at it's ancestors to find the last layer.
In 4ee05f8e21 the namespace for the clutter keysym macros were
changed to CLUTTER_KEY_* but the win32 events backend was still
referring to the old names.
GObject ≥ 2.26.0 added a nice convenience call for installing properties
from an array of GParamSpec. Since we're already storing all GParamSpec
in an array in order to use them with g_object_notify_by_pspec(), this
turns out nicely for us.
Since we do not depend on GLib 2.26 (yet), we need to provide a simple
private wrapper that implements the fall back to the default
g_object_class_install_property() call.
ClutterDragAction has been converted as a proof of concept.
During destruction, the StageWindow implementation associated to a Stage
might be NULL. We need to add more checks for a) the IN_DESTRUCTION flag
being set and b) the StageWindow pointer being NULL. Otherwise, we will
get warnings during the destruction of the Stage.
Both of the cogl_texture_2d_sliced_new functions called the
slices_create function which creates the underlying GL
textures. However this was also called by init_base so the textures
would end up being created twice. This would make it leak the GL
textures and the arrays which point to them.
The internal copy of JSON-GLib was meant to go away right after the 1.0
release, given that JSON-GLib was still young and relatively unknown.
Nowadays, many projects started depending on this little library, and
distributions ship it and keep it up to date.
Keeping a copy of JSON-GLib means keeping it up to date; unfortunately,
this would also imply updating the code not just for the API but for the
internal implementations.
Starting with the 1.2 release, Clutter preferably dependend on the
system copy; with the 1.4 release we stopped falling back automatically.
The 1.6 cycle finally removes the internal copy and requires a copy of
JSON-GLib installed on the target system in order to compile Clutter.
Since re-working how redraws are queued it is no longer necessary to
dirty the pick buffer in _clutter_actor_real_queue_redraw since this
should now reliably be handled in _clutter_stage_queue_actor_redraw.
This adds two internal functions relating to explicit traversal of the
scenegraph:
_clutter_actor_foreach_child
_clutter_actor_traverse
_clutter_actor_foreach_child just iterates the immediate children of an
actor, and with a new ClutterForeachCallback type it allows the
callbacks to break iteration early.
_clutter_actor_traverse traverses the given actor and all of its
decendants. Again traversal can be stopped early if a callback returns
FALSE.
The first intended use for _clutter_actor_traverse is to maintain a
cache pointer to the stage for all actors. In this case we will need to
update the pointer for all descendants of an actor when an actor is
reparented in any way.
This adds a private getter to query the number of children an actor has.
One use planned for this API is to avoid calling get_paint_volume on
such actors. (It's not clear what the best semantics for
get_paint_volume are for actors with children, so we are considering
leaving the semantics undefined for the initial clutter 1.4 release)
We now explicitly track the list of children each actor has in a private
GList. This gives us a reliable way to know how many children an actor
has - even for composite actors that don't implement the container
interface. This also will allow us to directly traverse the scenegraph
in a more generalized fashion. Previously the scenegraph was
more-or-less represented implicitly according the implementation of
paint methods.
When using the CLUTTER_PAINT=paint-volumes debug option we try and show
when a paint volume couldn't be determined by drawing a blue outline of
the allocation instead. There was a typo though and instead we were
drawing an outline the size of the stage instead of for the given actor.
This fixes that and removes a FIXME comment relating to the blue outline
that is now implemented.
To allow Clutter to queue clipped redraws when a clone actor changes we
need to be able to report a paint volume for clone actors. This patch
makes ClutterClones query the paint volume of their source actor and
masquerade it as their own volume.
This reverts commit ca44c6a7d8abe9f2c548bee817559ea8adaa7a80.
In reality there are probably lots of actors that depend on the exact
semantics as they are documented so this change isn't really acceptable.
For example when the font changes in ClutterText we only queue a
relayout, and since it's possible that the font will have the same size
and the actor won't get a new allocation it wouldn't otherwise queue a
redraw.
Since queue_redraw requests now get deferred until just before a paint
run it is actually no longer a problem to queue the redraw here.
Instead of immediately, recursively emitting the "queue-redraw" signal
when clutter_actor_queue_redraw is called we now defer this process
until all stage updates are complete. This allows us to aggregate
repeated _queue_redraw requests for the same actor avoiding redundant
paint volume transformations. By deferring we also increase the
likelihood that the actor will have a valid paint volume since it will
have an up to date allocation; this in turn means we will more often be
able to automatically queue clipped redraws which can have a big impact
on performance.
Here's an outline of the actor queue redraw mechanism:
The process starts in clutter_actor_queue_redraw or
_clutter_actor_queue_redraw_with_clip.
These functions queue an entry in a list associated with the stage which
is a list of actors that queued a redraw while updating the timelines,
performing layouting and processing other mainloop sources before the
next paint starts.
We aim to minimize the processing done at this point because there is a
good chance other events will happen while updating the scenegraph that
would invalidate any expensive work we might otherwise try to do here.
For example we don't try and resolve the screen space bounding box of an
actor at this stage so as to minimize how much of the screen redraw
because it's possible something else will happen which will force a full
redraw anyway.
When all updates are complete and we come to paint the stage (see
_clutter_stage_do_update) then we iterate this list and actually emit
the "queue-redraw" signals for each of the listed actors which will
bubble up to the stage for each actor and at that point we will
transform the actors paint volume into screen coordinates to determine
the clip region for what needs to be redrawn in the next paint.
Note: actors are allowed to queue a redraw in reseponse to a
queue-redraw signal so we repeat the processing of the list until it
remains empty. An example of when this happens is for Clone actors or
clutter_texture_new_from_actor actors which need to queue a redraw if
their source queues a redraw.
For Clone actors we will need a way to report the volume of the source
actor as the volume of the clone actor. To make this work though we need
to be able to replace the reference to the source actor with a reference
to the clone actor instead. This adds a private
_clutter_paint_volume_set_reference_actor function to do that.
This adds a way to initialize a paint volume from another source paint
volume. This lets us for instance pass the contents of one paint volume
back through the out param of a get_paint_volume implementation.
This makes clutter_actor_queue_redraw simply bail out early if the actor
isn't a descendant of a ClutterStage since the request isn't meaningful
and it avoids a crash when trying to queue a clipped redraw against the
stage to clear the actors old location.
This splits out all the clutter_paint_volume code from clutter-actor.c
into clutter-paint-volume.c. Since clutter-actor.c and
clutter-paint-volume.c both needed the functionality of
_fully_transform_vertices, this function has now been moved to
clutter-utils.c as _clutter_util_fully_transform_vertices.
There are too many examples where the default assumption that an actor
paints inside its allocation isn't true, so we now return FALSE in the
base implementation instead. This means that by default we are saying
"we don't know the paint volume of the actor", so developers need to
implement the get_paint_volume virtual to take advantage of culling and
clipped redraws with their actors.
This patch provides very conservative get_paint_volume implementations
for ClutterTexture, ClutterCairoTexture, ClutterRectangle and
ClutterText which all explicitly check the actor's object type to avoid
making any assumptions about subclasses.
We were always explicitly checking priv->needs_allocation in
_clutter_actor_queue_redraw_with_clip, but we only need to do that if
the CLUTTER_REDRAW_CLIPPED_TO_ALLOCATION flag is used.
This initializes priv->last_paint_box with a degenerate box, so a newly
allocated actor added to the scenegraph and made visible only needs to
trigger a redraw of its initial position. If we don't have a valid
last_paint_box though we would instead trigger a full stage redraw.
To make comparing the performance with culling/clipped redraws
enabled/disabled fairer we now avoid querying the paint box when they
are disabled, so that results should reflect how the cost of
transforming paint volumes into screen space etc gets offset against the
benefit of culling.
In clutter_stage_allocate at the end we were always querying the latest
allocation set and using the geometry to assert the viewport and then
kicking a full redraw. These only need to be done when the allocation
really changes, so we now read the previous allocation at the start of
the function and compare at the end. This was stopping clipped redraws
from being used in a lot of cases.
To consider that we've see a number of drivers that can struggle to get
going and may produce a bad first frame we now force the first 2 frames
to be full redraws. This became a serious issue after we started using
clipped redraws more aggressively because we assumed that after the
first frame the full framebuffer was valid and we only redraw the
content that changes. With buggy drivers though, applications would be
left with junk covering a lot of the stage until some event triggered a
full redraw.
This is a workaround for a race condition when resizing windows while
there are in-flight glXCopySubBuffer blits happening.
The problem stems from the fact that rectangles for the blits are
described relative to the bottom left of the window and because we can't
guarantee control over the X window gravity used when resizing so the
gravity is typically NorthWest not SouthWest.
This means if you grow a window vertically the server will make sure to
place the old contents of the window at the top-left/north-west of your
new larger window, but that may happen asynchronous to GLX preparing to
do a blit specified relative to the bottom-left/south-west of the window
(based on the old smaller window geometry).
When the GLX issued blit finally happens relative to the new bottom of
your window, the destination will have shifted relative to the top-left
where all the pixels you care about are so it will result in a nasty
artefact making resizing look very ugly!
We can't currently fix this completely, in-part because the window
manager tends to trample any gravity we might set. This workaround
instead simply disables blits for a while if we are notified of any
resizes happening so if the user is resizing a window via the window
manager then they may see an artefact for one frame but then we will
fallback to redrawing the full stage until the cooling off period is
over.
Instead of triggering a full stage redraw for Expose events we use the
geometry of the exposed region given in the event to queue a clipped
redraw of the stage.
Clutter has now taken responsibility for managing its viewport,
projection matrix and view transform as part of ClutterStage so
_cogl_setup_viewport is no longer used by anything, and since it's quite
an obscure API anyway it's we've taken the opportunity to remove the
function.
Since clutter_actor_queue_redraw now automatically clips redraws
according to the paint volume of the actor we have to be careful to
ensure we really force a full redraw when the stage is allocated a new
size or the stage viewport changes.
We have bent the originally documented semantics a bit so now where we
say "Queueing a new layout automatically queues a redraw as well" it
might be clearer to say "Queuing a new layout implicitly queues a redraw
as well if anything in the layout changes".
This should be close enough to the original semantics to not cause any
problems.
Without this change then we we fail to take advantage of clipped redraws
in a lot of cases because queuing a redraw with priv->needs_allocation
== TRUE will automatically be promoted to a full stage redraw since it's
not possible to determine a valid paint-volume.
Also queuing a redraw here will end up registering a redundant clipped
redraw for the current location, doing quite a lot of redundant
transforms, and then later when re-allocated during layouting another
queue redraw would happen with the correct paint-volume.
This uses actor paint volumes to perform culling during
clutter_actor_paint.
When performing a clipped redraw (because only a few localized actors
changed) then as we traverse the scenegraph painting the actors we can
now ignore actors that don't intersect the clip region. Early testing
shows this can have a big performance benefit; e.g. 100% fps improvement
for test-state with culling enabled and we hope that there are even much
more compelling examples than that in the real world,
Most Clutter applications are 2Dish interfaces and have quite a lot of
actors that get continuously painted when anything is animated. The
dynamic actors are often localized to an area of user focus though so
with culling we can completely avoid painting any of the static actors
outside the current clip region.
Obviously the cost of culling has to be offset against the cost of
painting to determine if it's a win, but our (limited) testing suggests
it should be a win for most applications.
Note: we hope we will be able to also bring another performance bump
from culling with another iteration - hopefully in the 1.6 cycle - to
avoid doing the culling in screen space and instead do it in the stage's
model space. This will hopefully let us minimize the cost of
transforming the actor volumes for culling.
This makes clutter_actor_queue_redraw transparently use an actor's paint
volume to queue a clipped redraw.
We save the actors paint box each time it is painted so that when
clutter_actor_queue_redraw is called we can determine the old and new
location of the actor so we know the full bounds of what must be redrawn
to clear its old view and show the new.
This makes _clutter_actor_transform_and_project_box a static function
and removes the prototype from clutter-private.h since it is no longer
used outside clutter-actor.c
The base implementation for the actor queue_relayout method was queuing
an implicit redraw, but there shouldn't be anything implied from the
mere process of queuing a redraw that should force us to queue a redraw.
If actors are moved as a part of relayouting later then they will queue
a redraw. Also clutter_actor_queue_relayout() still also explicitly
queues a redraw so I think this may have been doubly redundant.
If clutter_actor_allocate finds it necessary to update an actors
allocation then it now also queue a redraw of that actor. Currently we
queue redraws for actors very early on when queuing a relayout instead
of waiting to determine the final outcome of relayouting to determine if
a redraw is really required. With this in place we can move away from
preemptive queuing of redraws.
clutter_actor_queue_relayout currently queues a relayout and a redraw,
but the plan is to change it to only queue a relayout and honour the
documentation by assuming that the process of relayouting will
result queuing redraws for any actors whos allocation changes.
This doesn't make that change it just adds an internal
_clutter_actor_queue_only_relayout function which
clutter_actor_queue_relayout now uses as well as calling
clutter_actor_queue_redraw.
This adds a private ->relayout_pending boolean similar in spirit to
redraw_pending. This will allow us to queue a relayout without
implicitly queueing a redraw; instead we can depend on the actions
of a relayout to queue any necessary redraw.
When clutter_texture_new_from_actor is use we need to track when the
source actor queues a redraw or a relayout so we can also queue a redraw
or relayout for the texture actor.
There is an internal _clutter_actor_queue_redraw_with_clip API that gets
used for texture-from-pixmap to minimize what we redraw in response to
Damage events. It was previously working in terms of a ClutterActorBox
but it has now been changed so an actor can queue a redraw of volume
instead.
The plan is that clutter_actor_queue_redraw will start to transparently
use _clutter_actor_queue_redraw_with_clip when it can determine a paint
volume for the actor.
For the blur effect we use a BLUR_PADDING constant to pad out the volume
of the source actor on the x and y axis. Previously we were offsetting
the origin negatively using BLUR_PADDING and then adding BLUR_PADDING
to the width and height, but we should have been adding 2*BLUR_PADDING
instead.
This ensures that clipped redraws are disabled when using
CLUTTER_PAINT=redraws. This may seem unintuitive given that this option
is for debugging clipped redraws, but we can't draw an outline outside
the clip region and anything we draw inside the clip region is liable to
leave a trailing mess on the screen since it won't be cleared up by
later clipped redraws.
This adds a debug option to visualize the paint volumes of all actors.
When CLUTTER_PAINT=paint-volumes is exported in the environment before
running a Clutter application then all actors will have their bounding
volume drawn in green with a label corresponding to the actors type.
This is a fairly extensive second pass at exposing paint volumes for
actors.
The API has changed to allow clutter_actor_get_paint_volume to fail
since there are times - such as when an actor isn't a descendent of the
stage - when the volume can't be determined. Another example is when
something has connected to the "paint" signal of the actor and we simply
have no way of knowing what might be drawn in that handler.
The API has also be changed to return a const ClutterPaintVolume pointer
(transfer none) so we can avoid having to dynamically allocate the
volumes in the most common/performance critical code paths. Profiling was
showing the slice allocation of volumes taking about 1% of an apps time,
for some fairly basic tests. Most volumes can now simply be allocated on
the stack; for clutter_actor_get_paint_volume we return a pointer to
&priv->paint_volume and if we need a more dynamic allocation there is
now a _clutter_stage_paint_volume_stack_allocate() mechanism which lets
us allocate data which expires at the start of the next frame.
The API has been extended to make it easier to implement
get_paint_volume for containers by using
clutter_actor_get_transformed_paint_volume and
clutter_paint_volume_union. The first allows you to query the paint
volume of a child but transformed into parent actor coordinates. The
second lets you combine volumes together so you can union all the
volumes for a container's children and report that as the container's
own volume.
The representation of paint volumes has been updated to consider that
2D actors are the most common.
The effect apis, clutter-texture and clutter-group have been update
accordingly.
Previously we used the transformed allocation but that doesn't take
into account actors with depth which may be projected outside the
area covered by the transformed allocation.
The blur effect will sample pixels on the edges of the offscreen buffer,
so we want to add a padding to avoid clamping the blur.
We do this by creating a larger target texture, and updating the paint
volume of the actor during paint to take that padding into account.
We should be using the real, on-screen, transformed size of the actor to
size and position the offscreen buffer we use to paint the actor for an
effect.
An Effect implementation might override the paint volume of the actor to
which it is applied to. The get_paint_volume() virtual function should
be added to the Effect class vtable so that any effect can get the
current paint volume and update it.
The clutter_actor_get_paint_volume() function becomes context aware, and
does the right thing if called from within a ClutterEffect pre_paint()
or post_paint() implementation, by allowing all effects in the chain up
to the caller to modify the paint volume.
An actor has an implicit "paint volume", that is the volume in 3D space
occupied when painting itself.
The paint volume is defined as a cuboid with the origin placed at the
top-left corner of the actor; the size of the cuboid is given by three
vectors: width, height and depth.
ClutterActor provides API to convert the paint volume into a 2D box in
screen coordinates, to compute the on-screen area that an actor will
occupy when painted.
Actors can override the default implementation of the get_paint_volume()
virtual function to provide a different volume.
*** WARNING: THIS COMMIT CHANGES THE BUILD ***
Do not recurse into the backend directories to build private, internal
libraries.
We only recurse from clutter/ into the cogl sub-directory; from there,
we don't recurse any further. All the backend-specific code in Cogl and
Clutter is compiled conditionally depending on the macros defined by the
configure script.
We still recurse from the top-level directory into doc, clutter and
tests, because gtk-doc and tests do not deal nicely with non-recursive
layouts.
This change makes Clutter compile slightly faster, and cleans up the
build system, especially when dealing with introspection data.
Ideally, we also want to make Cogl part of the top-level build, so that
we can finally drop the sed trick to change the shared library from the
GIR before compiling it.
Currently disabled:
‣ OSX backend
‣ Fruity backend
Currently enabled but untested:
‣ EGL backend
‣ Windows backend
ClutterAnimator currently has a number of bugs related to its
referencing of its internal timeline.
1) The default timeline created in _init is not unreffed (it appears the
programmer has wrongly thought ClutterTimeline has a floating reference
based on the use of g_object_ref_sink in _set_timeline)
2) The timeline and slave_timeline vars are unreffed in finalize instead
of dispose
3) The signal handlers set up in _set_timeline are not disconnected when
the animator is disposed
http://bugzilla.clutter-project.org/show_bug.cgi?id=2347
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
This reorganizes the loop for clutter_actor_contains so that it is a
for loop rather than a while loop. Although this is mostly just
nitpicking, I think this change could make the loop slightly faster if
not optimized because it doesn't perform the self == descendant check
twice and it is clearer.
The documentation for clutter_actor_contains didn't specify what
happens when self==descendant. A strict reading of it might lead you
to think that it would return FALSE because in that case the
descendant isn't an immediate child or a deeper descendant. The code
actually would return TRUE. I think this is more useful so this patch
fixes the docs rather than the code.
When removing all keys in a ClutterAnimator, the hash table with
object/property name pairs went out of sync. This change makes
the animator always clear this hash table upon key-removal; and
refreshing it if the animator's timeline is running.
Fixes bug #2335
Each time a material property changes we look to see if any of its
ancestry has become redundant and if so we prune that redundant
ancestry.
There was a problem with the logic that handles this though because we
weren't considering that a material which is a layer state authority may
still defer to ancestors to define the state of individual layers.
For example a material that derives from a parent with 5 layers can
become a STATE_LAYERS authority by simply changing it's ->n_layers count
to 4 and in that case it can still defer to its ancestors to define the
state of those 4 layers.
This patch checks first if a material is a layer state authority and if
so only tries to prune its ancestry if it also *owns* all the individual
layers it depends on. (I.e. if g_list_length
(material->layer_differences) != material->n_layers then it's not safe
to try pruning its ancestry!)
http://bugzilla-attachments.gnome.org/attachment.cgi?id=170907
There is GL_INVALID_ENUM error for GL_DEPTH_STENCIL when call
glRenderbufferStorage() with OpenGL ES backend. So enable this
only for OpenGL backend.
Signed-off-by: Robert Bragg <robert@linux.intel.com>
This is all internal, so we shouldn't need it; unfortunately, it seems
we're passing invalid data internally, so for the time being catching
inconsistencies should at least emit a warning for us to backtrace.
This adds a check in clutter_actor_real_queue_redraw after calling
_clutter_actor_get_stage_internal to check in case the actor doesn't yet
have an associated stage so we can avoid passing a NULL stage pointer to
_clutter_stage_set_pick_buffer_valid which could cause a crash.
*** This is an API change ***
The general pattern for axis-aligned arguments is:
x argument
y argument
If we consider columns an x-aligned argument, and row a y-aligned
argument, then we need to update the TableLayout functions to be:
column
row
and not:
row
column
We have an optimization to track when there are multiple picks per
frame so we can do a full render of the pick buffer to reduce the
number of pick renders for a static scene.
There was a problem though in that we were tracking this information in
the ClutterMainContext, but conceptually this doesn't really make sense
because the pick buffer is associated with a stage framebuffer and there
can be multiple stages for one context.
This patch moves the state tracking to ClutterStage.
This reverts commit d7e86e2696.
This was a half baked patch that was pushed a bit early since it broke
test-texture-pick-with-alpha + the commit message refers to a change on
the wip/paint-box branch that hasn't happened yet.
We have an optimization to track when there are multiple picks per
frames so we can do a full render of the pick buffer to reduce the
number of pick renders for a static scene.
There were two problems with how we were tracking this state though.
Firstly we were tracking this information in the ClutterMainContext, but
conceptually this doesn't really make sense because the pick buffer is
associated with a stage framebuffer and there can be multiple stages for
one context. Secondly - since the change to how redraws are queued - we
weren't marking the pick buffer as invalid when a queuing a redraw, we
were only marking the buffer invalid when signaling/finishing the
queue-redraw process, which is now deferred until just before a paint.
This meant using clutter_stage_get_actor_at_pos after a scenegraph
change could give a wrong result if it just read from an existing (but
technically invalid) pick buffer.
This patch moves the state tracking to ClutterStage, and ensures the
buffer is invalidated in _clutter_stage_queue_actor_redraw.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2283
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
The request mode set by the box layout was previously width-for-height
in a vertical layout and height-for-width in a horizontal layout which
seems to be wrong. For example, if width-for-height is used in a
vertical layout then the width request will come second with the
for_height parameter set. However a vertical layout doesn't pass the
for_height parameter on to its children so doing the requests in that
order doesn't help. If the layout contains a ClutterText then both the
width and height request for it will have -1 for the for_width and
for_height parameters so the text would end up allocated too small.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2328
If set_cogl_texture() is called after unsetting the Texture's material
then we really want to make a copy of the template.
Also, we should assert more often if the internal state goes horribly
wrong: at least, we'll have a backtrace.
The order of the row_span and column_span arguments was different in
the declaration from that in the definition. This was causing the
gtk-doc to also have the wrong order.
If COGL_OBJECT_DEBUG is defined then cogl-object-private.h will call
COGL_NOTE in the ref and unref macros. For this to work the debug
header needs to also be included or COGL_NOTE won't necessarily be
defined.
If the FlowLayout layout manager wasn't allocated the same size it
requested then it should blow its caches and recompute the layout
with the given allocation size.
Instead of using the fixed position and size API, use the newly added
update_allocation() virtual function in ClutterConstraint to change the
allocation of a ClutterActor. This allows using constraints inside
layout managers, and also allows Constraints to react to changes in the
size of an actor without causing relayout cycles.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2319
The Constraint should plug directly into the allocation mechanism, and
modify the allocation of the actor to which they are applied to. This is
similar to the mechanism used by the Effect class to modify the paint
sequence of an actor.
In line with the changes made in f5f066df9c to clean up how Clutter
deals with transformations of actors this patch updates the code in
clutter-offscreen-effect.c. We now query the projection matrix from the
stage instead of the perspective and instead of duplicating the logic to
setup the stage view transform we now use
_clutter_actor_apply_modelview_transform for the stage instead.
cogl_util_next_p2 is declared in cogl-util.h which is a private header
so it shouldn't be possible for an application to use it. It's
probably not a function we'd like to export from Cogl so it seems
better to keep it private. This patch renames it to _cogl_util_next_p2
so that it won't be exported from the shared library.
The documentation for the function is also slightly wrong because it
stated that the function returned the next power greater than
'a'. However the code would actually return 'a' if it's already a
power of two. I think the actual behaviour is more useful so this
patch changes the documentation rather than the code.
Previously CoglVertexBuffer would always set the flush options flags
to at least contain COGL_MATERIAL_FLUSH_FALLBACK_MASK. The code then
later checks whether any flags are set before deciding whether to copy
the material to implement the overrides. This means that it would
always end up copying the material even if there are no fallback
layers. This patch changes it so that it only sets
COGL_MATERIAL_FLUSH_FALLBACK_MASK if fallback_layers != 0.
If a single arbfp program is being shared between multiple CoglMaterials
then we need to make sure we update all program.local params when
switching between materials. Previously we had a dirty flag to track
when combine_constant params were changed but didn't take in to account
that different materials sharing the same program may have different
combine constants.
Previously the backend private state was used to either link to an
authority material or provide authoritative program state. The mechanism
seemed overly complex and felt very fragile. I made a recent comment
which added a lot of documentation to make it easier to understand but
still it didn't feel very elegant.
This patch takes a slightly different approach; we now have a
ref-counted ArbfpProgramState object which encapsulates a single ARBfp
program and the backend private state now just has a single member which
is a pointer to one of these arbfp_program_state objects. We no longer
need to cache pointers to our arbfp-authority and so we can get rid of
a lot of awkward code that ensured these pointers were
updated/invalidated at the right times. The program state objects are
not tightly bound to a material so it will also allow us to later
implement a cache mechanism that lets us share state outside a materials
ancestry. This may help to optimize code not following the
recommendations of deriving materials from templates, avoiding one-shot
materials and not repeatedly modifying materials because even if a
material's ancestry doesn't naturally lead us to shareable state we can
fallback to searching for shareable state using central hash tables.
This adds a way to iterate the layer indices of the given material since
cogl_material_get_layers has been deprecated. The user provides a
callback to be called once for each layer.
Because modification of layers in the callback may potentially
invalidate any number of the internal CoglMaterialLayer structures and
invalidate the material's layer cache this should be more robust than
cogl_material_get_layers() which used to return a const GList *
pointing directly to internal state.
This fixes the material backends to declare their constant vtable in the
c file with a corresponding extern declaration in the header. This
should fix complaints about duplicate symbols seen on OSX.
Instead of lazily incorporating combine constants as arbfp PARAM
constants in the source directly we now use program.local parameters
instead so we can avoid repeating codegen if a material's combine
constant is updated. This should be a big win for applications animating
a constant used for example in an animated interpolation, such as
gnome-shell.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2280
This makes it so we don't consider LAYER_STATE_TEXTURE changes to affect
the arbfp code. This should avoid a lot of unneeded passes of
code generation for applications modifying the texture for a layer.
This makes it so we only notify backends of either a single material
change or a single layer change. Previously all material STATE_LAYERS
changes would be followed by a more detailed layer change.
For backends that perform code generation for fragment processing they
typically need to understand the details of how layers get changed to
determine if they need to repeat codegen. It doesn't help them to report
a material STATE_LAYERS change for all layer changes since it's so
broad, they really need to wait for the layer change to be notified.
What does help though is to report a STATE_LAYERS change for a change in
material->n_layers because they typically do need to repeat codegen in
that case.
This fixes a number of issues relating to how we track the arbfp private
state associated with CoglMaterials. At the same time it adds much more
extensive code documentation to try and make it a bit more approachable.
When notifying a backend about a layer being modified we now pass the
layers current owner for reference. NB: Although a layer can indirectly
be referenced by multiple layers, a layer is considered immutable once
it has dependants, so there is only ever one material associated with a
layer being modified. Passing the material pointer to the backends
layer_pre_change callback can be useful for backends that associate
their private state with materials and may need to update that state in
response to layer changes.
This renames the get_arbfp_authority function to
get_arbfp_authority_no_check to clarify that the function doesn't
validate that the authority cache is still valid by looking at the age
of the referenced material. The function should only be used when we
*know* the cache has already been checked.
We now pass a boolean to _cogl_material_pre_change_notify to know when
a material change is as a result of a layer change. We plan to use this
information to avoid notifying the backends about material changes if
they are as a result of layer changes. This will simplify the handling
of state changes in the backends because they can assume that layer and
material changes are mutually exclusive.
This adds an internal _cogl_material_get_layer_combine_constant function
so we can query the current layer combine constant back. We should
probably make this a public property getter, but for now we just need
this so we can read the constant in the arbfp backend.
We are going to start tracking more per-texture unit state with arbfp
private state so this adds an internal UnitState type and we allocate an
array of these when setting up a new private state structure. The first
thing that has been moved into this is the sampled boolean to know when
a particular texture unit gets sampled from in the generated arbfp code.
This avoids the use of of gcc constructor and destructor attributes to
initialize the cogl uprof context and optionally print a cogl uprof
report at app exit. We now initialize the uprof context in
cogl_context_create instead.
When building with --enable-profile we now depend on the uprof-0.3
developer release which brings a few improvements:
» It lets us "fix" how we initialize uprof so that instead of using a shared
object constructor/destructor (which was a hack used when first adding
uprof support to Clutter) we can now initialize as part of clutter's
normal initialization code. As a side note though, I found that the way
Clutter initializes has some quite serious problems whenever it
involves GOptionGroups. It is not able to guarantee the initialization
of dependencies like uprof and Cogl. For this reason we still use the
contructor/destructor approach to initialize uprof in Cogl.
» uprof-0.3 provides a better API for adding custom columns when reporting
timer and counter statistics which lets us remove quite a lot of manual
report generation code in clutter-profile.c.
» uprof-0.3 provides a shared context for tracking mainloop timer
statistics. This means any mainloop based library following the same
"Mainloop" timer naming convention can use the shared context and no
matter who ends up owning the final mainloop the statistics will always
be in the same place. This allows profiling of Clutter with an
external mainloop such as with the Mutter compositor.
» uprof-0.3 can export statistics over dbus and comes with an ncurses
based ui to vizualize timer and counter stats live.
The latest version of uprof can be cloned from:
git://github.com/rib/UProf.git
When try_creating_fbo fails it deletes any intermediate render buffers
that were created. However it doesn't clear the list so I think if it
failed a second time it would try to delete the render buffers
again. This could potentially cause problems if a subsequent fbo is
created because the destructor for the original might delete the
renderbuffers of the new fbo.
Since a ClutterClone may be allocated a different size than its source
actor we need to apply a scale factor before painting the source actor.
We were manually using cogl_scale to do this in clutter_clone_paint but
really this kind of thing is best handled in an implementation of the
apply_transform virtual so Clutter can be aware of the transform for
other purposes, such as input transformations. Also we want to provide
an implementation of the get_paint_volume virtual where Clutter will
also expect to be able to use the apply_transform virtual to transform
the volume into its parent's coordinate space.
If a NULL clip is passed to clutter_stage_glx_add_redraw_clip then we
update the redraw clip to have width of 0, but we weren't setting
stage_glx->initialized_redraw_clip = TRUE. This could result in a full,
unclipped stage redraw being reduced to a clipped redraw.
This adds a verbose warning that will be displayed if
clutter_actor_allocate is passed an actor that isn't a descendent of a
ClutterStage. Layouting should always bubble up from a stage so this
condition is likely to indicate a buggy container that allocating a
child that it has already unparented.
When building actor relative transforms, instead of using the matrix
stack to combine transformations and making assumptions about what is
currently on the stack we now just explicitly initialize an identity
matrix and apply transforms to that.
This removes the full_vertex_t typedef for internal transformation code
and we just use ClutterVertex.
ClutterStage now implements apply_transform like any other actor now
and the code we had in _cogl_setup_viewport has been moved to the
stage's apply_transform instead.
ClutterStage now tracks an explicit projection matrix and viewport
geometry. The projection matrix is derived from the perspective whenever
that changes, and the viewport is updated when the stage gets a new
allocation. The SYNC_MATRICES mechanism has been removed in favour of
_clutter_stage_dirty_viewport/projection() APIs that get used when
switching between multiple stages to ensure cogl has the latest
information about the onscreen framebuffer.
This adds _clutter_actor_get_stage_internal to clutter-private.h since
we plan to use it in clutter-offscreen-effect when preparing to
redirect an actor offscreen.
Instead of doing the shlib trick, build ClutterJson (if needed) inside
the top-level clutter/ directory - similar to a non-recursive layout.
Hopefully, one day, we'll be able to do this with a real non-recursive
layout.
Let's try to keep Cogl's build as non-recursive as possible, in the hope
that one day we'll be able to make it fully non-recursive along with the
rest of Clutter.
The keysyms defines in clutter-keysyms.h are generated from the X11 key
symbols headers by doing the equivalent of a pass of sed from XK_* to
CLUTTER_*. This might lead to namespace collisions, down the road.
Instead, we should use the CLUTTER_KEY_* namespace.
This commit includes the script, taken from GDK, that parses the X11
key symbols and generates two headers:
- clutter-keysyms.h: the default included header, with CLUTTER_KEY_*
- clutter-keysyms-compat.h: the compatibility header, with CLUTTER_*
The compat.h header file is included if CLUTTER_DISABLE_DEPRECATED is
not defined - essentially deprecating all the old key symbols.
This does not change any ABI and, assuming that an application or
library is not compiling with CLUTTER_DISABLE_DEPRECATED, the source
compatibility is still guaranteed.
Make sure we don't use deprecated API internally by adding
CLUTTER_DISABLE_DEPRECATED to the AM_CPPFLAGS.
This requires adding -UCLUTTER_DISABLE_DEPRECATED to the introspection
scanner CFLAGS, otherwise the deprecated API will never be introspected
and the data generated will not be compatible.
When animating an actor through clutter_actor_animate() and friends we
might want forcibly detach the animation instance from the actor in
order to start a new one - for instance, in response to user
interaction.
Currently, there is no way to do that except in a very convoluted way,
by emitting the ::completed signal and adding a special case in the
signal handlers; this is due to the fact that clutter_actor_animate()
adds more logic than the one added by clutter_animation_set_object(),
so calling set_object(NULL) or unreferencing the animation instance
itself won't be enough.
The right way to approach this is to add a new method to Clutter.Actor
that detaches any eventual Animation currently referencing it.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2051
If we're depending on an uninstalled .gir, use --include-uninstalled.
We need to explicitly specify Cogl to let the scanner know it's also
uninstalled.
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Flushing the framebuffer state can cause some drawing to occur if the
framebuffer has a clip stack which needs the stencil buffer. This was
causing the array pointers set up by enable_state_for_drawing_buffer
to get mangled so it would crash when it hits glDrawArrays. This patch
moves the framebuffer state flush to before it sets up the array
pointers.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2297
I think this is what commit 2cf1405506 intended to do since it
specifically mentioned cleaning up the trap in
clutter_x11_texture_pixmap_set_pixmap, but although it moved the untrap
to only be done in the case where Pixmap != None it left the position of
the trap itself unchanged. This meant the error trapping wouldn't be
balanced if pixmap == None since the untrap wouldn't be done. We now
only trap and untrap around the XGetGeometry call done when pixmap !=
None.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2303
With currently distributed versions of Mesa, calling XFreePixmap()
before glxDestroyPixmap() will cause an X error from DRI. So, we
need to make sure that we get rid of the CoglTexturePixmapX11 before
we XFreePixmap().
clutter_x11_texture_pixmap_dispose(): Call
clutter_x11_texture_pixmap_set_pixmap() instead of using XFreePixmap
directly so that we leverage the text-clearing hack and destroy
things in the right order.
clutter_x11_texture_pixmap_set_pixmap(): Don't do a pointless roundtrip
and trap a pointless error when setting pixmap to None.
clutter_x11_texture_pixmap_set_pixmap(): Free damage resources when
we are setting Pixmap to None.
clutter_x11_texture_pixmap_set_window(): When setting a new window
or setting the window to None, immedediately call
cluter_x11_texture_pixmap_set_pixmap(). This means that set_window(None)
immediately will free any referenced resources related to the window.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2303
Comprehensively add (out) annotations to functions parameters
returning int/float/double.
Not handled here: structure out returns like ClutterColor or
ClutterPerspective or GValue that should get (out caller-allocates).
Not handled here: Cogl
http://bugzilla.clutter-project.org/show_bug.cgi?id=2302
(element-type) should have a full name like Clutter.Actor rather than
a non-namespaced name like Actor. gobject-introspection has become
more strict about this with the recent scanner rewrite.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2301
*** This is an API change ***
Replaced the original drag-threshold property with two separate
horizontal (x-drag-threshold) and vertical (y-drag-threshold)
thresholds.
It is some times necessary to have different drag thresholds for the
horizontal and vertical axes. For example, when a draggable actor is
inside a horizontal scrolling area, only vertical movement must begin
dragging. That can be achieved by setting the x-drag-threshold to
G_MAXUINT while y-drag-threshold is something usual, say, 20 pixels.
This is different than drag axis, because after the threshold
has been cleared by the pointer, the draggable actor can be dragged
along both axes (if allowed by the drag-axis property).
http://bugzilla.clutter-project.org/show_bug.cgi?id=2291
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Creating new materials for every Texture instance results in a lot of
ARBfp programs being generated/compiled. Since most textures will just
be similar we should create a template material for all of them, and
then copy it in every instance. Cogl will try to optimize the generation
of the program and, hopefully, will reuse the same program most of the
time.
With this change, a simple test shows that loading 48 textures will
result in just two programs being compiled - with and without batching
enabled.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2295
When disposing a material layer of type 'texture' we should check that
the texture handle is still valid before calling cogl_handle_unref().
This avoids an assertion failure when disposing a ClutterTexture.
This patch merges in substantial work from
Emmanuele Bassi <ebassi@linux.intel.com>
* Use new introspection --include-uninstalled API since we don't want
to try to find the clutter-1.0.pc file before it's installed.
* Use --pkg-export for Clutter-1.0.gir, since we want the .gir file to
contain the associated pkg-config file.
* Drop the use of --pkg for dependencies; those come from the associated
.gir files. (Actually, --pkg is almost never needed)
* Add --quiet
http://bugzilla.clutter-project.org/show_bug.cgi?id=2292
Intel CE3100 and CE4100 have several planes (framebuffers) and a
hardware blender to blend the planes togeteher to produce the final
image.
clutter_cex100_set_plane() lets you configure which framebuffer clutter
will use for its rendering.
• Use the public COGL_HAS_GLES[12] define instead of the HAVE_COGL_*
ones which are private and defined in config.h,
• Install clutter-egl-headers.h which is needed by clutter-egl.h,
• Remove clutter-stage.h as it's uneeded and does not work since the
single clutter.h include policy,
• Install the egl headers into their own egl directory as the x11 and
glx backends do. The include should then be <clutter/egl/clutter-egl.h>,
so document it. It does not really break anything as nobody could
have used those broken headers.
Intel CE3100 and CE4100 SoCs are designed for TVs. They have separate
framebuffers that are blended together by a piece of hardware to make
the final output. The library that allows you to initialize and
configure those planes is called GDL. A EGL GDL winsys can then be
use with those planes as NativeWindowType to select which plane to use.
This patch adds a new ClutterBackendCex100 backend that can be
selected at compile time with the new --with-flavour=cex100 option.
Some minor fixes here and there: missing include, wrongly placed #endif,
unused variable warning fixes, missing #ifdef.
Make ClutterStageEGL a subclass of either ClutterStageX11 or GObject
depending if you compile with X11 support (EGLX) or not (native).
*** This is an API change ***
The create_target() virtual function should return a CoglHandle to a
texture; clutter_offscreen_effect_get_target(), instead, returns a
CoglMaterial to be painted in the implementation of the paint_target()
virtual function.
Instead of equating textures with materials, and confusing the user of
the API, we should mark the difference more prominently.
First of all, we should return a CoglMaterial* (now that we have that
as a public type) in get_target(); having handles all over the place
does not make it easier to distinguish the semantics of the virtual
functions.
Then we should rename create_target() to create_texture(), to make it
clear that what should be returned is a texture that is used as the
backing for the offscreen framebuffer.
Commit eae4561929 tried to clean how it checks for the private actor
flags. However the check for the 'IN_DESTRUCTION' flag in the Win32
backend got inverted so it would always clear the current
context. This was causing _cogl_check_driver_valid to fail later and
then the realize would get stuck in a infinite loop.
When we free a state because there are no more keys with it as a target use a
goto to re-initialize temporary variables that have become invalid.
Fixing bug #2273
In 965907deb3 the picking was changed to render the full stage
instead of a single pixel whenever picking is performed more than once
between paints. However the condition in the if-statement was
backwards so it would end up always doing a full stage render.
The glx and egl(x) backends export some internal symbols. Hide these
symbols (using '_' prefix) to reduce ABI differentiation between the
glx and eglx flavours.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2267
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
It can be useful to be able to forcibly break the grab set up by the
ClickAction. The newly added release() method provides a mechanism to
release the grab and unset the :held state of the ClickAction.
This clarifies the documentation for clutter_actor_queue_redraw to
explain that custom actors should call this whenever some private state
changes that affects painting *or* picking.
The expectation is that actors should call clutter_actor_queue_redraw
when ever some private state changes that affects painting *or* picking.
ClutterTexture was not doing this for pick_with_alpha property changes.
The idea is that if we see multiple picks per frame then that implies
the visible scene has become static. In this case we can promote the
next pick render to be unclipped so we have valid pick values for the
entire stage. Now we can continue to read from this cached buffer until
the stage contents do visibly change.
Thanks to Luca Bruno on #clutter for this idea!
Weak materials are ones that don't take a reference on their parent and
they are associated with a callback that notifies when the material is
destroyed, because its parent was freed or modified.
More details can be found at:
http://wiki.clutter-project.org/wiki/CoglDesign/CoglMaterial
For now the concept is internal only but the plan is to make this public
at some point once we have tested the design internally.
Following the commits:
c03544da - clutter-shader: use cogl_program_set_uniform_xyz API
a26119b5 - tests: Remove use of cogl_program_use
Remove the users of cogl_program_uniform_* and cogl_program_use() in the
shader-based effects.
In the case where there is no error log for arbfp we were returning a
"" string literal. The other paths were using g_strdup to return a
string that could be freed with g_free. This makes the arbfp path return
g_strdup ("") instead.
There are quite a few if {} else {} blocks for dealing with arbfp else
glsl and the first block is guarded with #ifdef HAVE_COGL_GL. In this
case though the #endif was before the else so it wouldn't compile for
gles.
We need to include cogl-shader-private.h to have the
COGL_SHADER_TYPE_GLSL define. When building for opengl this wasn't
noticed probably because some other header indirectly includes this
file. It was a problem when building for gles2 though.
Instead of using the deprecated cogl_program_uniform_xyz functions we
now use the cogl_program_set_uniform methods. It looks like this should
also fix a problem with clutter-shader too in that previously we weren't
calling cogl_program_use before cogl_program_uniform_xyz so setting
uniforms would only work while the shader is enabled.
Instead of exposing an API that provides an OpenGL state machine style
where you first have to bind the program to the context using
cogl_program_use() followed by updating uniforms using
cogl_program_uniform_xyz we now have uniform setter methods that take an
explicit CoglHandle for the program.
This deprecates cogl_program_use and all the cogl_program_uniform
variants and provides the following replacements:
cogl_program_set_uniform_1i
cogl_program_set_uniform_1f
cogl_program_set_uniform_int
cogl_program_set_uniform_float
cogl_program_set_uniform_matrix
--quiet has been added to g-ir-scanner in the 0.9.1 cycle. We really
want to be able to compile clutter with 0.6.14 to be able to reuse
gir files that are distributed in current distributions.
Use the INTROSPECTION_SCANNER_ARGS (previously unused) variable to
convey --quiet when necessary.
Fixes: http://bugzilla.clutter-project.org/show_bug.cgi?id=2265
CoglAtlas chooses a fairly large default initial size of either
512x512 or 1024x1024 depending on the texture format. There is a
chance that this size will not be supported on some platforms which
would be catastrophic for the glyph cache because it would mean that
it would always fail to put any glyphs in the cache so text wouldn't
work. To fix this the atlas code now checks whether the chosen initial
size is supported by the texture driver and if not it will get halved
until it is supported.
Previously when creating a new rectangle map it would try increasingly
larger texture sizes until GL_MAX_TEXTURE_SIZE is reached. This is bad
because it queries state which should really be owned by the texture
driver. Also GL_MAX_TEXTURE_SIZE is often a conservative estimate so
larger texture sizes can be used if the proxy texture is queried
instead.
Previously each node in the rectangle map tree would store the total
remaining space in all of its children to use as an optimization when
adding nodes. With this it could skip an entire branch of the tree if
it knew there could never be enough space for the new node in the
branch. This modifies that slightly to instead store the largest
single gap. This allows it to skip a branch earlier because often
there would be a lot of small gaps which would add up to enough a
space for the new rectangle, but the space can't be used unless it is
in a single node.
The rectangle map still needs to keep track of the total remaining
space for the whole map for the debugging output so this has been
added back in to the CoglRectangleMap struct. There is a separate
debugging function to verify this value.
Previously when the atlas needs to be migrated it would start by
trying with the same size as the existing atlas if there is enough
space for the new texture. However even if the atlas is completely
sorted there will always be some amount of waste so when the atlas
needs to grow it would usually end up redundantly trying the same size
when it is very unlikely to fit. This patch changes it so that there
must be at least 6% waste available after the new texture is added
otherwise it will start with the next atlas size.
When iterating over the rectangle map a stack is used to implement a
recursive algorithm. Previously this was slice allocating a linked
list. Now it uses a GArray which is retained with the rectangle map to
avoid frequent allocations which is a little bit faster.
Previously the remaining space was managed as part of the
CoglRectangleMap struct. Now it is stored per node so that at any
point in the hierarchy we can quickly determine how much space is
remaining in all of the node's children. That way when adding a
rectangle we can miss out entire branches more quickly if we know that
there is no way the new rectangle would fit in that branch.
This also adds a function to recursively verify the cached state in
the nodes such as the remaining space and the number of
rectangles. This function is only called when the dump-atlas-image
debug flag is set because it is potentially quite slow.
The glyph cache is now stored in a CoglAtlas structure instead of the
custom atlasing code. This has the advantage that it can share code
with the main texture atlas and that it supports reorganizing the
atlas when it becomes full. Unlike the texture atlas, the glyph cache
can use multiple atlases which would be neccessary if the maximum
texture size is reached and we need to create a second
texture. Whenever a display list is created it now has to register a
callback with the glyph cache so that the display list can be
recreated whenever any of the atlases are reorganized. This is needed
because the display list directly stores texture coordinates within
the atlas texture and they would become invalid when the texture is
moved.
The ensure_glyphs_for_layout now works in two steps. First it reserves
space in the atlas for all of the glyphs. The atlas is created with
the DISABLE_MIGRATION flag so that it won't actually copy any textures
if any rearranging is needed. Whenever the position is updated for a
glyph then it is marked as dirty. After space for all of the glyphs
has been reserved it will iterate over all dirty glyphs and redraw
them using Cairo. The rendered glyph is then stored in the texture
with a sub texture update.
The glyphs need to all be set at the right location before starting to
create the display list because the display list stores the texture
coordinates of the glyph. If any of the glyphs were moved around then
the parts of the display list that was created already would become
invalid. To make this work, ensure_glyphs_for_layout is now always
called before rendering a layout or a layout line.
_cogl_atlas_new now has two extra parameters to specify the format of
the textures it creates as well as a set of flags to modify the
behavious of the atlas. One of the flags causes the new textures to be
cleared and the other causes migration to avoid actually copying the
textures. This is needed to use CoglAtlas from the pango glyph cache
because it needs to use COGL_PIXEL_A_8 and to clear the textures as it
does not fill in the gaps between glyphs. It needs to avoid copying
the textures so that it can work on GL implementations without FBO
support.
Instead of storing a pointer to the CoglRectangleMap and a handle to
the atlas texture in the context, there is a now a separate data
structure called a CoglAtlas to manage these two. The context just
contains a pointer to this. The code to reorganise the atlas has been
moved from cogl-atlas-texture.c to cogl-atlas.c
This adds an internal CoglCallbackList type which is just a GSList of
of function pointers along with a data pointer to form a
closure. There are functions to add and remove items and to invoke the
list of functions. This could be used in a number of places in Cogl.
This simply renames CoglAtlas to CoglRectangleMap without making any
functional changes. The old 'CoglAtlas' is just a data structure for
managing unused areas of a rectangle and it doesn't neccessarily have
to be used for an atlas so it wasn't a very good name.
Textures within a layer were compared for equality by comparing their
texture handle. However this means that sub textures and atlas
textures which may be internally using the same GL handle would not be
batched together. Instead it now tries to determine the underlying GL
handle using either the slice override or _cogl_texture_get_gl_texture
and then compares those.
When filtering on allowed formats for atlas textures, it now masks out
the BGR and AFIRST bits in addition to the premult bit. That way it
will accept RGB and RGBA formats in any component order.
In theory it could also accept luminance and alpha-only textures but I
haven't added this because presumably if the application has requested
these formats then it has some reason not to use a full RGB or RGBA
texture and we should respect that.
See commits:
7daeb217 blur-effect: Do not inherit from ShaderEffect
1ec57743 desaturate-effect: Do not inherit from ShaderEffect
We might avoid using shaders at all in the future for simple effects.
Since BlurEffect and DesaturateEffect are using the shader API
implicitly and not using ClutterShaderEffect, we need to check if the
underlying GL implementation supports the GLSL shading language and warn
if not.
Hide the fact that we're using a fragment shader, in case we're able in
the future to use a material layer combine function when painting the
offscreen target texture.
We might want to switch the BlurEffect from a box-blur to a
super-sampling of the texture target, in order to make it cheap(er).
If we inherit from ShaderEffect, though, we're setting in stone the
fact that we are going to use a fragment shader for blurring.
Since there is not parametrization of the blur, the code necessary
to implement effect is pretty small, and we can use the Cogl API
directly.
Instead of calling cogl_program_use() around the paint_target()
chain-up, we can use the newly added API in CoglMaterial to attach
user-defined shaders to the offscreen target material.
* wip/table-layout:
Add ClutterTableLayout, a layout showing children in rows and columns
box-layout: Use allocate_align_fill()
bin-layout: Migrate to allocate_align_fill()
actor: Add allocate_align_fill()
test-flow-layout: Use BindConstraints
A TableLayout is a layout manager that allocates its children in rows
and columns. Each child is assigned to a cell (or more if a cell span
is set).
The supported child properties are:
• x-expand and y-expand: if this cell with try to allocate the
available extra space for the table.
• x-fill and y-fill: if the child will get all the space available in
the cell.
• x-align and y-align: if the child does not fill the cell, then
where the child will be aligned inside the cell.
• row-span and col-span: number of cells the child will allocate for
itself.
Also, the TableLayout has row-spacing and col-spacing for specifying
the space in pixels between rows and between columns.
We also include a simple test of the layout manager, and the
documentation updates.
The TableLayout was implemented starting from MxTable and
ClutterBoxLayout.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2038
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Layout managers are using the same code to allocate a child while taking
into consideration:
• horizontal and vertical alignment
• horizontal and vertical fill
• the preferred minimum and natural size, depending
on the :request-mode property
• the text direction for the horizontal alignment
• an offset given by the fixed position properties
Given the amount of code involved, and the amount of details that can go
horribly wrong while copy and pasting such code in various classes - let
alone various projects - Clutter should provide an allocate() variant
that does the right thing in the right way. This way, we have a single
point of failure.
This adds a wrapper macro to clutter-private that will use
g_object_notify_by_pspec if it's compiled against a version of GLib
that is sufficiently new. Otherwise it will notify by the property
name as before by extracting the name from the pspec. The objects can
then store a static array of GParamSpecs and notify using those as
suggested in the documentation for g_object_notify_by_pspec.
Note that the name of the variable used for storing the array of
GParamSpecs is obj_props instead of properties as used in the
documentation because some places in Clutter uses 'properties' as the
name of a local variable.
Mose of the classes in Clutter have been converted using the script in
the bug report. Some classes have not been modified even though the
script picked them up as described here:
json-generator:
We probably don't want to modify the internal copy of JSON
behaviour-depth:
rectangle:
score:
stage-manager:
These aren't using the separate GParamSpec* variable style.
blur-effect:
win32/device-manager:
Don't actually define any properties even though it has the enum.
box-layout:
flow-layout:
Have some per-child properties that don't work automatically with
the script.
clutter-model:
The script gets confused with ClutterModelIter
stage:
Script gets confused because PROP_USER_RESIZE doesn't match
"user-resizable"
test-layout:
Don't really want to modify the tests
http://bugzilla.clutter-project.org/show_bug.cgi?id=2150
The special handling for texture unit 1 caught the case where unit
1 was changed for transient purposes, but didn't properly handle
the case where the actual non-transient texture was different between
two materials with no transient binding in between.
If the actual texture has changed when flushing, mark unit 1 as dirty
and needing a rebind.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2261
This makes CoglProgram/Shader automatically detect when the user has
given an ARBfp program by checking for "!!ARBfp1.0" at the beginning of
the user's source.
ARBfp local parameters can be set with cogl_program_uniform_float
assuming you pass a @size of 4 (all ARBfp program.local parameters
are vectors of 4 floats).
This doesn't expose ARBfp environment parameters or double precision
local parameters.
Previously we had an internal only _cogl_material_set_user_program to
redirect legacy usage of cogl_program_use() through CoglMaterial. This
instead makes the API public because until we implement our planned
"snippet" framework we need a stop-gap solution for using shaders in
Cogl.
The plan is to also support ARBfp with the cogl_program/shader API so
this API will also allow clutter-gst to stop using direct OpenGL calls
that conflict with Cogl's state tracking.
A change to a layer is also going to be a change to its owning material
so we have to chain up in _cogl_material_layer_pre_change_notify and
call _cogl_material_pre_change_notify. Previously we were only
considering if the owning material was referenced in the journal but
that ignores that it might also have dependants. We no longer need to
flush the journal directly in layer_pre_change_notify.
In _cogl_material_layer_pre_change_notify when we see that a layer has
dependants and it can't be modified directly then we allocate a new
layer. In this case we also have to link the new layer to its required
owner. If the immutable layer we copied had the same owner though we
weren't unlinking that old layer.
In _cogl_material_pre_change_notify we need to identify if it's a sparse
property being changed and if so initialize the state group if the given
material isn't currently the authority for it.
Previously we were unconditionally calling
_cogl_material_initialize_state which would e.g. NULL the layer
differences list of a material each time a layer change was notified.
It would also call _cogl_material_initialize_state for non-sparse
properties which should always be valid at this point so the function
has been renamed to _cogl_material_initialize_sparse_state to make this
clearer with a corresponding g_return_if_fail check.
This fixes how we copy layer differences in
_cogl_material_copy_layer_differences.
We were making a redundant g_list_copy of the src differences and then
iterating the src list calling _cogl_material_add_layer_difference for
each entry which would double the list length, but the initial copy
directly referenced the original layers which wasn't correct.
Also we were initializing dest->n_layers before copying the layer
differences but the act of copying the differences will re-initialize
n_layers to 0 when adding the first layer_difference since it will
trigger a layer_pre_change_notify and since the dest material isn't yet
a STATE_LAYERS authority the state group is initialized before allowing
the change.
In _cogl_material_texture_storage_change_notify we were potentially
dereferencing layer->texture without checking first that it is the
authority of texture state. We now use
_cogl_material_layer_get_texture() instead.
This improve the dot file output available when calling
_cogl_debug_dump_materials_dot_file. The material graph now directly
points into the layer graph and the layers now show the texture unit
index.
DRM is available on more platforms than Linux (e.g. kFreeBSD), but
Clutter currently FTBFS there because of not being an alternative to
the __linux__ code (where it should be HAVE_DRM).
Instead of copying the DRM data structures, we should use libdrm when
falling back to directly requesting to wait for the vblank.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2225
Based on a patch by: Emilio Pozuelo Monfort <pochu27@gmail.com>
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
When setting :use-markup we always pass the contents of the Text actor
to clutter_text_set_markup_internal(); if string contains any markup,
this ends up being parsed and used - even when :use-markup is set to
FALSE.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2239
When the texture is set on a layer so that it is back to the parent's
texture it would clear the texture change flag but it wouldn't unref
the texture. The free function for a material layer does not unref the
texture if the change flag is cleared so the texture would end up
leaking. This happens for ClutterTexture because it disposes the
texture by setting layer 0 of the material to COGL_INVALID_HANDLE
which ends up the same as the default material.
In _cogl_material_layer_pre_paint we were mistakenly dereferencing the
layer->texture member for the passed layer instead of dereferencing the
texture state authority which was causing crashes in some cases.
LayoutMeta instances are created lazily. If an actor is added to a
container with a layout manager then the first time the layout manager
might be creating the LayoutMeta instance could be during the allocation
cycle caused by calling clutter_actor_show(). When a LayoutMeta is
instantiated for the first time, a list of properties can be set - and
this might lead to the emission of the ::layout-changed signal. The
signal is, most typically, going to cause a relayout to be queued, and a
warning will be printed on the terminal.
We should freeze the emission of the ::layout-changed signal during the
creation of the LayoutMeta instances, and thaw it after that.
If a Texture has been set to:
• keep its size synchronized with the image data
• maintain the aspect ratio of the image data
then it should also change its request mode depending on the orientation
of the image data, so that layout managers have a fighting chance of
sizing it correctly.
Added initialization of minimum window size property on Cocoa
side. This property works when user change window size by mouse
dragging. But when size is changed by clutter_actor_set_size this
property will not help and was added another check in
clutter_stage_osx_resize. Also osx_get_geometry was refactoried
because it returns incorrect values in many cases but now size is
saved in [Window reshape] in requisition_width/height and this value
will be returned in any case to frontend.
It's important step of initialization because all features calls from
font rendering libs based on this parameter. By default it equals to
-1 and test-text-cache test crashes in this case.
Trick with hiding view while showing the stage affects on responder
chain. The main view ceases to be first responder and we should
manually set first responder.
Problem was in incorrect application initialization.
[NSApplication sharedApplication] should be call in backend init(not
in init stage). It doesn't require any data and only makes a
connection to window server.
Cleanup clutter_backend_osx_post_parse function and move context
initialization to clutter_backend_osx_create_context. The OpenGL pixel
format attributes were taken as is. Also move bringing application to
foreground in clutter_stage_osx_realize, it seems there is best place
for it.
Viewport didn't initialized before OGL drawing and it causes crash on
assert so added viewport initalization to
clutter_stage_osx_realize. Also showing the stage causes drawing
function but other part of the system(in particular conformance tests)
don't expect it and aren't ready at this moment.
Mention the XFixes extension for compositors using input regions to let
events "pass through" the stage.
Thanks to: Robert Bragg <robert@linux.intel.com>
When we disable the event retrieval, we now just disable the X11 event
source, not the event selection. We need to make that clear to
applications, especially compositors, which might expect complete
control over the selection.
Currently, we select input events and GLX events conditionally,
depending on whether the user has disabled event retrieval.
We should, instead, unconditionally select input events even with event
retrieval disabled because we need to guarantee that the Clutter
internal state is maintained when calling clutter_x11_handle_event()
without requiring applications or embedding toolkits to select events
themselves. If we did that, we'd have to document the events to be
selected, and also update applications and embedding toolkits each time
we added a new mask, or a new class of events - something that's clearly
not possible.
See:
http://bugzilla.clutter-project.org/show_bug.cgi?id=998
for the rationale of why we did conditional selection. It is now clear
that a compositor should clear out the input region, since it cannot
assume a perfectly clean slate coming from us.
See:
http://bugzilla.clutter-project.org/show_bug.cgi?id=2228
for an example of things that break if we do conditional event
selection on GLX events. In that specific case, the X11 server ≤ 1.8
always pushed GLX events on the queue, even without selecting them; this
has been fixed in the X11 server ≥ 1.9, which means that applications
like Mutter or toolkit integration libraries like Clutter-GTK would stop
working on recent Intel drivers providing the GLX_INTEL_swap_event
extension.
This change has been tested with Mutter and Clutter-GTK.
This makes the gles2 cogl_program_use consistent with the GL version by
not binding the program immediately and instead leaving it to
cogl-material.c to bind the program when actually drawing something.
Previously custom uniforms were tracked in _CoglGles2Wrapper but as part
of a process to consolidate the gl/gles2 shader code it seems to make
sense for this state to be tracked in the CoglProgram object instead.
http://bugzilla.o-hand.com/show_bug.cgi?id=2179
Instead of having to query GL and translate the GL enum into a
CoglShaderType each time cogl_shader_get_type is called we now keep
track of the type in CoglShader.
The Animatable interface was created specifically for the Animation
class. It turns out that it might be fairly useful to others - such as
ClutterAnimator and ClutterState.
The newly-added API in this cycle for querying and accessing custom
properties should not require that we pass a ClutterAnimation to the
implementations: the Animatable itself should be enough.
This is necessary to allow language bindings to wrap
clutter_actor_animate() correctly and do type validation and
demarshalling between native values and GValues; an Animation instance
is not available until the animate() call returns, and validation must
be performed before that happens.
There is nothing we can do about the animate_property() virtual
function - but in that case we might want to be able to access the
animation from an Animatable implementation to get the Interval for
the property, just like ClutterActor does in order to animate
ClutterActorMeta objects.
XGetGeometry is a great piece of API, since it gets a lot of stuff that
are moderately *not* geometry related - the root window, and the depth
being two.
Since we have multiple conditions depending on the result of that call
we should split them up depending on the actual error - and each of them
should have a separate error message. This makes debugging simpler.
It's possible - though not recommended - that user code causes the
destruction of an actor in one of the notification handlers for
flag-based properties. We should protect the multiple notification
emission with g_object_ref/unref.
Nothing was storing the shader type when a shader was created so it
would get confused about whether it was a custom vertex or fragment
shader.
Also the 'type' member of CoglShader was a GLenum but the only place
that read it was treating it as if it was CoglShaderType. This changes
it be CoglShaderType.
When loading an RGB image GdkPixbuf will pad the rowstride so that the
beginning of each row is aligned to 4 bytes. This was causing us to
fallback to the code that copies the buffer. It is probably safe to
avoid copying the buffer if we can detect that the rowstride is simply
an alignment of the packed rowstride.
This also changes the copying fallback code so that it uses the
aligned rowstride. However it is now extremely unlikely that the
fallback code would ever be used.
In commit b780413e5a the GdkPixbuf loading code was changed so that
if it needs to copy the pixbuf then it would tightly pack it. However
it was still using the rowstride from the pixbuf so the image would
end up skewed. This fixes it to use the real rowstride.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2235
In OpenGL the 'shininess' lighting parameter is floating point value
limited to the range 0.0→128.0. This number is used to affect the size
of the specular highlight. Cogl materials used to only accept a number
between 0.0 and 1.0 which then gets multiplied by 128.0 before sending
to GL. I think the assumption was that this is just a weird GL quirk
so we don't expose it. However the value is used as an exponent to
raise the attenuation to a power so there is no conceptual limit to
the value.
This removes the mapping and changes some of the documentation.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2222
When flushing a fixed-function or arbfp material it would always call
disable_glsl to try to get rid of the previous GLSL shader. This is
needed even if current_use_program_type is not GLSL because if an
application calls cogl_program_uniform then Cogl will have to bind the
program to set the uniform. If this happens then it won't update
current_use_program_type presumably because the enabled state of arbfp
is still valid.
The problem was that disable_glsl would only select program zero when
the current_use_program_type is set to GLSL which wouldn't be the case
if cogl_program_uniform was called. This patch changes it to just
directly call _cogl_gl_use_program_wrapper(0) instead of having a
separate disable_glsl function. The current program is cached in the
cogl context anyway so it shouldn't cause any extra unnecessary GL
calls.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2232
g_ascii_dtostr was being used in four separate arguments to
g_string_append_printf but all invocations of it were using the same
buffer. This would end up with all of the arguments having the same
value which would depend on whichever order the compiler evaluates
them in. This patches changes it to use a multi-dimensional array and
a loop to fill in the separate buffers.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2219
The ARBfp programs are created with a printf() wrapper, which usually
fails in non-en locales as soon as you start throwing things like
floating point values in the mix.
We should use the g_ascii_dtostr() function which places a double into a
string buffer in a locale-independent way.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2219
This function creates a CoglBitmap which internally references a
CoglBuffer. The map and unmap functions will divert to mapping the
buffer. There are also now bind and unbind functions which should be
used instead of map and unmap whenever the data doesn't need to be
read from the CPU but will instead be passed to GL for packing or
unpacking. For bitmaps created from buffers this just binds the
bitmap.
cogl_texture_new_from_buffer now just uses this function to wrap the
buffer in a bitmap rather than trying to bind the buffer
immediately. This means that the buffer will be bound only at the
point right before the texture data is uploaded.
This approach means that using a pixel array will take the fastest
upload route if possible, but can still fallback to copying the data
by mapping the buffer if some conversion is needed. Previously it
would just crash in this case because the texture functions were all
passed a NULL pointer.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2112
The docs for GdkPixbuf say that the last row of the image won't
necessarily be allocated to the size of the full rowstride. The rest
of Cogl and possibly GL assumes that we can copy the bitmap with
memcpy(height*rowstride) so we previously would copy the pixbuf data
to ensure this. However if the rowstride is the same as bpp*width then
there is no way for the last row to be under-allocated so in this case
we can just directly upload from the gdk pixbuf. Now that CoglBitmap
can be created with a destroy function we can make it keep a reference
to the pixbuf and unref it during its destroy callback. GdkPixbuf
seems to always pack the image with no padding between rows even if it
is RGB so this should end up always avoiding the memcpy.
The fallback code for when we do have to copy the pixbuf is now
simplified so that it copies all of the rows in a single loop. We only
copy the useful region of each row so this should be safe. The
rowstride of the CoglBitmap is now always allocated to bpp*width
regardless of the rowstride of the pixbuf.
The CoglBitmap struct is now only defined within cogl-bitmap.c so that
all of its members can now only be accessed with accessor
functions. To get to the data pointer for the bitmap image you must
first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map
function takes the same arguments as cogl_pixel_array_map so that
eventually we can make a bitmap optionally internally divert to a
pixel array.
There is a _cogl_bitmap_new_from_data function which constructs a new
bitmap object and takes ownership of the data pointer. The function
gets passed a destroy callback which gets called when the bitmap is
freed. This is similar to how gdk_pixbuf_new_from_data
works. Alternatively NULL can be passed for the destroy function which
means that the caller will manage the life of the pointer (but must
guarantee that it stays alive at least until the bitmap is
freed). This mechanism is used instead of the old approach of creating
a CoglBitmap struct on the stack and manually filling in the
members. It could also later be used to create a CoglBitmap that owns
a GdkPixbuf ref so that we don't necessarily have to copy the
GdkPixbuf data when converting to a bitmap.
There is also _cogl_bitmap_new_shared. This creates a bitmap using a
reference to another CoglBitmap for the data. This is a bit of a hack
but it is needed by the atlas texture backend which wants to divert
the set_region virtual to another texture but it needs to override the
format of the bitmap to ignore the premult flag.
The 'format' member of CoglTexture2DSliced is returned by
cogl_texture_get_format. All of the other backends return the internal
format of the GL texture in this case. However the sliced backend was
returning the format of the image data used to create the texture. It
doesn't make any sense to retain this information because it doesn't
necessarily indicate the format of the actual texture. This patch
changes it to store the internal format instead.
The P_() macro adds a context for the property nick and blurb. In order
to make xgettext recognize it, we need to drop glib-gettexize inside the
autogen.sh script and ship a modified Makefile.in.in with Clutter.
Moves preprocessor #ifdef __linux_ above else statement, avoiding the
lack of an else block if __linux__ is not defined.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2212
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
The introspection scanner does not include '.' by default, so it was
always using the installed copy of Clutter-1.0.gir. Which obviously
wouldn't work if we didn't have one.
In ddb9016be4 the GL texture driver backend was changed to include
cogl-material-opengl-private.h instead of cogl-material-private.h.
However the gles texture backend was missed from this so it was giving
a compiler warning about using an undeclared function.
glTexSubImage3D was being called directly in cogl-texture-3d.c but the
function is only available since GL version 1.2 so on Windows it won't
be possible to directly link to it. Also under GLES it is only
available conditionally in an extension.
In ddb9016be4 the texture backends were changed to include
cogl-material-opengl-private.h instead of cogl-material-private.h.
However the 3D texture backend was missed from this so it was giving a
compiler warning about using an undeclared function.
This moves the code supporting _cogl_material_flush_gl_state into
cogl-material-opengl.c as part of an effort to reduce the size of
cogl-material.c to keep it manageable.
In general cogl-material.c has become far to large to manage in one
source file. As one of the ways to try and break it down this patch
starts to move some of lower level texture unit state management out
into cogl-material-opengl.c. The naming is such because the plan is to
follow up and migrate the very GL specific state flushing code into the
same file.
When the support for redirecting the legacy fog state through cogl
material was added in 9b9e764dc, the code to handle copying the fog
state in _cogl_material_copy_differences was missed.
The CoglTexture2DSliced backend has a fallback for when the
framebuffer extension is missing so it's not possible to use
glGenerateMipmap. This involves keeping a copy of the upper-left pixel
of the tex image so that we can temporarily enable GL_GENERATE_MIPMAP
on the texture object and do a sub texture update by reuploading the
contents of the first pixel. This patch copies that mechanism to the
2D and 3D backends. The CoglTexturePixel structure which was
previously internal to the sliced backend has been moved to
cogl-texture-private.h so that it can be shared.
* wip/xkb-support:
x11: Use XKB to translate keycodes into key symbols
x11: Use XKB to track the Locks state
x11: Use XKB detectable auto-repeat
x11: Add a Keymap ancillary object
x11: Store the group inside the event platform data
events: Add platform-data to allocated Events
build: Check for the XKB extension
Some apps or some use cases don't need to clear the stage on immediate
rendering GPUs. A media player playing a fullscreen video or a
tile-based game, for instance.
These apps are redrawing the whole screen, so we can avoid clearing the
color buffer when preparing to paint the stage, since there is no
blending with the stage color being performed.
We can add an private set of hints to ClutterStage, and expose accessors
for each potential hint; the first hint is the 'no-clear' one.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2058
Using 'r' to name the third component is problematic because that is
commonly used to represent the red component of a vector representing
a color. Under GLSL this is awkward because the texture swizzling for
a vector uses a single letter for each component and the names for
colors, textures and positions are synonymous. GLSL works around this
by naming the components of the texture s, t, p and q. Cogl already
effectively already exposes this naming because it exposes GLSL so it
makes sense to use that naming consistently. Another alternative could
be u, v and w. This is what Blender and Direct3D use. However the w
component conflicts with the w component of a position vertex.
This adds a publicly exposed experimental API for a 3D texture
backend. There is a feature flag which can be checked for whether 3D
textures are supported. Although we require OpenGL 1.2 which has 3D
textures in core, GLES only provides them through an extension so the
feature can be used to detect that.
The textures can be created with one of two new API functions :-
cogl_texture_3d_new_with_size
and
cogl_texture_3d_new_from_data
There is also internally a new_from_bitmap function. new_from_data is
implemented in terms of this function.
The two constructors are effectively the only way to upload data to a
3D texture. It does not work to call glTexImage2D with the
GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does
nothing. It would be possible to make cogl_texture_get_data do
something sensible like returning all of the images as a single long
image but this is not currently implemented and instead the virtual
just always fails. We may want to add API specific to the 3D texture
backend to get and set a sub region of the texture.
All of those three functions can throw a GError. This will happen if
the GPU does not support 3D textures or it does not support NPOTs and
an NPOT size is requested. It will also fail if the FBO extension is
not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not
given. This could be avoided by copying the code for the
GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of
keeping the code simple this is not yet done.
This adds a couple of functions to cogl-texture-driver for uploading
3D data and querying the 3D proxy
texture. prep_gl_for_pixels_upload_full now also takes sets the
GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding
between the images. Whenever 3D texture is uploading, both the height
of the images and the height of all of the data is specified (either
explicitly or implicilty from the CoglBitmap) so that the image height
can be deduced by dividing by the depth.
Under big GL, glext.h is included automatically by gl.h. However under
GLES this doesn't appear to happen so it has to be included explicitly
to get the defines for extensions. This patch changes the
clutter_gl_header to be called cogl_gl_headers and it can now take a
space seperated list of multiple headers. This is then later converted
to a list of #include lines which ends up cogl-defines.h. The gles2
and gles1 backends now add their respective ext header to this list.
There are many places in the texture backend that need to do
conversion using the CoglBitmap code. Currently none of these
functions can throw an error but they do return a value to indicate
failure. In future it would make sense if new texture functions could
throw an error and in that case they would want to use a CoglBitmap
error if the failure was due to the conversion. This moves the
internal CoglBitmap error from the quartz backend to be public in
cogl-bitmap.h so that it can be used in this way.
We can use this error in more unsupported situations than just when we
have a Cogl feature flag for the error. For example if a non-sliced
texture is created with dimensions that are too large then we could
throw this error. Therefore it seems good to rename to something more
general.
Previously when comparing whether the settings for a layer are equal
it would only check if one of them was enabled. If so then it would
assume the other one was enabled and continue to compare the texture
environment. Now it also checks whether the enabledness differs.
If we have XKB support then we should be using it to turn on the
detectable auto-repeat; this allows avoiding the peeking trick
that emulates it inside the event handling code.
Now that we have private, per-event platform data, we can start putting
it to good use. The first, most simple use is to store the key group
given the event's modifiers. Since we assume a modern X11, we use XKB
to retrieve it, or we simply fall back to 0 by default.
The data is exposed as a ClutterX11-specific function, within the
sanctioned clutter_x11_* namespace.
Events allocated by Clutter should have a pointer to platform-specific
data; this would allow backends to add separate structures for holding
ancillary data, whilst retaining the ClutterEvent structure for use on
the stack.
In theory, for Clutter 2.x we might just want to drop Event and use an
opaque structure, or a typed data structure inheriting from
GTypeInstance instead.
This adds a COGL_OBJECT_INTERNAL_DEFINE macro and friends that are the
same as COGL_OBJECT_DEFINE except that they prefix the cogl_is_*
function with an underscore so that it doesn't get exported in the
shared library.
Previously COGL_OBJECT_DEFINE would always define deprecated
cogl_$type_{ref,unref} functions even if the type is new or if the
type is entirely internal. An application would still find it
difficult to use these because they wouldn't be in the headers, but it
still looks bad that they are exported from the shared library. This
patch changes it so that the deprecated ref counting functions are
defined using a separate macro and only the types that have these
functions in the headers call this macro.
Since 365605cf42, materials and layers are represented in a tree
structure that allows traversing up through parents and iterating down
through children. This re-works the related typedefs and reparenting
code so that they can be shared.
Up until now, the "behaviours" member of an actor definition was parsed
by the ClutterScript parser itself - even though it's not strictly
necessary.
In an effort to minimize the ad hoc code in the Script parser, we should
let ClutterActor handle all the special cases that involve
actor-specific members.
Under big GL, _cogl_texture_driver_size_supported uses the proxy
texture to check whether the given texture size is supported. Proxy
textures aren't available under GLES so previously this would just
return TRUE to assume all texture sizes are supported. This patch
makes it use glGetIntegerv with GL_MAX_TEXTURE_SIZE to give a second
best guess.
This fixes the sliced texture backend so that it will use slices when
the texture is too big.
When an intermediate buffer is used for downloading texture data it
was using the wrong byte length for a row so the copy back to the
user's buffer would fail.
The fallback for when glGetTexImage is not available renders the
texture to the framebuffer to read the data using glReadPixels. This
patch just sets the COGL_MATERIAL_FILTER_NEAREST filter mode on the
material before rendering to avoid linear filtering which would alter
the texture data.
The fallback for when glGetTexImage is not available draws parts of
the texture to the framebuffer and uses glReadPixels to extract the
data. However it was using cogl_rectangle to draw and then immediately
using raw glReadPixels to fetch the data. This won't cause a journal
flush so the rectangle won't necessarily have hit the framebuffer
yet. Instead it now uses cogl_read_pixels which does flush the
journal.
There were a few problems flushing texture overrides so that sliced
textures would not work:
* In _cogl_material_set_layer_texture it ignored the 'overriden'
parameter and always set texture_overridden to FALSE.
* cogl_texture_get_gl_texture wasn't being called correctly in
override_layer_texture_cb. It returns a gboolean to indicate the
error status but this boolean was being assigned to gl_target.
* _cogl_material_layer_texture_equal did not take into account the
override.
* _cogl_material_layer_get_texture_info did not return the overridden
texture so it would always use the first texture slice.
There was a lot of common code that was copied to all of the backends
to convert the data to a suitable format and wrap it into a CoglBitmap
so that it can be passed to _cogl_texture_driver_upload_subregion_to_gl.
This patch moves the common code to cogl-texture.c so that the virtual
just takes a CoglBitmap that is already in the right format.
Previously cogl_texture_get_data would pretty much directly pass on to
the get_data texture virtual function. This ended up with a lot of
common code that was copied to all of the backends. For example, the
method is expected to return the required data size if the data
pointer is NULL and to calculate its own rowstride if the rowstride is
0. Also it needs to convert the downloaded data if GL can't support
that format directly.
This patch moves the common code to cogl-texture.c so the virtual is
always called with a format that can be downloaded directly by GL and
with a valid rowstride. If the download fails then the virtual can
return FALSE in which case cogl-texture will use the draw and read
fallback.
For point sprites you are usually drawing the whole texture so you
most often want GL_CLAMP_TO_EDGE. This patch removes the override for
COGL_MATERIAL_WRAP_MODE_AUTOMATIC when point sprites are enabled for a
layer so that it will clamp to edge.
This adds a new API call to enable point sprite coordinate generation
for a material layer:
void
cogl_material_set_layer_point_sprite_coords_enabled (CoglHandle material,
int layer_index,
gboolean enable);
There is also a corresponding get function.
Enabling point sprite coords simply sets the GL_COORD_REPLACE of the
GL_POINT_SPRITE glTexEnv when flusing the material. There is no
separate application control for glEnable(GL_POINT_SPRITE). Instead it
is left permanently enabled under the assumption that it has no affect
unless GL_COORD_REPLACE is enabled for a texture unit.
http://bugzilla.openedhand.com/show_bug.cgi?id=2047
Recently I added a _cogl_debug_dump_materials_dot_file function for
debugging the sparse material state. This extends the state dumped to
include the graph of layer state also.
We were mistakenly only initializing layer->layer_index for new layers
associated with texture units > 0. This had gone unnoticed because
normally layers associated with texture unit0 have a layer index of 0
too. Mutter was hitting this issue because it was initializing layer 1
before layer 0 for one of its materials so layer 1 was temporarily
associated with texture unit 0.
* cally-merge:
cally: Add introspection generation
cally: Improving cally doc
cally: Cleaning CallyText
cally: Refactoring "window:create" and "window:destroy" emission code
cally: Use proper backend information on CallyActor
cally: Check HAVE_CONFIG_H on cally-util.c
docs: Fix Cally documentation
cally: Clean up the headers
Add binaries of the Cally examples to the ignore file
docs: Add Cally API reference
Avoid to load cally module on a11y examples
Add accessibility tests
Initialize accessibility support on clutter_init
Rename some methods and includes to avoid -Wshadow warnings
Cally initialization code
Add Cally
Toolkits and applications not written in C might still need access to
the Cally API to write accessibility extensions based on it for their
own native elements.
We might want pieces higher in the stack (like Mx) to handle XSettings
events as well, and swallowing them by removing them from the events
queue would make it impossible.
Previously "window:create" and "window:destroy" were emitted on
CallyUtil. Although it works, and CallyUtil already have callbacks to
stage_added/removed signals, I think that it is more tidy/clear to do
that on CallyRoot:
* CallyRoot already has code to manage ClutterStage addition/removal
* In fact, we can see CallyRoot as the object exposing the a11y
information from ClutterStageManager, so it fits better here.
* CallyUtil callbacks these signals are related to key event
listeners (key snooper simulation). One of the main CallyUtil
responsabilities is managing event (connecting, emitting), so I
would prefer to not start to add/mix more functionalities here.
Ideally it would be better to emit all CallyStage methods from
CallyStage, but it is clear that "create" and "destroy" are more easy
to emit from a external object
Previously cogl_set_fog would cause a flush of the Cogl journal and
would directly bang the GL state machine to setup fogging. As part of
the ongoing effort to track most state in CoglMaterial to support
renderlists this now adds an indirection so that cogl_set_fog now just
updates ctx->legacy_fog_state. The fogging state then gets enabled as a
legacy override similar to how the old depth testing API is handled.
This is a blind patch because I don't know enough about the osx backend
and the osx backend probably doesn't even work these days anyway but
since people have filed bugs specifically on OSX that imply they don't
have a depth or stencil buffer this tries to fix that.
Maybe someone will eventually pick up the osx backend again and verify
if this helps.
http://bugzilla.clutter-project.org/show_bug.cgi?id=1394
Since we'll want to share the fallback logic with CoglVertexArray this
moves the malloc based fallback (for when OpenGL doesn't support vertex
or pixel buffer objects) into cogl-buffer.c.
Explicitly warn if we detect that a CoglBuffer is being freed while it
is still mapped. Previously we silently unmapped the buffer, but it's
not something we want to encourage.
This makes CoglBuffer track the last used bind target as a private
property. This is later used when binding a buffer to map instead of
always using the PIXEL_UNPACK target.
This also adds some additional sanity checks that code doesn't try to
nest binds to the same target or bind a buffer to multiple targets at
the same time.
This adds three new feature flags COGL_FEATURE_TEXTURE_NPOT_BASIC,
COGL_FEATURE_TEXTURE_NPOT_MIPMAP and COGL_FEATURE_TEXTURE_NPOT_REPEAT
that can tell you if your hardware supports non power of two textures,
npot textures + mipmaps and npot textures + wrap modes other than
CLAMP_TO_EDGE.
The pre-existing COGL_FEATURE_TEXTURE_NPOT feature implies all of the
above.
By default GLES 2 core supports npot textures but mipmaps and repeat
modes can only be used with power of two textures. This patch also makes
GLES check for the GL_OES_texture_npot extension to determine if mipmaps
and repeating are supported with npot textures.
glDisableVertexAttribArray was defined to glEnableVertexAttribArray so
it would probably cause crashes if it was ever used. Presumably
nothing is using these yet because the generic attributes are not yet
tied to shader attributes in a predictable way.
For testing purposes, either to identify bugs in Cogl or the driver or
simulate lack of PBO support COGL_DEBUG=disable-pbos can be used to
fallback to malloc instead.
The pango renderer was causing lots of override materials to be allocated
because the vertex_buffer API converts AUTOMATIC mode into REPEAT for
backwards compatibility. By explicitly setting the wrap mode to
CLAMP_TO_EDGE when creating the glyph_material then the vertex_buffer
API will leave it untouched.
This allows you to tell Cogl that you are planning to replace all the
buffer's data once it is mapped with cogl_buffer_map. This means if the
buffer is currently being accessed by the GPU then the driver doesn't
have to stall and wait for it to finish before it can access it from the
CPU and can instead potentially allocate a new buffer with undefined
data and map that.
Make Cally follow the single-include header file policy of Clutter and
Cogl; this means making cally.h the single include header, and requires
a new cally-main.h file for the functions defined by cally.h.
Also:
• clean up the licensing notice and remove the FSF address;
• document the object structures (instance and class);
• G_GNUC_CONST-ify the get_type() functions;
• reduce the padding for CallyActor sub-classes;
• reduce the amount of headers included.
Initialize the accessibility support calling cally_accessibility_init
Take into account that this is required to at least be sure that
CallyUtil class is available.
It also modifies cally_accessibility_module_init in order to return
if the initialization was fine (and the name, removing the module word).
It also removes the gnome accessibility hooks, as it is not anymore
module code.
Solves CB#2098
This commit includes a method to init the a11y support. Two main purposes:
* Register the different Atk factories.
* Ensure that there are a AtkUtil implementation class available.
Part of CB#2097
The Clutter Accessibility Library is an implementation of the ATK,
the Accessibility Toolkit, which exposes Clutter actors to accessibility
tools. This allows not only writing accessible user interfaces, but also
allows testing and verification frameworks based on A11Y technologies to
inspect and test a Clutter scene graph.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2097
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
This changes the cogl_is_XYZ function prototypes generated when using
the COGL_OBJECT_DEFINE macro to take a void * argument instead of a
CoglHandle argument.
This removes cogl_pixel_array_new which just took a size in bytes.
Without the image size and pixel format then the driver often doesn't
have enough information to allocate optimal GPU memory that can be
textured from directly. This is because GPUs often have ways to
spatially alter the layout of a texture to improve cache access patterns
which may require special alignment and padding dependant in the images
width, height and bpp.
Although currently we are limited by OpenGL because it doesn't let us
pass on the width and height when allocating a PBO, the hope is that we
can define a better extension at some point.
The usage hint should be implied by the CoglBuffer subclass type so the
public getter and setter APIs for manually changing the usage hint of a
CoglBuffer have now been removed.
Instead of having to extend cogl_is_buffer with new buffer types
manually this now adds a new COGL_BUFFER_DEFINE macro to be used instead
of COGL_OBJECT_DEFINE for CoglBuffer subclasses. This macro will
automatically register the new type with ctx->buffer_types which will
iterated by cogl_is_buffer. This is the same coding pattern used for
CoglTexture.
This adds a _cogl_debug_dump_materials_dot_file function that can be
used to dump all the descendants of the default material to a file using
the dot format which can then be converted to an image to visualize.
In _cogl_material_pre_change_notify if a material with descendants is
modified then we create a new material that is a copy of the one being
modified and reparent those descendants to the new material.
This patch ensures we drop the reference we get from cogl_material_copy
since we can rely on the descendants to keep the new material alive.
The commit to split the fragment processing backends out from
cogl-material.c (3e1323a636) broke the GLES 1 and 2 builds the
fix was to guard the code in each backend according to the
COGL_MATERIAL_BACKEND_XYZ defines which are setup in
cogl-material-private.h.
The documentation for cogl_vertex_buffer_indices_get_for_quads was
using ugly ASCII art to draw the diagrams. These have now been
replaced with PNG figures.
CoglMaterialWrapMode was missing from the cogl-sections.txt file so it
wasn't getting displayed. There were also no documented return values
from the getters.
The tesselator code uses some defines that it expects to be in the GL
headers such as GLAPI and GLAPIENTRY. These are used to mark the entry
points as exportable on each platform. We don't really want the
tesselator code to use these but we also don't want to modify the C
files so instead they are #defined to be empty in the stub glu.h. That
header is only included internally when building the tesselator/ files
so it shouldn't affect the rest of Cogl.
GLES also doesn't have a GLdouble type so we just #define this to be a
regular double.
cogl_material_copy was taking a reference on the original texture when
making a copy. However it then calls _cogl_material_set_parent on the
material which also takes a reference on the parent. The second
reference is cleaned up whenever _cogl_material_unparent is called and
this is also called by _cogl_material_free. However, it seems that
nothing was cleaning up the first reference. I think the reference is
entirely unnecessary so this patch removes it.
The AlignConstraint update is using only the width/height of the source,
but it should also take into account the position.
Also, instead of using the ::notify signal, it should follow the
BindConstraint, and switch to the ::allocation-changed signal, since
it's less expensive (one emission instead of four notifications, one for
each property we use).
We had several different ways of exposing experimental API, in one case
the symbols had no special suffix, in two other ways the symbols were
given an _EXP suffix but in different ways.
This makes all experimental API have an _EXP suffix which is handled
using #defines in the header so the prototypes in the .c and .h files
don't have the suffix.
The documented reason for the suffix is so that anyone watching Cogl for
ABI changes who sees symbols disappear will hopefully understand what's
going on.
This grabs the latest code for libtess from git Mesa. This is mostly
so that we can get the following commit which fixes a lot of compiler
warnings in Clutter:
commit 75acb896c6da758d03e86f8725d6ca0cb2c6ad82
Author: Neil Roberts <neil@linux.intel.com>
Date: Wed Jun 30 12:41:11 2010 +0100
glu: Fix some compiler warnings in libtess
When compiled with the more aggressive compiler warnings such as
-Wshadow and -Wempty-body the libtess code gives a lot more
warnings. This fixes the following issues:
* The 'Swap' macro tries to combine multiple statements into one and
then consume the trailing semicolon by using if(1){/*...*/}else.
This gives warnings because the else part ends up with an empty
statement. It also seems a bit dangerous because if the semicolon
were missed then it would still be valid syntax but it would just
ignore the following statement. This patch replaces it with the more
common idiom do { /*...*/ } while(0).
* 'free' was being used as a local variable name but this shadows the
global function. This has been renamed to 'free_handle'
* TRUE and FALSE were being unconditionally defined. Although this
isn't currently a problem it seems better to guard them with #ifndef
because it's quite common for them to be defined in other headers.
https://bugs.freedesktop.org/show_bug.cgi?id=28845
The scanner has some issues when parsing valid gtk-doc annotations; we
should make its (and, in return, ours) life easier.
We still get warnings for code declared in <programlisting> sections,
unfortunately.
As part of the ongoing effort to remove CoglHandle from the API this
switches the cogl_material API to use a strongly typed CoglMaterial
pointer instead of CoglHandle.
This splits the fragment processing backends (glsl, arbfp and fixed) out
from cogl-material.c into their own cogl-material-{glsl,arbfp,fixed}.c
files in an effort to help and keep cogl-material.c maintainable.
If the backend was disposed then priv->font_name would be freed but not
set to NULL and so if clutter_backend_get_font_name was then called it
would double free priv->font_name.
This adds two new API calls- cogl_path_set_fill_rule and
cogl_path_get_fill_rule. This allows modifying the fill rule of the
current path. In addition to the previous default fill rule of
'even-odd' it now supports the 'non-zero' rule. The fill rule is a
property of the path (not the Cogl context) so creating a new path or
preserving a path with cogl_path_get_handle affects the fill rule.
The scanline path rasterizer has been removed because the paths can be
drawn with the tesselator instead. The option therefore no longer does
anything.
Instead of drawing paths using the stencil buffer trick, it now
tesselates the path into triangles using the GLU tesselator and
renders them directly. A vbo is created with one vertex for each node
on the path. The tesselator is used to generate a series of indices
into the vbo as triangles. The tesselator's output of strips and fans
is converted into GL_TRIANGLES so that it can be rendered with a
single draw call (but the vertices are still shared via the
indices). The vbo is stored with the path so that if the application
uses retained paths then Cogl won't have to tessellate again.
The vertices also have texture coordinates associated with them so
that it can replicate the old behaviour of drawing a material with a
texture by fitting the texture to the bounding box of the path and
then clipping it. However if the texture contains waste or is sliced
then the vertex buffer code will refuse to draw it. In this case it
will revert back to drawing the path into the stencil buffer and then
drawing the material as a clipped quad.
The VBO is used even when setting up the stencil buffer for clipping
to a path because the tessellated geometry may cover less area.
The old scanline rasterizer has been removed because the tesselator
should work equally well on drivers with no stencil buffer.
This copies the files for the GLU tesselator from Mesa. The Mesa code
is based on the original SGI code and is released under a BSD license.
The memalloc.h header has been replaced with one that forces the code
to use g_malloc and friends. The rest of the files are not altered
from the original so it should be possible to later upgrade the files
by simply overwriting them.
There is a tesselator.h header which is expected to be included by
rest of Cogl to use the tesselator. This contains a trimmed down
version of glu.h that only includes parts that pertain to the
tesselator. There is also a stub glu.h in the GL directory which is
just provided so that the tesselator code can include <GL/gl.h>
without depending on the system header. It just redirects to
tesselator.h
A typo in clutter-event.c meant that the wrong struct location could be
used for the input device of key events. Also, a typo in the X11 event
code meant that key-presses would come from the pointer device (releases
would still come from the keyboard device).
Allow using the BindConstraint to bind width and height of a source
actor.
Also, add a test for the BindConstraint showing all types of usages
for this constraint class.
Some of the arguments to the material and path functions were taking a
pointer to a CoglColor or an array of floats that was not intended to
be written to but were not marked with const.
Update the documentation of :font-name, to make it clear that by setting
it to NULL the Text actor will use the default font.
Also, set the annotation for the @font_name argument of the setter to be
allow-none, and allow passing NULL through bindings.
If a ClutterText actor is using the default font from the backend then
we should track font name changes and update it accordingly. This only
applies to ClutterText actors with the :font-name property unset or
explicitly set to NULL.
It's possible that a single WM_MOUSEWHEEL event can arrive with a
scroll amount greater than WHEEL_DELTA. Previously it would accumulate
these amounts but it would still only emit a single event per
message. For example, if a message arrived that is worth two
WHEEL_DELTAs then it would emit one event and leave scroll_pos as
+WHEEL_DELTA. If the wheel is then scrolled in the opposite direction
then wheel delta would end up as zero and the scroll event would get
lost.
This patch fixes it so that it always emits enough events to put
scroll_pos back to less than WHEEL_DELTA.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2135
Previously the window procedure for the stage window would always
create a ClutterEvent struct for every message and then pass that on
to message_translate to fill in the details. message_translate could
return FALSE to abandon the event. Instead of this, message_translate
now creates and queues the event itself whenever it sees a message
that could translate to an event. The function now returns void. This
has a number of advantages:
* It saves redundantly allocating events for messages that Clutter
doesn't care about.
* A single message can now easily be translated into multiple events.
* There were some messages that were handled and did not fill in the
event struct but did not cause the function to return FALSE. I think
this would end up with a CLUTTER_NOTHING event being emitted.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2135
in _cogl_material_prune_empty_layer_difference we sometimes unref the
given layer before dereferencing it to get a pointer to its parent. This
defers the unref until after we have fetched the parent pointer.
Commit 7fae8ac051 changed cogl-defines.h.in so there is only a
single copy in clutter/cogl/ instead of one for each driver. However
the old files were still mentioned in the EXTRA_DIST of the
Makefile.am so make distcheck was failing.
A pedantic change to get_fbconfig_for_depth() so that we don't need to
make any assumptions about the GLXFBConfig typedef or what values
we can overload to indicate an invalid config.
get_fbconfig_for_depth() now simply returns FALSE if it fails to find a
config.
While dragging we don't need to perform picking to determine the actor
underneath the pointer, for two reasons:
• we use a capture on the stage to determine the motion delta.
• we know the actor underneath the pointer because that's the
actor we are dragging around.
This change should make dragging actors in complex scenes a bit faster.
The -Bsymbolic-functions linker flag allows to avoid intra-library
PLT jumps on ELF platforms. It is similar to the aliasing hack in
GLib and GTK+, but definitely less messy.
The configure script should look for the flags, in order to support
platforms/linkers that do not have it.
The pixmap handling of both of the texture pixmap actors in Clutter is
now removed and instead it just creates a CoglTexturePixmapX11. Both
actors are now equivalent so there is no need to choose between the
two.
This is a publicly exposed texture backend to create a texture which
contains the contents of an X11 pixmap. The API is currently marked as
experimental.
The backend internally holds a handle to another texture. All of the
backend virtuals simply redirect to the internal texture.
The texture can optionally be automatically updated if the
automatic_updates parameter is TRUE. If set then Cogl will listen for
damage events on the pixmap and update the texture accordingly.
Alternatively a damage object can be created externally and passed
down to Cogl.
The updates can be performed with XGetImage, XShmGetImage or the
GLX_EXT_texture_pixmap extension. If the TFP extension is used it will
optionally try to create a rectangle texture if the driver does not
support NPOTs or it is forced through the
COGL_PIXMAP_TEXTURE_RECTANGLE or CLUTTER_PIXMAP_TEXTURE_RECTANGLE
environment variables.
If the GLXFBConfig does not support mipmapping then it will fallback
to using X{Shm,}GetImage. It keeps a separate texture around for this
so that it can later start using the TFP texture again if the texture
is later drawn with mipmaps disabled.
This will be defined in cogl-defines.h whenever Cogl is built using a
winsys that supports X11. This implies CoglTexturePixmapX11 will be
available.
To make this work the two separate cogl-defines.h.in files have been
merged into one. The configure script now makes a @COGL_DEFINES@
substitution variable which contains the #define lines to put in
rather than directly having them in the seperate files.
This is similar to clutter_x11_{,un}trap_errors except that it stores
the previous trap state in a caller-allocated struct so that it can be
re-entrant.
Make _cogl_xlib_trap_errors re-entrant
(this will be squashed into an earlier commit)
The _cogl_texture_needs_premult_conversion function was already
checking whether the source format had an alpha channel before
returning TRUE, but it also doesn't make sense to do the premult
conversion if the destination format has no alpha. This patch adds
that check in too.
This adds the framework needed to check for winsys specific extensions
(such as GLX extensions) using a similar mechanism to the
cogl-feature-functions header. There is a separate
cogl-winsys-feature-functions header which will contain macros to list
the extensions and functions. cogl_create_context_winsys now calls
_cogl_feature_check for each of these functions. _cogl_feature_check
has had to be changed to accept the driver prefix as the first
parameter so that it can prepend "GLX" rather than "GL" in this case.
The Clutter X11 backend now passes all events through
_cogl_xlib_handle_event. This function can now internally be hooked
with _cogl_xlib_add_filter. These are added to a list of callbacks
which are all called in turn by _cogl_xlib_handle_event. This is
intended to be used internally in Cogl by any parts that need to see
Xlib events.
Cogl now also has an internally exposed function to set a pointer to
the Xlib display. This is stored in a global variable. The Clutter X11
backend sets this.
_cogl_xlib_handle_event and _cogl_xlib_set_display can be removed once
Cogl gains a proper window system abstraction.
This creates a separate struct to store the fields of the context that
are specific to the winsys. This is all stored in one file but ideally
this could work more like the CoglContextDriver struct and have a
different header for each winsys.
This adds an internal rectangle texture backend which is mostly based
on the CoglTexture2D backend. It will throw assert failures if any
operations are attempted that rectangle textures don't support, such
as mipmapping or hardware repeating.
Instead of the ensure_mipmaps virtual that is only called whenever the
texture is about to be rendered with a min filter that needs the
mipmap, there is now a pre_paint virtual that is always called when
the texture is about to be painted in any way. It has a flags
parameter which is used to specify whether the mipmap will be needed.
This is useful for CoglTexturePixmapX11 because it needs to do stuff
before painting that is unrelated to mipmapping.
Instead of having a hardcoded series of if-statements in
cogl_is_texture to determine which types should appear as texture
subclasses, they are now stored in a GSList attached to the Cogl
context. The list is amended to using a new cogl_texture_register_type
function. There is a convenience macro called COGL_TEXTURE_DEFINE
which uses COGL_HANDLE_DEFINE_WITH_CODE to register the texture type
when the _get_type() function is first called.
This macro is similar to COGL_HANDLE_DEFINE_WITH_CODE except that it
allows a snippet of code to be inserted into the _get_type()
function. This is similar to how G_DEFINE_TYPE_WITH_CODE
works. COGL_HANDLE_DEFINE is now just a wrapper around
COGL_HANDLE_DEFINE_WITH_CODE.
_cogl_texture_2d_externally_modified is a function specific to the
CoglTexture2D texture backend that should be called whenever the
contents of the texture are modified without the backend knowing about
it. It simply marks the mipmap tree as invalid.
The include path for the winsys and driver folder was given relative
to $(srcdir) so it would end up relative to the driver folder which is
wrong. It is now specified as $(srcdir)/../../winsys to get the right
location. The driver folder is removed because it is actually just
$(srcdir) and that is already included.
GLES2 doesn't provide user clip planes (you would have to use a vertex +
fragment shader to achieve the same kind of result) so we make sure not
to call glEnable/Disable with any of the GL_CLIP_PLANE0..3 defines.
http://bugzilla.o-hand.com/show_bug.cgi?id=2177
The function had a line like:
CoglMaterial *material =
material = _cogl_material_pointer_from_handle (material_handle);
where the duplicate "material =" wasn't intended, so this patch removes
it.
Since the Settings:font-dpi property is exposed as 1024 * real_dpi in
order to make the setting as neutral as possible (and allow XSETTINGS
to use it natively) we need a simple API returning the DPI using a
floating point value.
Use the XSETTINGS machinery to get notification from foreign
environments about settings that might interest Clutter itself - namely:
the default font name, the font DPI, and the Xft font options that can
be mapped on cairo_font_options_t.
This adds an automake USE_TSLIB condition to decide when we should
compile clutter-event-tslib.c. This is in preparation for consolidating
the eglx and eglnative backends.
clutter-event-egl had nothing to do with EGL, it's code for opening
tslib devices and creating a GSource for touch screen events. It just
happens that this only ever gets used with the eglnative backend.
Right before we create the EGL context, we check if we were built with
OpenGL or OpenGLES support and it was OpenGL then we call eglBindAPI
(EGL_OPENGL_API); This also explicitly requests a EGL_RENDERABLE_TYPE
supporting the EGL_OPENGL_BIT.
This will let us add a new ./configure flavour that combines OpenGL and
EGL instead of OpenGL and GLX.
This adds a separate variable name "CLUTTER_SONAME_INFIX" to define the
infix for the clutter library that gets linked. Currently the WINSYS
corresponds to the directory we enter when building to compile the
window system and input support, but it is desirable to be able to
define multiple flavours that use the same WINSYS but should result in
different library names.
For example we are planning to combine the eglx and eglnative window
systems into one "egl" winsys but we will need to preserve the current
library names for the eglx and eglnative flavours.
g_array_unref was only added in GLib 2.22 so we should really update
the requirements in the configure script if we want to use that
function. However the array doesn't appear to have any extra reference
taken on it anywhere so it should be safe to use g_array_free instead.
Under WGL, any functions that were defined after GL 1.1 are not
directly exported in the DLL so we need to reference them via the
function pointers. A new call to glActiveUnit was missed in
cogl-context.c
The window headers contain the line
#define near
so it's not possible to use the symbol 'near' in code that's portable
to Windows. This replaces it with 'near_val'.
I think the define is meant to improve compatibility with code written
for Windows 3.1 where near would be a keyword to make it a smaller
pointer size.
ClutterActor should allow attaching actions, constraints and effects
just like it allows behaviours, e.g.:
{
...
"constraints" : [
{
"type" : "ClutterAlignConstraint",
"source" : "stage",
"align-axis" : "x-axis",
"factor" : 0.5
},
{
"type" : "ClutterAlignConstraint",
"source" : "stage",
"align-axis" : "y-axis",
"factor" : 0.5
}
],
...
}
or:
{
...
"actions" : [
{
"type" : "ClutterDragAction",
"signals" : [
{ "name" : "drag-end", "handler" : "on_drag_end" }
]
}
],
...
}
In order to do so, we use the Scriptable interface implementation and
add three new custom properties accepting an array; then we parse each
member of the array as a new object.
Since constructing AlignConstraint and BindConstraint instances could be
deferred (think ClutterScript) we need to make their :source properties
setters accept NULL. This does not break the constraints because they
need to handle that condition in case they actor to which they are
applied is destroyed and somebody is holding a reference on them anyway.
The get_id_from_node() internal function should be exposed inside
Clutter (as a private function) because it can be useful to other
custom parsing code. The code is pretty trivial, but it would be
pointless to re-implement it.
Similar to the one in commit 2a354d9650
that went into clutter_value_set_shader_*. We end up in the same
situation, but it's better to fail from within ClutterShaderEffect.
Emit a critical error if the user tries to send more data than
the static shader GValues can hold.
This fixes the random memory corruption you get when specifying
size > 4.
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
The :sync-size property of ClutterTexture should be set to FALSE by
default by ClutterCairoTexture. The preferred size of the
ClutterCairoTexture is already the size of the internal Cairo surface,
and we override the preferred width/height getters to that effect.
The :sync-size property is also responsible of changing the size of
the Texture actor when changing the texture handle - but since we
encourage that to happen during the CairoTexture allocation, we get a
queue_relayout() invocation (and a warning) when we change the size
of the Cairo image surface.
Since GObject doesn't make it easy to override the default value of the
:sync-size property in sub-classes, we should simply call the setter
function during the ClutterCairoTexture instance initialization.
We should also change one of the interactive tests using a CairoTexture
to rebuild the contents of the actor in response to an allocation.
When clipped redraws were first supported in Clutter a heuristic was
added to promote tall clipped redraws into full redraws due to a concern
that using glXCopySubBuffer for tall rectangles would block the GPU for
too long waiting for the vtrace to be in a suitable position so that
tearing isn't seen. We've so far been unable to measure any impact from
this blocking even with full height windows so we are removing the
arbitrary threshold of 300px that was originally "plucked out of thin
air".
http://bugzilla.o-hand.com/show_bug.cgi?id=2136
We don't need to generate a new ARBfp program for every material created
if we can find an ancestor whos state will result in the same program
being generated.
The more code we can have adopt the coding pattern of deriving their
materials from other similar materials using cogl_material_copy() the
more likely this metric will be good enough on its own to minimize the
set of arbfp programs necessary to support a given application.
Previously in _cogl_material_pre_change_notify we manually freed the
layer caches of a material if we caused a reparent, but it makes more
sense to have _cogl_material_set_parent do this directly instead.
This adds a _cogl_material_weak_copy() function that can be used to
create materials that don't count as strong dependants on their parents.
This means the parent can be modified without worrying about how it will
affect weak materials. The material age of the parent can potentially be
queried to determine if a weak material might need to be re-created.
When we add support for weak materials it's expected that Clutter will
want to attach them as private data to other materials and it needs a
mechanism to determine when a weak material should be re-created because
its parent has changed somehow.
This adds the concept of a material age (internal only currently) which
increments whenever a material is modified. Clutter can then save the
age of the material which its weak materials are derived from and later
determine when the weak material may be invalid.
In _cogl_texture_quad_multiple_primitives we weren't memsetting the
CoglMaterialWrapModeOverrides structure we were memsetting
&state.wrap_mode_overrides where state.wrap_mode_overrides is just a
pointer that might potentially later point to the
CoglMaterialWrapModeOverrides structure.
In _cogl_material_equal we were repeating the same code pattern to
compare several of the state groups so this just adds
simple_property_equal function that's now used instead.
This redirects the legacy depth testing APIs through CoglMaterial and
adds a new experimental cogl_material_ API for handling the depth
testing state.
This adds the following new functions:
cogl_material_set_depth_test_enabled
cogl_material_get_depth_test_enabled
cogl_material_set_depth_writing_enabled
cogl_material_get_depth_writing_enabled
cogl_material_set_depth_test_function
cogl_material_get_depth_test_function
cogl_material_set_depth_range
cogl_material_get_depth_range
As with other experimental Cogl API you need to define
COGL_ENABLE_EXPERIMENTAL_API to access them and their stability isn't
yet guaranteed.
cogl_ortho is one of those APIs whos style was, for better or worse,
copied from OpenGL and for some inexplicable reason the near and far
arguments are inconsistent with the left, right, top, bottom arguments
because they don't take z coordinates they take a "distance" which
should be negative for a plane behind the viewer.
This updates the documentation to explain this.
The internal CoglMaterialLayer pointers associated with a material may
change whenever layer properties are modified so it's no longer ok to
assume that a list of layers returned by cogl_material_get_layers
remains valid if the layers have been changed.
Since it can sometimes be awkward to figure out where a particular
material came from when debugging, this adds a breadcrumb mechanism that
lets you associate a const string with a material that may give a clue
about its origin.
As a follow on to using cogl_material_copy instead of flush options this
patch now removes the ability to pass flush options to
_cogl_material_equal which is the final reference to the
CoglMaterialFlushOptions mechanism.
Since cogl_material_copy should now be cheap to use we can simplify
how we handle fallbacks and wrap mode overrides etc by simply copying
the original material and making our override changes on the new
material. This avoids the need for a sideband state structure that has
been growing in size and makes flushing material state more complex.
Note the plan is to eventually use weak materials for these override
materials and attach these as private data to the original materials so
we aren't making so many one-shot materials.
This is a complete overhaul of the data structures used to manage
CoglMaterial state.
We have these requirements that were aiming to meet:
(Note: the references to "renderlists" correspond to the effort to
support scenegraph level shuffling of Clutter actor primitives so we can
minimize GPU state changes)
Sparse State:
We wanted a design that allows sparse descriptions of state so it scales
well as we make CoglMaterial responsible for more and more state. It
needs to scale well in terms of memory usage and the cost of operations
we need to apply to materials such as comparing, copying and flushing
their state. I.e. we would rather have these things scale by the number
of real changes a material represents not by how much overall state
CoglMaterial becomes responsible for.
Cheap Copies:
As we add support for renderlists in Clutter we will need to be able to
get an immutable handle for a given material's current state so that we
can retain a record of a primitive with its associated material without
worrying that changes to the original material will invalidate that
record.
No more flush override options:
We want to get rid of the flush overrides mechanism we currently use to
deal with texture fallbacks, wrap mode changes and to handle the use of
highlevel CoglTextures that need to be resolved into lowlevel textures
before flushing the material state.
The flush options structure has been expanding in size and the structure
is logged with every journal entry so it is not an approach that scales
well at all. It also makes flushing material state that much more
complex.
Weak Materials:
Again for renderlists we need a way to create materials derived from
other materials but without the strict requirement that modifications to
the original material wont affect the derived ("weak") material. The
only requirement is that its possible to later check if the original
material has been changed.
A summary of the new design:
A CoglMaterial now basically represents a diff against its parent.
Each material has a single parent and a mask of state that it changes.
Each group of state (such as the blending state) has an "authority"
which is found by walking up from a given material through its ancestors
checking the difference mask until a match for that group is found.
There is only one root node to the graph of all materials, which is the
default material first created when Cogl is being initialized.
All the groups of state are divided into two types, such that
infrequently changed state belongs in a separate "BigState" structure
that is only allocated and attached to a material when necessary.
CoglMaterialLayers are another sparse structure. Like CoglMaterials they
represent a diff against their parent and all the layers are part of
another graph with the "default_layer_0" layer being the root node that
Cogl creates during initialization.
Copying a material is now basically just a case of slice allocating a
CoglMaterial, setting the parent to be the source being copied and
zeroing the mask of changes.
Flush overrides should now be handled by simply relying on the cheapness
of copying a material and making changes to it. (This will be done in a
follow on commit)
Weak material support will be added in a follow on commit.
We were incorrectly guarding the use of GL_TEXTURE_RECTANGLE_ARB with
ifdef ARB_texture_rectangle instead of ifdef GL_ARB_texture_rectangle
which broke test-cogl-texture-rectangle.
This was mistakenly added some time ago because at some point when we
were discussing how to handle premultiplied alpha in Clutter/Cogl we
were considering having a magic "just do the right thing" option which
was later abandoned.
This is to try and improve API consistency. Simple cogl structures that
don't derive from CoglObject and which can be allocated on the stack,
such as CoglColor and CoglMatrix should all have "_init" or
"_init_from" functions to initialize all the structure members. (As
opposed to a cogl_xyz_new() function for CoglObjects). CoglColor
previously used the naming scheme "_set_from" for these initializers but
"_set" is typically reserved for setting individual properties of a
structure/object.
This adds three _init functions:
cogl_color_init_from_4ub
cogl_color_init_from_4f
cogl_color_init_from_4fv
The _set_from functions are now deprecated but only with a gtk-doc
annotation for now. This is because the cogl_color_set_from API is quite
widely used already and so were giving a grace period before enabling a
GCC deprecated warning just because otherwise the MX maintainers will
complain to me that I've made their build logs look messy.
The journal logs colors as 4bytes into a vertex array and since we are
planning to make CoglMaterial track its color using a CoglColor instead
of a byte array this convenience will be useful for re-implementing
_cogl_material_get_colorubv.
When converting the floating point allocation width to an integer
multiple of PANGO_SCALE to give to the PangoLayout it can sometimes
end up slightly short of the allocated size due to rounding
errors. This can cause some of the lines to be wrapped differently
when a non-integer-aligned position is used (such as when animating
text). It works better to round the number to the nearest integer by
adding 0.5 instead of letting the default float cast truncate it
downwards.
http://bugzilla.openedhand.com/show_bug.cgi?id=2170
Both ::drag-begin and ::drag-end have a "button" argument - even though
we assume internally, and externally, that dragging can only be the
result of a primary button operation.
* wip/deform-effect:
docs: Add DeformEffect and PageTurnEffect to the API reference
effect: Add PageTurnEffect
effect: Add DeformEffect
offscreen-effect: Traslate the modelview with the offsets
docs: Fix Effect subclassing section
The marshallers we use for the signals are declared in a private header,
and it stands to reason that they should also be hidden in the shared
object by using the common '_' prefix. We are also using some direct
g_cclosure_marshal_* symbol from GLib, instead of consistently use the
clutter_marshal_* symbol.
Some internal symbols used for the GLES 2 wrapper were accidentally
being exported. This prepends an underscore to them so they won't
appear in the shared library.
It is often useful to determine if one actor is an ancestor of
another. Add a method to do that.
http://bugzilla.openedhand.com/show_bug.cgi?id=2162
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
By default, ShaderEffect creates a fragment shader; in order to be able
to deprecate ClutterShader we need a way for ShaderEffect sub-classes to
create a vertex shader if needed - By using a write-only, constructor
only property.
ClutterShader has, internally, a ClutterShaderType enumeration that can
be used exactly for this. We just need to expose it and create a GObject
property for ClutterShaderEffect.
Whenever a path or a rectangle is added to the clip stack it now also
stores a screen space bounding box in the entry. Then when the clip
stack is flushed the bounding box is first used to set up the
scissor. That way when we eventually come to use the stencil buffer
the clear will be affected by the scissor so we don't have to clear
the entire buffer.
_cogl_path_get_bounds is no longer static and is exported in
cogl-path-private.h so that it can be used in the clip stack code. The
old version of the function returned x/y and width/height. However
this was mostly used to call cogl_rectangle which takes x1/y1
x2/y2. The function has been changed to just directly return the
second form because it is more useful. Anywhere that was previously
using the function now just directly looks at path->path_nodes_min and
path->path_nodes_max instead.
The transform_point function takes a modelview matrix, projection
matrix and a viewport and performs all three transformations on a
point to give a Cogl window coordinate. This is useful in a number of
places in Cogl so this patch moves it to cogl.c and adds it to
cogl-internal.h
For sliced 2D textures, _cogl_texture_2d_sliced_get_data() uses the
bitmap width, instead of the rowstride, when memcpy()ing into the
dest buffer.
Signed-off-by: Robert Bragg <robert@linux.intel.com>
We only had getters for the red, green, blue and alpha channels of a
color. This meant that, if you wanted to change, say, the alpha
component of a color, one would need to query the red, green and blue
channels and use set_from_4ub() or set_from_4f().
Instead of this, just provide some setters for CoglColor, using the same
naming scheme than the existing getters.
For some operations on pre-multiplied colors (say, replace the alpha
value), you need to unpremultiply the color.
This patch provides the counterpart to cogl_color_premultiply().
The place where we actually change the framebuffer is
_cogl_framebuffer_flush_state(), so if we changed to a new frame buffer
we need to initialize the color bits there.
http://bugzilla.openedhand.com/show_bug.cgi?id=2094
OpenGL 3.0 deprecated querying of the GL_{RED,GREEN,BLUE}_BITS
constants, and the FBO extension provides a mechanism to query for the
color buffer sizes which *should* work even with the default
framebuffer. Unfortunately, this doesn't seem to hold for Mesa - so we
just use this for the offscreen CoglFramebuffer type, and we fall back
to glGetIntegerv() for the onscreen one.
http://bugzilla.openedhand.com/show_bug.cgi?id=2094
DeformEffect is an abstract class that should be used to write effects
that change the geometry of an actor before submitting it to the GPU.
Just like the ShaderEffect class, DeformEffect renders the actor to
which it has been applied into an FBO; then it creates a mesh and stores
it inside a VBO. Sub-classes can control vertex attributes like
position, texel coordinates and the color.
Instead of using the stage offsets when painting we can simply traslate
the current modelview. This allows sub-classes to fully override the
paint_target() virtual function without chaining up.
This function had two problems. Firstly it would clear the enable
blend flag before calling pre_change_notify so that if blending was
previously enabled the journal would end up being flushed while the
flag was still cleared. Secondly it would call the pre change notify
whenever blending is needed regardless of whether it was already
needed previously.
This was causing problems in test-depth.
This adds a _cogl_bind_gl_texture_transient function that should be used
instead of glBindTexture so we can have a consistent cache of the
textures bound to each texture unit so we can avoid some redundant
binding.
As part of an effort to improve the architecture of CoglMaterial
internally this overhauls how we flush layer state to OpenGL by adding a
formal backend abstraction for fragment processing and further
formalizing the CoglTextureUnit abstraction.
There are three backends: "glsl", "arbfp" and "fixed". The fixed backend
uses the OpenGL fixed function APIs to setup the fragment processing,
the arbfp backend uses code generation to handle fragment processing
using an ARBfp program, and the GLSL backend is currently only there as
a formality to handle user programs associated with a material. (i.e.
the glsl backend doesn't yet support code generation)
The GLSL backend has highest precedence, then arbfp and finally the
fixed. If a backend can't support some particular CoglMaterial feature
then it will fallback to the next backend.
This adds three new COGL_DEBUG options:
* "disable-texturing" as expected should disable all texturing
* "disable-arbfp" always make the arbfp backend fallback
* "disable-glsl" always make the glsl backend fallback
* "show-source" show code generated by the arbfp/glsl backends
_cogl_atlas_texture_blit_begin binds a texture to use as the
destination and it expects it to stay bound until
_cogl_atlas_texture_end_blit is called. However there was a call to
_cogl_journal_flush directly after setting up the blit state which
could cause the wrong texture to be bound. This just moves the flush
to before the call to _cogl_atlas_texture_blit_begin.
This was breaking test-cogl-sub-texture.
1) Always flush when migrating textures out of an atlas because although
it's true that the original texture data will remain valid in the
original texture we can't assume that journal entries have resolved the
GL texture that will be used. This is only true if a layer0_override has
been used.
2) Don't flush at the point of creating a new atlas simply flush
immediately before reorganizing an atlas. This means we are now assuming
that we will never see recursion due to atlas textures being modified
during a journal flush. This means it's the responsibility of the
primitives code to _ensure_mipmaps for example not the responsibility of
_cogl_material_flush_gl_state.
We want to make sure that the material state flushing code will never
result in changes to the texture storage for that material. So for
example mipmaps need to be ensured by the primitives code.
Changes to the texture storage will invalidate the texture coordinates
in the journal and we want to avoid a recursion of journal flushing.
This adds a way to compare two CoglMatrix structures to see if they
represent the same transformations. memcmp can't be used because a
CoglMatrix contains private flags and padding.
THIS IS A WORK IN PROGRESS
Mesa is building a big shader when using ARB_texture_env_combine. The
idea is to bypass that computation, do it ourselves and cache the
compiled program in a CoglMaterial.
For now that feature can be enabled by setting the COGL_PIPELINE
environment variable to "arbfp". COGL_SHOW_FP_SOURCE can be set to a non
empty string to dump the fragment program source too.
TODO:
* fog (really easy, using OPTION)
* support tex env combiner operands, DOT3, ADD_SIGNED, INTERPOLATE
combine modes (need refactoring the generation of temporary
variables) (not too hard)
* alpha testing for GLES 2.0?
The Cogl context has now a feature_flags_private enum that will allow us
to query and use OpenGL features without exposing them in the public
API.
The ARB_fragment_program extension is the first user of those flags.
Looking for this extension only happens in the gl driver as the gles
drivers will not expose them.
One can use _cogl_features_available_private() to check for the
availability of such private features.
While at it, reindent cogl-internal.h as described in CODING_STYLE.
Every time we request a CoglPangoFontMap, either internally or
externally, we should have one available.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
If we have the GLX_SGI_video_sync extension then it's possible to always
keep track for the video sync counter each time we call glXSwapBuffers
or do a sub stage blit. This then allows us to avoid waiting before
issuing a blit if we can see that the counter has already progressed.
Also since we expect that glXCopySubBuffer is synchronized to the vblank
we don't need to use glFinish () in conjunction with the vblank wait
since the vblank wait's only purpose is to add a delay.
The GLX_SGI_video_sync spec explicitly says that it's only supported for
direct contexts so we don't setup up the function pointers if
glXIsDirect () returns GL_FALSE.
Neither glXCopySubBuffer or glBlitFramebuffer are integrated with the
swap interval of a framebuffer so that means when we do partial stage
updates (as Mutter does in response to window damage) then the blits
aren't throttled which means applications that throw lots of damage
events at the compositor can effectively cause Clutter to run flat out
taking up all the system resources issuing more blits than can even be
seen.
This patch now makes sure we use the GLX_SGI_video_sync or a
DRM_VBLANK_RELATIVE ioctl to throttle blits to the vblank frequency as
we do when using glXSwapBuffers.
Currently glXCopySubBufferMESA is used for sub stage redraws, but in case
a driver does not support GLX_MESA_copy_sub_buffer we fall back to redrawing
the complete stage which isn't really optimal.
So instead to directly fallback to complete redraws try using GL_EXT_framebuffer_blit
to do the BACK to FRONT buffer copies.
http://bugzilla.openedhand.com/show_bug.cgi?id=2128
At two places in cogl_wrap_prepare_for_draw it was trying to loop over
the texture units to flush some state. However it was retrieving the
texture unit pointer using w->active_texture_unit instead of the loop
index so it would end up with the wrong state.
Also in glEnableClientState it was using the active unit instead of
the client active unit.
Layout properties work similarly to child properties, with the added
headache that they require the 3-tuple:
( layout manager, container, actor )
to be valid in order to be inspected, parsed and applied. This means
using the newly added back-pointer from the container to the layout
manager and then rejigging a bit how the ScriptParser handles the
unresolved properties.
Similarly to the child properties, which use the "child::" prefix, the
layout manager properties use the "layout::" prefix and are defined with
the child of a container holding a layout manager.
Store a back pointer of the layout manager inside the container using
the GObject instance data. This introduces a change in the implementation
of ClutterLayoutManager, though it's still binary compatible.
• 3 general fixes (typos, copy/paste),
• ignore cogl-object-private.h,
• cogl_fixed_atani() was in reality cogl_fixed_atan(), fixed in commit
43564f05.
• Fix the cogl-vector section: sections must have a </SECTION> tag at
the end. Also the cogl-vector section was added in the middle of the
cogl-buffer one. Let's shiffle it out and add that </SECTION> tag.
GCC can catch errors when it knows that a variadic function must be
ended with NULL. Let's use the glib macro encapsulating the GCC
attribute to clutter_animator_set() and clutter_state_set().
As with a351ff2af earlier, distributing headers generated at configure
time conflicts with out of tree builds as the distributed headers will
be included first instead of including the generated ones.
This provides a mechanism for associating private data with any
CoglObject. We expect Clutter will use this to associate weak materials
with normal materials.
clutter-jon.h is generated at configure time, we should not distribute it.
This caused a build issue when compiling from a tarballs and out of tree
builds as we ended up with two clutter-json.h one in $(top_srcdir)/json
and the other in $(top_builddir)/json and picked up the wrong one
($(top_srcdir)/json is included first in the include search path).
Stacking multiple effects sub-classing ClutterOffscreenEffect requires
a small fix in the code that computes the screen coordinates of the
actor to position the FBO correctly with regards to the stage.
Since ClutterEffect is an ActorMeta it should be possible to animate the
properties of named effects using the @effects syntax, just like it
happens for actions and constraints.
Sub-classes of ShaderEffect currently have to get the handle for the
Cogl shader and call cogl_shader_source(); this makes it awkward to
implement a ShaderEffect, and it exposes handles and Cogl API that we
might want to change in the future.
We should provide a ClutterShaderEffect method that allows to (safely)
set the shader source at the right time for sub-classes to use.
The OffscreenEffect should set up the off screen draw buffer so that it
has the same projection and modelview as if it where on screen; we
achieve that by setting up the viewport to be the same size of the stage
but with an initial offset given by the left-most vertex of the actor.
When we paint the texture attached to the FBO we then set up the
modelview matrix of the on screen draw buffer so that it's the same as
the stage one: this way, the texture will be painted in screen
coordinates and it will occupy the same area as the actor would have
had.
A simple, GLSL shader-based blur effect.
The blur shader is taken straight from the test-shader.c interactive
test case. It's a fairly clunky, inefficient and visually incorrect
implementation of a box blur, but it's all we have right now until I
figure out a way to do multi-pass shading with the current API.
The ShaderEffect class is an abstract base type for shader-based
effects. GLSL-based effects should be implemented by sub-classing
ShaderEffect and overriding ActorMeta::set_actor() to set the source
code of the shader, and Effect::pre_paint() to update the uniform
values, if any.
The ShaderEffect has a generic API for sub-classes to set the values
of the uniforms defined by their shaders, and it uses the shader
types we defined for ClutterShader, to avoid re-inventing the wheel
every time.
The OffscreenEffect class is meant to be used to implement Effect
sub-classes that create an offscreen framebuffer and redirect the
actor's paint sequence there. The OffscreenEffect is useful for
effects using fragment shaders.
Any shader-based effect being applied to an actor through an offscreen
buffer should be used before painting the resulting target material and
not for every actor. This means that doing:
pre_paint: cogl_program_use(program)
set up offscreen buffer
paint: [ actors ] → offscreen buffer → target material
post_paint: paint target material
cogl_program_use(null)
Is not correct. Unfortunately, we cannot really do:
post_paint: cogl_program_use(program)
paint target material
cogl_program_use(null)
Because the OffscreenEffect::post_paint() implementation also pops the
offscreen buffer and re-instates the previous framebuffer:
post_paint: cogl_program_use(program)
change frame buffer ← ouch!
paint target material
cogl_program_use(null)
One way to fix it is to allow using the shader right before painting
the target material - which means adding a new virtual inside the
OffscreenEffect class vtable in additions to the ones defined by the
parent Effect class.
The newly-added paint_target() virtual allows the correct sequence of
actions by adding an entry point for sub-classes to wrap the "paint
target material" operation with custom code, in order to implement the
case above correctly as:
post_paint: change frame buffer
cogl_program_use(program)
paint target material
cogl_program_use(null)
The added upside is that sub-classes of OffscreenEffect involving
shaders really just need to override the prepare() and paint_target()
virtuals, since the pre_paint() and post_paint() do all that's needed.
ClutterEffect is an abstract class that should be used to apply effects
on generic actors.
The ClutterEffect class just defines what an effect should implement; it
could be defined as an interface, but we might want to add some default
behavior dependent on the internal state at a later point.
The effect API applies to any actor, so we need to provide a way to
assign an effect to an actor, and let ClutterActor call the Effect
methods during the paint sequence.
Once an effect is attached to an actor we will perform the paint in this
order:
• Effect::pre_paint()
• Actor::paint signal emission
• Effect::post_paint()
Since an effect might collide with the Shader class, we either allow a
shader or an effect for the time being.
When getting the relative modelview matrix we need to reset it to the
stage's initial state or, at least, initialize it to the identity
matrix, instead of assuming we have an empty stack.
This replaces the use of CoglHandle with strongly type CoglClipStack *
pointers instead. The only function not converted for now is
cogl_is_clip_stack which will be done in a later commit.
This replaces the use of CoglHandle with strongly type CoglBitmap *
pointers instead. The only function not converted for now is
cogl_is_bitmap which will be done in a later commit.
This replaces the use of CoglHandle with strongly type CoglPath *
pointers instead. The only function not converted for now is
cogl_is_path which will be done in a later commit.
This patch makes it so that only the backwards compatibility
COGL_HANDLE_DEFINE macro defines a _cogl_xyz_handle_new function. The
new COGL_OBJECT_DEFINE macro only defines a _cogl_xyz_object_new
function.
It's valid C to declare a function omitting it prototype, but it seems
to be a good practise to always declare a function with its
corresponding prototype.
While this is totally fine (None is 0L and, in the pointer context, will
be converted in the right internal NULL representation, which could be a
value with some bits to 1), I believe it's clearer to use NULL instead
of None when we talk about pointers.
While this is totally fine (0 in the pointer context will be converted
in the right internal NULL representation, which could be a value with
some bits to 1), I believe it's clearer to use NULL in the pointer
context.
It seems that, in most case, it's more an overlook than a deliberate
choice to use FALSE/0 as NULL, eg. copying a _COGL_GET_CONTEXT (ctx, 0)
or a g_return_val_if_fail (cond, 0) from a function returning a
gboolean.
This replaces the use of CoglHandle with strongly type CoglBuffer *
pointers instead. The only function not converted for now is
cogl_is_buffer which will be done in a later commit.
CoglHandle is a common source of complaints and confusion because people
expect a "handle" to be some form of integer type with some indirection
to lookup the corresponding objects as opposed to a direct pointer.
This patch starts by renaming CoglHandle to CoglObject * and creating
corresponding cogl_object_ APIs to replace the cogl_handle ones.
The next step though is to remove all use of CoglHandle in the Cogl APIs
and replace with strongly typed pointer types such as CoglMaterial * or
CoglTexture * etc also all occurrences of COGL_INVALID_HANDLE can just
use NULL instead.
After this we will consider switching to GTypeInstance internally so we
can have inheritance for our types and hopefully improve how we handle
bindings.
Note all these changes will be done in a way that maintains the API and
ABI.
in create_pick_material we were using a static boolean to gate when we
show a warning, but that would mean if the problem recurs between
different textures then the warning will only be shown once. We now have
a private bitfield flag instead, just so we don't spew millions of
warnings if the problem is recurring.
This adds a boolean "pick-with-alpha" property to ClutterTexture and when
true, it will use the textures alpha channel to define the actors shape when
picking.
Users should be aware that it's a bit more expensive to pick textures like
this (so probably best not to blindly enable it on *all* your textures)
since it implies rasterizing the texture during picking whereas we would
otherwise just send a solid filled quad to the GPU. It will also interrupt
the internal batching of geometry for pick renders which can otherwise often
be done in a single draw call.
Since the default alpha test function of GL_ALWAYS is equivalent to
GL_ALPHA_TEST being disabled we don't need to worry about Enabling/Disabling
it when flushing material state, instead it's enough to leave it always
enabled. We will assume that any driver worth its salt wont incur any
additional cost for glEnable (GL_ALPHA_TEST) + GL_ALWAYS vs
glDisable (GL_ALPHA_TEST).
This patch simply calls glEnable (GL_ALPHA_TEST) in cogl_create_context
clutter_texture_paint shouldn't need to optimize the case where
paint_opacity == 0 and bailout, since we've been doing this optimization for
all actors in clutter_actor_paint for a while now.
When _cogl_disable_other_texcoord_arrays is called it disables the
neccessary texcoord arrays and then removes the bits for the disabled
arrays in ctx->texcoord_arrays_enabled. However none of the places
that call the function then set any bits in ctx->texcoord_arrays_enabled
so the arrays would never get marked and they would never get disabled
again.
This patch just changes it so that _cogl_disable_other_texcoord_arrays
also sets the corresponding bits in ctx->texcoord_arrays_enabled.
Since emit_drag_end() can be called from a MOTION event capture we
cannot call clutter_event_get_button(). We should, instead, use the
press_button value because if we're emitting ::drag-end it means we
also emitted ::drag-begin and the value is valid.
We need to tell the introspection scanner all the dependencies we
require, including the pkg-config name to use when compiling the
GIR file into a typelib object.
New virtual functions cannot go wherever they want, if we need to
preserve the ABI.
Also, the coding style should match the rest of ClutterActor and
Clutter's own coding style.
When destroying an Actor the various ActorMeta instance should already
be disposed - unless something is holding a reference to them, in which
case we should use the ::destroy signal to unset the ActorMeta:actor
back pointer.
ClickAction adds "clickable" semantics to an actor. It provides all
the business logic to emit a high-level "clicked" signal from the
various low-level signals inside ClutterActor.
The DragAction should, by default, drag the actor to which it has been
applied, instead of delegating what to do to the developer. If custom
code need to override it, g_signal_stop_emission_by_name() can be called
to stop the default handler to ever running.
Instead of directly using a guint32 to store a bitmask for each used
texcoord array, it now stores them in a CoglBitmask. This removes the
limitation of 32 layers (although there are still other places in Cogl
that imply this restriction). To disable texcoord arrays code should
call _cogl_disable_other_texcoord_arrays which takes a bitmask of
texcoord arrays that should not be disabled. There are two extra
bitmasks stored in the CoglContext which are used temporarily for this
function to avoid allocating a new bitmask each time.
http://bugzilla.openedhand.com/show_bug.cgi?id=2132
This implements a growable array of bits called CoglBitmask. The
CoglBitmask is intended to be cheap if less than 32 bits are used. If
more bits are required it will allocate a GArray. The type is meant to
be allocated on the stack but because it can require additional
resources it also has a destroy function.
http://bugzilla.openedhand.com/show_bug.cgi?id=2132
Previously the counter for the number of layers was only updated
whenever the texture handle for a layer changes. However there are
many other ways for a new layer to be created for example by setting a
layer combine constant. Also by default the texture on a layer is
COGL_INVALID_HANDLE so if the application tries to create an explicit
layer with no texture by calling cogl_material_set_layer with
COGL_INVALID_HANDLE then it also wouldn't update the count.
This patch fixes that by incrementing the count in
cogl_material_get_layer instead. This function is called by all
functions that may end up creating a layer so it seems like the most
appropriate place.
http://bugzilla.openedhand.com/show_bug.cgi?id=2132
It should be quite acceptable to use a texture without defining any
texture coords. For example a shader may be in use that is doing
texture lookups without referencing the texture coordinates. Also it
should be possible to replace the vertex colors using a texture layer
without a texture but with a constant layer color.
enable_state_for_drawing_buffer no longer sets any disabled layers in
the overrides. Instead of counting the number of units with texture
coordinates it now keeps them in a mask. This means there can now be
gaps in the list of enabled texture coordinate arrays. To cope with
this, the Cogl context now also stores a mask to track the enabled
arrays. Instead of code manually iterating each enabled array to
disable them, there is now an internal function called
_cogl_disable_texcoord_arrays which disables a given mask.
I think this could also fix potential bugs when a vertex buffer has
gaps in the texture coordinate attributes that it provides. For
example if the vertex buffer only had texture coordinates for layer 2
then the disabling code would not disable the coordinates for layers 0
and 1 even though they are not used. This could cause a crash if the
previous data for those arrays is no longer valid.
http://bugzilla.openedhand.com/show_bug.cgi?id=2132
Added the implementation for clutter_actor_get_accessible, virtual
ClutterActor function, used to obtain the accessible object of
any ClutterActor.
As it is defined virtual, it would be possible to redefine it, so
any custom clutter actor could implement their accessibility object,
withouth relying totally on a accessibility implementation module.
See gtkiconview as example.
http://bugzilla.openedhand.com/show_bug.cgi?id=2070
ClutterInterval.compute_value() computes the new value given a progress
and copies it to a given GValue. Since most of the time we want to pass
that very same value to another function that copies it again, we should
have a compute_value() variant that stores that computed value inside
ClutterInterval and returns a pointer to it. This way we initialize the
result GValue just once and we never copy it, as long as the Interval
instance is valid.
* wip/state-machine:
Do not use wildcards in test-state
script: Implement State deserialization
state: added a "target-state" property
state: documented data structures
Add State interactive tests to the ignore file
state: Documentation and introspection annotation fixes
state: Minor coding style fixes
state: Clean up the header's documentation
state: Constify StateKey accessors
Do not include clutter.h from a Clutter header file
state-machine: made clutter_state_change take a boolean animate argument
state-machine: use clutter_timeline_get_progress
state-machine: add completed signal
state machine: added state machine
Conflicts:
.gitignore
* wip/constraints: (24 commits)
Add the Cogl API reference to the fixxref extra directories
Document the internal MetaGroup class
Remove the construct-only flag from ActorMeta:name
doc: Remove gtk-doc annotations from the json-glib copy
doc: Fix parameter documentation
Add named modifiers for Action and Constraint
Remove a redundant animation
Set the stage resizable in test-constraints
Use a 9 grid for the constraints test
Miscellaneous documentation fixes
docs: Document animating action and constraint properties
docs: Document BindConstraint and AlignConstraint
constraint: Rename BindConstraint:bind-axis
constraints: Add AlignConstraint
tests: Add a constraints interactive test
constraint: Add BindConstraint
actor: Implement Animatable
animation: Use the new Animatable API for custom properties
animatable: Add custom properties to Animatable
constraint: Add ClutterConstraint base class
...
Conflicts:
configure.ac
This adds a math utility API for handling 3 component, single precision
float vectors with the following; mostly self explanatory functions:
cogl_vector3_init
cogl_vector3_init_zero
cogl_vector3_equal
cogl_vector3_equal_with_epsilon
cogl_vector3_copy
cogl_vector3_free
cogl_vector3_invert
cogl_vector3_add
cogl_vector3_subtract
cogl_vector3_multiply_scalar
cogl_vector3_divide_scalar
cogl_vector3_normalize
cogl_vector3_magnitude
cogl_vector3_cross_product
cogl_vector3_dot_product
cogl_vector3_distance
Since the API is experimental you will need to define
COGL_ENABLE_EXPERIMENTAL_API before including cogl.h if you want to use
the API.
The ClutterActor API should have modifier methods for adding, removing
and retrieving Actions and Constraints using the ClutterActorMeta:name
property - mostly, for convenience.
This stubs out an xlib event handling mechanism for Cogl. The intention
is for Clutter to use this to forward all x11 events to Cogl. As we move
winsys functionality down into Cogl, Cogl will become responsible for
handling a number of X events: ConfigureNotify events for onscreen
framebuffers, swap events and Damage events for cogl_x11_texture_pixmap.
AlignConstraint is a simple constraint that keeps an actor's position
aligned to the width or height of another actor, multiplied by an
alignment factor.
By implementing the newly added support for custom animatable
properties, we can allow addressing action and constraint properties
from ClutterAnimation and clutter_actor_animate().
The Animation class should use the Animatable API for custom properties
to override finding a property definition, getting the initial state and
setting the final state of an object.
The Constraint base, abstract class should be used to implement Actor
modifiers that affect the way an actor is sized or positioned inside a
fixed layout manager.
Commit e2a990d renamed these types to new names from EGL 1.3. However
it still works to use the old names under EGL 1.3 so let's just use
those to keep compatibility.
clutter_backend_egl_dispose now chains up before disposing its own
resources so that ClutterBackendX11 will destroy all of the stages
before we destroy the egl context. Otherwise the actors may try to
make GL calls during destruction which causes a crash.
Some EGL drivers, such as the PowerVR simulator (and some proprietary drivers)
return zero when the EGLConfig is queried for the EGL_NATIVE_VISUAL_ID
attribute via eglGetConfigAttrib().
This patch detects and attempts to work around that situation by picking a
visual with the same color depth.
http://bugzilla.openedhand.com/show_bug.cgi?id=2123
After the EGL context is created it now also creates an invisible 1x1
window and a corresponding surface so that the context can be
immediately made current. This is similar to changes for the GLX
backend introduced in d2c091e62.
http://bugzilla.openedhand.com/show_bug.cgi?id=2056
DragAction is an Action sub-class that provides dragging capabilities to
any actor. DragAction has:
• drag-begin, drag-motion and drag-end signals, relaying the event
information like coordinates, button and modifiers to user code;
• drag-threshold property, for delaying the drag start by a given
amount of pixels;
• drag-handle property, to allow using other actors as the drag
handle.
• drag-axis property, to allow constraining the dragging to a specific
axis.
An interactive test demonstrating the various features is also provided.
ClutterAction is an abstract class that should be used as the ancestor
for objects that change how an actor behaves when dealing with events
coming from user input.
ClutterActorMeta is a base, abstract class that can be used to derive
classes that are attached to a ClutterActor instance in order to modify
the way an actor is painted, sized/positioned or responds to events.
A typed container for ActorMeta instances is also provided to the
sub-classes can be attached to an Actor.
Previously it would only try to set the blend equation if the RGB and
alpha blending functions were different. However it's completely valid
to use a non-standard blending function when the functions are the
same. This patch moves the blending equation to outside the if
statement.
Previously it would only set the blend constant if glBlendFuncSeparate
was used but it is perfectly acceptable to use the blend constant when
the same factor is used for each. It now sets the blend constant
whenever one of the factors would use the constant.
When a single statement is used to specify the factors for both the
RGB and alpha parts it previously split up the statement into
two. This works but it ends up unnecessarily using glBlendFuncSeparate
when glBlendFunc would suffice.
For example, the blend statement
RGBA = ADD(SRC_COLOR*(SRC_COLOR), DST_COLOR*(1-SRC_COLOR))
would get split into the two statements
RGBA = ADD(SRC_COLOR*(SRC_COLOR[RGB]), DST_COLOR*(1-SRC_COLOR[RGB]))
A = ADD(SRC_COLOR*(SRC_COLOR[A]), DST_COLOR*(1-SRC_COLOR[A]))
That translates to:
glBlendFuncSeparate (GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR,
GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
This patch makes it so that arg_to_gl_blend_factor can handle the
combined RGBA mask instead. That way the single statement gets
translated to the equivalent call:
glBlendFunc (GL_SRC_COLOR, GL_ONE_MINUS_SRC_COLOR);
If a cached layout didn't actually match the layout we're looking for,
it would be returned anyway. Remove this return so that it can correctly
continue looking and get a cache miss if appropriate.
http://bugzilla.openedhand.com/show_bug.cgi?id=2109
Previously a path copy was implemented such that only the array of
path nodes was shared with the source and the rest of the data is
copied. This was so that the copy could avoid a deep copy if the
source path is appended to because the copy keeps track of its own
length. This optimisation is probably not worthwhile because it makes
the copies less cheap. Instead the CoglPath struct now just contains a
single pointer to a new CoglPathData struct which is separately
ref-counted. When the path is modified it will be copied if the ref
count on the data is not 1.
This patch combines a number of fixes and improvements to the
layout caching logic in ClutterText.
* Fix: The width must always be set on the PangoLayout when painting.
This is necessary because the layout aligns in the width, and
even when we think we are left-aligned, the auto-dir feature
of PangoLayout may result in right-alignment.
* Fix: We should only ever try to reuse a cached layout based
on its logical width if layout.width was -1 when computing
that logical width. If the layout was already ellipsized,
then comparing the logical width to the new width we are
trying to wrap to doesn't make sense. (If "abc" ellipsizes
to a 15-pixel wide "..." for a width of 1 pixel, that doesn't
mean that we should use "..." for a width of 15 pixels. Maybe
"abc" itself is 15 pixels wide.)
* Improvement: rather than looking up cached layouts based on the
input allocation_width/allocation_height, look them up based
on the actual width/height/ellipsize that we pass to create
a layout. This is simpler and improves the chance we'll get
a cache hit when appropriate even if there are small floating
point differences.
Note because of the first fix this is less aggressive than dd40732
in caching layouts; get_preferred_width() and painting can't share
a layout since get_preferred_width() needs to pass a width of -1
to Pango and painting needs to pass the real width.
The patch has been updated from the clutter-1.2 branch to current
master; using the profiling instrumentation it is possible to verify
with test-text-field that the hit/miss counters go from:
Name Total Per Frame
---- ----- ---------
Text layout cache hit counter 13 6
Text layout cache miss counter 11 5
before applying the patch, to:
Name Total Per Frame
---- ----- ---------
Text layout cache miss counter 4 2
Text layout cache hit counter 3 1
after applying the patch.
https://bugzilla.gnome.org/show_bug.cgi?id=618104http://bugzilla.openedhand.com/show_bug.cgi?id=2109
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
This reverts commit 716ec82db8.
The Cogl pixel buffer API currently has problems if an atlas texture
is created or the format needs to be converted. The atlas problem
doesn't currently show because the atlas rejects BGR textures anyway
but we may want to change this soon. The problem with format
conversion would happen under GLES because that does not support BGR
textures at all so Cogl has to do the conversion. However it doesn't
currently show either because GLES has no support for buffer objects
anyway.
It's also questionable whether the patch would give any performance
benefit because Cairo needs read/write access which implies the buffer
can't be put in write-optimised memory.
Conflicts:
clutter/clutter-cairo-texture.c
http://bugzilla.openedhand.com/show_bug.cgi?id=1982
Since framebuffer state is not flushed prior to replaying the journal,
the trick of marking the framebuffer dirty prior to calling
glBindFramebuffer() doesn't work... the outstanding journal entries
will get replayed to the newly created framebuffer.
Fix this by flushing the journal as well.
http://bugzilla.openedhand.com/show_bug.cgi?id=2110
Signed-off-by: Robert Bragg <robert@linux.intel.com>
In clutter_cairo_texture_create_region it tries to destroy the old
texture before mapping the PBO by setting the texture on the first
layer of the material to COGL_INVALID_HANDLE. However it was using the
material API incorrectly so it ended up showing a warning and doing
nothing.
If the clip stack is empty then _cogl_clip_stack_flush exits
immediately. This was missing out the assignment of *stencil_used_p at
the bottom of the function. If a path is then used after the clip is
cleared then it would think it needs to merge with the clip so the
stencil would not be cleared correctly.
The code for implementing ClutterColor as GParamSpec and the
color↔string transformation functions were assuming that ClutterColor
owns the data in the GValue struct and directly reading
data[0].v_pointer to get a pointer to the color. However ClutterColor
is actually a boxed type and the format of the data array is meant to
be internal to GObject so it is not safe to poke around in it
directly. This patch changes it to use g_value_get_boxed to get the
pointer.
Also, boxed types allow a NULL value to be stored and not all of the
code was coping with this. This patch also attempts to fix that.
http://bugzilla.openedhand.com/show_bug.cgi?id=2068
ClutterColor has long had a GTypeValueTable struct around and the
functions defined to be implemented as a fundamental type. However the
struct was never actually used anywhere and ClutterColor is actually
defined as a boxed type. This patch removes the table because it is
very confusing to have code lying around that is not used.
http://bugzilla.openedhand.com/show_bug.cgi?id=2068
Duplicate the existing ease-in/interpolation mode for the property when
removing, replacing the first key for a property or adding a new first
key for a property.
When inserting or modifying keys of a running animator the internal
iterators per property could go out of sync. Reinitializing the
iterators if the timeline is running avoids this.
Instead of using cogl_get_bitmasks() to query the GL machinery for the
size of the color bits, we should store the values inside the
CoglFramebuffer object and query them the first time we set the framebuffer
as the current one.
Currently, cogl_get_bitmasks() is re-implemented in terms of
cogl_framebuffer_get_*_bits(). As soon as we are able to expose the
CoglOnscreen framebuffer object in the public API we'll be able to
deprecate cogl_get_bitmasks() altogether.
http://bugzilla.openedhand.com/show_bug.cgi?id=2094
In 91cde78a7 I accidentally changed the function names that get looked
up for the framebuffer extension under GLES so that they didn't have
any suffix. The spec for extension specifies that they should have the
OES suffix.
A server that supports GLX_BufferSwapComplete will always send
these events, so we should just silently ignore them if we've
chosen not to take advantage of the INTEL_swap_event GLX
extension.
http://bugzilla.openedhand.com/show_bug.cgi?id=2102
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
clutter_container_create_child_meta() uses CLUTTER_IS_ACTOR on the
container parameter instead of the actor parameter.
http://bugzilla.openedhand.com/show_bug.cgi?id=2087
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Debugging code is not meant to be run in the nominal code path. Use
G_UNLIKELY to be reduce the number of bubbles in the instruction
pipeline.
Took the opportunity to re-indent the macros.
Whether events come from the main loop source or from
clutter_x11_handle_event(), we need to feed them to the backend
virtual handle_event function. This fixes problems with clients
using clutter_x11_handle_event() hanging because
GLXBufferSwapComplete events aren't received.
http://bugzilla.openedhand.com/show_bug.cgi?id=2101
When uploading texture data the cogl-texture-2d-sliced backend was
using _cogl_texture_prepare_for_upload to create a bitmap suitable for
upload but then it was using the original bitmap instead of the new
bitmap for the data. This was causing any format conversions performed
by cogl_texture_prepare_for_upload to be ignored.
http://bugzilla.openedhand.com/show_bug.cgi?id=2059
In commit abe91784c4 I changed cogl-texture so that it would use the
OpenGL mechanism to specify a different internal texture format from
the image format so that it can do the conversion instead of
Cogl. However under GLES the internal format and the image format must
always be the same and it only supports a limited set of formats. This
patch changes _cogl_texture_prepare_for_upload so that it does the
conversion using the cogl bitmap code when compiling for GLES.
http://bugzilla.openedhand.com/show_bug.cgi?id=2059
There was a check at the bottom of the loop which sets up the state
for each of the layers so that it would break from the loop when the
maximum number of layers is reached. However after doing this it would
not increment 'i'. 'i' is later used to disable the remaining layers
so it would end up disabling the last layer it just set up.
This patch moves the check to be part of the loop condition so that
the check is performed after incrementing 'i'.
http://bugzilla.openedhand.com/show_bug.cgi?id=2064
The warning displayed when too many layers are used had an off-by-one
error so that it would display even if exactly the maximum number is
used. There was also a missing space at the end of the line in the
message which looked wrong when displayed on the terminal.
http://bugzilla.openedhand.com/show_bug.cgi?id=2064
The ClutterCrossingEvent data structure contains the coordinates
of the crossing; they are regularly filed out by Clutter and by
the backend event processing code. And yet clutter_event_get_coords()
returns (0, 0) because it thinks that CLUTTER_ENTER and CLUTTER_LEAVE
events do not have coordinates.
Whenever we are warning inside ClutterActor we prefer the actor's name
to its type, if the name is set. The current code is made less readable
by the use of the ternary operator:
priv->name != NULL ? priv->name : G_OBJECT_TYPE_NAME (self)
This looks like a job for a simple convenience function.
cogl_path_arc_rel was never in any public headers so it isn't part of
the public API. It also has a slightly inconsistent name because the
rest of the relative path functions are called cogl_path_rel_*. This
patch makes it static for now to make it more obvious that it isn't
public. The name has changed to _cogl_path_rel_arc.
Timers and counters might not exist, so make every section of the
profile report depend on the object that it is querying.
This fixes the profile report generation that was broken by commit
8146d8d08d.
For internal use we should have a get_stage_internal() variant that
avoids type checks and calls to public functions. The implementation
is trivial enough, and it will avoid (scene graph depth + 1) type
checks and (scene graph depth) function calls.
If a path is copied and then appended to, the copy needs to have the
last sub path truncated so that it fits in the total path size in case
the original path was modified. However the path size check was broken
so if the copied path had more than one sub path it would fail.
Previously the clip stack code was trying to detect when the
orientation of the on-screen rectangle had changed by checking if the
order of the y-coordinates on the left edge was different from the
order the x-coordinates on the top edge. This doesn't work for some
rotations which was causing the clip planes to clip the wrong side of
the line. This patch makes it detect the orientation by calculating
the signed area which is a standard computer graphics algorithm.
http://bugzilla.openedhand.com/show_bug.cgi?id=2079
When drawing a path with only a single sub path, Cogl uses the
'even-odd' fill rule which means that if a part of the path intersects
with another part then the intersection would be inverted. However
when combining sub paths it treats them as separate paths and then
unions them together. This doesn't match the semantics of the even-odd
rule in SVG and Cairo. This patch makes it so that a new sub path is
just drawn as another triangle fan so that it will continue to invert
the stencil buffer. This is also much simpler and more efficient as
well as being more correct.
http://bugzilla.openedhand.com/show_bug.cgi?id=2088
In commit c0a553163b I changed the format used to read the picking
pixel to COGL_PIXEL_FORMAT_RGB_888 because it was convenient to avoid
the premult conversion. However this broke picking on GLES on some
platforms because for that glReadPixels is only guaranteed to support
GL_RGBA with GL_UNSIGNED_BYTE. Since the last commit cogl_read_pixels
will always use that format but it will end up with a conversion back
to RGB_888. This patch avoids that conversion and avoids the premult
conversion by reading in RGBA_8888_PRE.
http://bugzilla.openedhand.com/show_bug.cgi?id=2057
Under GLES glReadPixels is documented to only support GL_RGBA with
GL_UNSIGNED_BYTE and an implementation specfic format which can be
fetched with glGet, GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES and
GL_IMPLEMENTATION_COLOR_READ_TYPE_OES. This patch makes it always read
using GL_RGBA and GL_UNSIGNED_BYTE and then convert the results if
neccessary.
This has some room for improvement because it doesn't attempt to use
the implementation specific format. Also the conversion is somewhat
wasteful because there are currently no cogl_bitmap_* functions to
convert without allocating a new buffer so it ends up doing an
intermediate copy.
http://bugzilla.openedhand.com/show_bug.cgi?id=2057
_cogl_bitmap_convert_format_and_premult was failing when converting
from RGBA to RGB and vice versa. _cogl_bitmap_fallback_convert
converts without altering the premult status so when choosing a new
format it would copy over the premult bit. However, it did this
regardless of whether the new format had an alpha channel so when
converting from RGBA_8888_PRE to RGB_888 it would end up inventing a
new meaningless format which would be RGB_888_PRE. This patch makes it
avoid copying the premult flag if the destination has no alpha. It
doesn't matter if it copies when the source format has no alpha
because it will always be unset.
_cogl_bitmap_convert_format_and_premult was also breaking when
converting from RGBA_8888_PRE to RGB_888 because it would think
RGB_888 is unpremultiplied and try to convert but then
_cogl_bitmap_fallback_premult wouldn't know how to do the conversion.
http://bugzilla.openedhand.com/show_bug.cgi?id=2057
In 125bded81 some comments were introduced to ClutterTexture
complaining that it can have a Cogl texture before being
realized. Clutter always assumes that the single GL context is current
so there is no need to wait until the actor is realized before setting
a texture. This patch replaces the comments with clarification that
this should not be a problem.
The patch also changes the documentation about the realized state in
various places to clarify that it is acceptable to create any Cogl
resources before the actor is realized.
http://bugzilla.openedhand.com/show_bug.cgi?id=2075
Instead of simply aborting we now print out a warning, when a spurious
GLX_BufferSwapComplete event is handled since it seems that people are
coming across the problem (perhaps due to a buggy driver) and making
apps crash in this situation is a bit extreme.
ClutterCairoTexture now stores the surface image data in a Cogl pixel
buffer object. When clutter_cairo_texture_create is called the buffer
is mapped and a new Cairo surface is created to render directly to the
PBO. When the surface is destroyed the buffer is unmapped and a Cogl
texture is recreated from the buffer. This should enable slightly
faster uploads when using Cairo because it avoids having to copy the
surface data to the texture.
http://bugzilla.openedhand.com/show_bug.cgi?id=1982
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Currently, each ClutterText caches 3 Pango layouts:
» one for the preferred, unbounded width
» one for the preferred height for a given width
» one for the allocated size
Some layout managers do a double pass that could flush the whole cache
before it has a chance of actually storing relevant data, resulting in
a continuous series of misses.
We can try to counteract this by doubling the size of the cache, from
three slots to six. More than six would be pointless, as well as too
memory consuming; but we might get down to a number between 3 and 6 at
any later point.
By comparing the requested size against the computed sized for existing
Pango layouts we can avoid creating layouts where the requested size
matches that of a previously computed one.
In particular this optimisation means that when working with a fixed
positioning based layout (with no constraints on the size of the
ClutterText) the same PangoLayout can be used to calculate the preferred
width, height and also the layout used for the actual painting.
http://bugzilla.openedhand.com/show_bug.cgi?id=2078
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
This adds three new internal API functions which can be used to retain
the clip stack state and restore it later:
_cogl_get_clip_stack
_cogl_set_clip_stack
_cogl_clip_stack_copy
The functions are currently internal and not yet used but we may want
to make them public in future to replace the cogl_clip_stack_save()
and cogl_clip_stack_restore() APIs.
The get function just returns the handle to the clip stack at the top
of the stack of stacks and the set function just replaces it.
The copy function makes a cheap copy of an existing stack by taking a
reference to the top stack entry. This ends up working like a deep
copy because there is no way to modify entries of a stack but it
doesn't actually copy the data.
CoglClipStackState has now been renamed to CoglClipState and is moved
to a separate file. CoglClipStack now just maintains a stack and
doesn't worry about the rest of the state. CoglClipStack sill contains
the code to flush the stack to GL.
When glScissor is called it needs to pass coordinates in GL's
coordinate space where the origin is the bottom left. Previously this
conversion was done before storing the window rect in the clip
stack. However this might make it more difficult if we want to be able
to grab a handle to a clip stack and use it in different circumstances
later. This patch moves the coordinate conversion to inside the clip
state flushing code.
The stack is now stored as a list of reference counted entries.
Instead of using a GList, each entry now contains a link with a
reference to its parent. The idea is that this would allow copying
stacks with a shared ancestry.
Previously the code flushed the state by finding the bottom of the
stack and then applying each entry by walking back up to the top. This
is slightly harder to do now because the list is no longer
doubly-linked. However I don't think it matters which order the
entries are applied so I've just changed it to apply them in reverse
order.
There was also a restriction that if ever the stencil buffer is used
then we could no longer use clip planes for any subsequent entries. I
don't think this makes sense because it should always work as long as
it doesn't attempt to use the clip planes more than once. I've
therefore removed the restriction.
The Actor's long description is a bit cluttered; it contains a section
on the actor's box semantics, on the transformation order and on the
event handling.
We should use <refsect2> tags to divide the Actor's description into
logically separated sections.
We should also add a section about the custom Scriptable properties that
ClutterActor defines, and the special handling of unit-based properties.
The CoglAtlasTexture struct was not being freed in
_cogl_atlas_texture_free so there would be a small leak whenever a
texture was destroyed.
Thanks to Robert Bragg for spotting this.
CoglMaterial now sets GL_CLAMP_TO_EDGE if WRAP_MODE_AUTOMATIC is used
unless it is overridden when the material is flushed. The primitives
are still expected to expose repeat semantics so no user visible
changes are made. The idea is that drawing non-repeated textures is
the most common case so if we make clamp_to_ege the default then we
will reduce the number of times we have to override the
material. Avoiding overrides will become important if the overriding
mechanism is replaced with one where the primitive is expected to copy
the material and change that instead.
Previously, Cogl's texture coordinate system was effectively always
GL_REPEAT so that if an application specifies coordinates outside the
range 0→1 it would get repeated copies of the texture. It would
however change the mode to GL_CLAMP_TO_EDGE if all of the coordinates
are in the range 0→1 so that in the common case that the whole texture
is being drawn with linear filtering it will not blend in edge pixels
from the opposite sides.
This patch adds the option for applications to change the wrap mode
per layer. There are now three wrap modes: 'repeat', 'clamp-to-edge'
and 'automatic'. The automatic map mode is the default and it
implements the previous behaviour. The wrap mode can be changed for
the s and t coordinates independently. I've tried to make the
internals support setting the r coordinate but as we don't support 3D
textures yet I haven't exposed any public API for it.
The texture backends still have a set_wrap_mode virtual but this value
is intended to be transitory and it will be changed whenever the
material is flushed (although the backends are expected to cache it so
that it won't use too many GL calls). In my understanding this value
was always meant to be transitory and all primitives were meant to set
the value before drawing. However there were comments suggesting that
this is not the expected behaviour. In particular the vertex buffer
drawing code never set a wrap mode so it would end up with whatever
the texture was previously used for. These issues are now fixed
because the material will always set the wrap modes.
There is code to manually implement clamp-to-edge for textures that
can't be hardware repeated. However this doesn't fully work because it
relies on being able to draw the stretched parts using quads with the
same values for tx1 and tx2. The texture iteration code doesn't
support this so it breaks. This is a separate bug and it isn't
trivially solved.
When flushing a material there are now extra options to set wrap mode
overrides. The overrides are an array of values for each layer that
specifies an override for the s, t or r coordinates. The primitives
use this to implement the automatic wrap mode. cogl_polygon also uses
it to set GL_CLAMP_TO_BORDER mode for its trick to render sliced
textures. Although this code has been added it looks like the sliced
trick has been broken for a while and I haven't attempted to fix it
here.
I've added a constant to represent the maximum number of layers that a
material supports so that I can size the overrides array. I've set it
to 32 because as far as I can tell we have that limit imposed anyway
because the other flush options use a guint32 to store a flag about
each layer. The overrides array ends up adding 32 bytes to each flush
options struct which may be a concern.
http://bugzilla.openedhand.com/show_bug.cgi?id=2063
GL supports setting different wrap modes for the s, t and r
coordinates so we should design the backend interface to support that
also. The r coordinate is not currently used by any of the backends
but we might as well have it to make life easier if we ever add
support for 3D textures.
http://bugzilla.openedhand.com/show_bug.cgi?id=2063
CoglColor and CoglMatrix have public declarations with private members
so that we are free to change the implementation but the structures
could still be allocated on the stack in applications. However it's
quite easy not to realise the members are private and then access them
directly. This patch wraps the members in a macro which redefines the
symbol name when including the header outside of the clutter source.
http://bugzilla.openedhand.com/show_bug.cgi?id=2065
The xx, yx, zx etc fields are meant to be read-only but they were
marked as private with the gtk-doc annotation. This patch moves the
private marker so that the 16 float member fields are public but the
type, inverted matrix, flags and padding are not.
When emitting signals, one can mark arguments as being "static", ie an
indication this argument will not change during the signal emission.
This allows the signal marshalling code to create static GValues, in
this case not to copy the Color.
http://bugzilla.openedhand.com/show_bug.cgi?id=2073
We decide whether the paint() should be a real paint or a paint in pick
mode depending on the global pick_mode value. Using G_UNLIKELY() on an
operation that most likely is going to be executed once every frame is
going to blow a lot of cache lines and frak with the CPU branch
prediction. Not good.
This adds three new API calls:
CoglHandle cogl_path_get()
void cogl_path_set(CoglHandle path)
CoglHandle cogl_path_copy(CoglHandle path)
All of the fields relating to the path have been moved from the Cogl
context to a new CoglPath handle type. The cogl context now just
contains a CoglPath handle. All of the existing path commands
manipulate the data in the current path handle. cogl_path_new now just
creates a new path handle and unrefs the old one.
The path handle can be stored for later with cogl_path_get. The path
can then be copied with cogl_path_copy. Internally it implements
copy-on-write semantics with an extra optimisation that it will only
copy the data if the new path is modified, but not if the original
path is modified. It can do this because the only way to modify a path
is by appending to it so the copied path is able to store its own path
length and only render the nodes up to that length. For this to work
the copied path also needs to keep its own copies of the path extents
because the parent path may change these by adding nodes.
The clip stack now uses the cogl_path_copy mechanism to store paths in
the stack instead of directly copying the data. This should save some
memory and processing time.
Although cogl_multiply_matrix was consistent with OpenGL, after further
consideration it was agreed that cogl_transform is a better name. Given
that it's in the global cogl_ namespace cogl_transform seems more self
documenting.
This adds an example of how to setup a Clutter style 2D coordinate space
and clarifies what state is owned by a framebuffer. (projection,
modelview, viewport and clip stack)
When we expose more cogl_framebuffer API this example will hopefully be
migrated into a more extensive introduction to using framebuffers.
Previously cogl_set_source and cogl_set_source_texture were in
cogl-material.c and the cogl_set_source_color* funcs were in
cogl-color.c. Originally this was because cogl.c was duplicated between
the GL and GLES backends and we didn't want to add to the amount of
duplicated code, but these files have since been consolidated into one
cogl.c.
Quite often it's desirable to be able to multiply the current modelview
matrix by an arbitrary matrix. Currently though you have to first
explicitly call cogl_get_modelview_matrix to get the current modelview
into a temporary variable, then you need to multiply it with your matrix
using cogl_matrix_multiply and finally use cogl_set_modelview_matrix to
make the result be the new modelview. This new convenience function lets
more efficiently skip the first get and last set steps.
Every now and then someone sees the cogl_enable API and gets confused,
thinking its public API so this renames the symbol to be clear that it's
is an internal only API.
ClutterX11TexturePixmap calls get_allocation_box() when queueing a
clipped redraw. If the allocation is not valid, and if we queue a
lot of redraws in response to a series of damage events, the net
result is that we spend all our time in a re-layout. We can
short-circuit this by checking if the actor has a valid allocation, and
if not, just queue a redraw - the actor will be allocated by the time it
is going to be painted.
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Add clutter_actor_has_allocation(), a method meant to be used when
deciding whether to call clutter_actor_get_allocation_box() or any
of its wrappers.
The get_allocation_box() method will, in case the allocation is invalid,
perform a costly re-allocation cycle to ensure that the returned box
is valid. The has_allocation() method is meant to be used if we have an
actor calling get_allocation_box() from outside the place where the
allocation is always guaranteed to be valid.
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Added new "homogeneous" mode to ClutterBoxLayout, that makes layout children
get all the same size.
This is heavily inspired in the "homogeneous" attribute available in GtkBox,
but simplified as we don't have padding nor borders in box layout, only
spacing.
Also added to test-box-layout a key to set/unset homogeneous mode.
* Coding style fixes.
* Added proper test for homogeneous mode in box layout.
* Fix in homogeneous mode.
http://bugzilla.openedhand.com/show_bug.cgi?id=2034
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Somebody somewhere decided it would be ok to define 'y1' as a global
function in math.h thus condemning us to repeatedly making commits to
fix these obnoxious compiler warnings about aliasing.
glXSwapIntervalSGI only affects buffer swaps to the
current GLX drawable.
That means that calling it once in clutter_backend_glx_get_features
isn't sufficent, so set it up in clutter_backend_glx_ensure_context to
make sure it affects buffer swaps for the current drawable.
http://bugzilla.openedhand.com/show_bug.cgi?id=2044
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Move the size check after the NULL check, add the clip height into the
check logic and fix up the comment.
http://bugzilla.openedhand.com/show_bug.cgi?id=2040
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
When printing out the property value during a ClutterScript debug run we
generate the value's content using g_strdup_value_contents() - though we
do it unconditionally. The contents might not be printed (they most
likely won't, actually) and will be freed afterwards. This is
unnecessary: we can allocate the contents string after checking if we're
going to print out the debug note, thus avoiding the whole
allocation/free cycle unless strictly needed.
When setting up the state for a layer, we need to switch texture
units before we do anything that might bind the texture, or
we'll bind the wrong texture to the previous unit.
http://bugzilla.openedhand.com/show_bug.cgi?id=2033
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
* Add new clutter_geometry_union(), because writing union intersection
is harder than it looks. Fixes two problems with the inline code in
clutter_stage_glx_add_redraw_clip().
1) The ->x and ->y of were reassigned to before using them to
compute the new width and height.
2) since ClutterGeometry has unsigned width, x + width is unsigned,
and comparison goes wrong if either rectangle has a negative
x + width. (We fixed width for GdkRectangle to be signed for GTK+-2.0,
this is a potent source of bugs.)
* Use in clutter_stage_glx_add_redraw_clip()
* Account for the case where the incoming rectangle is empty, and don't
end up with the stage being entirely redrawn.
* Account for the case where the stage already has a degenerate
width and don't end up with redrawing only the new rectangle and not
the rest of the stage.
The better fix here for the second two problems is to stop using a 0
width to mean the entire stage, but this should work for now.
http://bugzilla.openedhand.com/show_bug.cgi?id=2040
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
We need to set up the rowstride and alignment properly in
CoglTexture2D before reading texture data.
http://bugzilla.openedhand.com/show_bug.cgi?id=2036
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
If you forgot to call clutter_init() then you currently end up with a
warning saying that the stage cannot be initialized because the backend
does not support multiple stages. Clearly not useful.
We can catch some of the missing initialization in the features API,
since we will likely end up asking for a feature at some point.
We kind of assume that stuff will break well before during the
ClutterBackend::create_context() implementation if we fail to create a
GL context. We do, however, have error reporting in place inside the
Backend API to catch those cases. Unfortunately, since we switched to
lazy initialization of the Stage, there can be a case of GL context
creation failure that still leads to a successful initialization - and a
segmentation fault later on. This is clearly Not Good™.
Let's try to catch a failure in all the places calling create_context()
and report back to the user the error in a meaningful way, before
crashing and burning.
If you call get_n_columns() during the instance initialization phase but
before set_name()/set_types() have been called, you'll get a (guint) -1.
This is less than ideal.
If columns haven't been initialized we should just return 0, which was
the intent of the API since the beginning.
Based on a patch by: Bastian Winkler <buz@netbuz.org>
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
The int storage, and the initial value of -1, is used as a guard when
subclassing ClutterListModel to allow the sub-class to call
clutter_model_set_names() and clutter_model_set_types().
This reverts commit c274118a8f.
This makes it more likely consumers notice invalid unreferences.
GObject has the same assertion.
http://bugzilla.openedhand.com/show_bug.cgi?id=2029
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
clutter_model_get_n_columns is supposed to return a guint, so the
n_columns field needs to be a guint with the initial value set to 0.
http://bugzilla.openedhand.com/show_bug.cgi?id=2017
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
When entering cogl_texture_2d_new_from_bitmap the internal format can
be COGL_PIXEL_FORMAT_ANY. This was causing _cogl_texture_2d_can_create
to use an invalid GL format type. Mesa apparently ignores this but it
was causing errors when Cogl is compiled with debugging under NVidia.
http://bugzilla.openedhand.com/show_bug.cgi?id=2026
Add a return result from CoglTexture.transform_quad_coords_to_gl(),
so that we can properly determine the nature of repeats in
the face of GL_TEXTURE_RECTANGLE_ARB, where the returned
coordinates are not normalized.
The comment "We also work out whether any of the texture
coordinates are outside the range [0.0,1.0]. We need to do
this after calling transform_coords_to_gl in case the texture
backend is munging the coordinates (such as in the sub texture
backend)." is disregarded and removed, since it's actually
the virtual coordinates that determine whether we repeat,
not the GL coordinates.
Warnings about disregarded layers are used in all cases where
applicable, including for subtextures.
http://bugzilla.openedhand.com/show_bug.cgi?id=2016
Signed-off-by: Neil Roberts <neil@linux.intel.com>
Fix clutter initialisation if argb visuals are enabled, setting a border
color on creating the dummy window. This should avoid BadMatch happening
when the depth of the root window visual is not the same of the depth
of the argb visual.
http://bugzilla.openedhand.com/show_bug.cgi?id=2011
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Backport of the upstream JSON-GLib commit that improved the strictness
of JsonParser.
The original upstream commit is:
29881f03468db08bfb404cfcd5b61b4cdc419a87
In _cogl_texture_2d_sliced_foreach_sub_texture_in_region(), don't
assert that the target is GL_TEXTURE_2D; instead conditionalize
normalization on the target.
http://bugzilla.openedhand.com/show_bug.cgi?id=2015
If the EGL context is already created then we shouldn't try to create
another one. This was causing problems where one context would be
created from calling _clutter_feature_init and the other was created
from _clutter_backend_get_features. Cogl would set up its state using
the first context and then assume the state was still valid when the
second context became used so blending was not working correctly.
http://bugzilla.openedhand.com/show_bug.cgi?id=2020
The documentation and name of the get_transformation_matrix function
implies that 'matrix' is purely an out parameter. However it wasn't
initializing the matrix before calling the 'apply_transform' virtual
so it was basically just a wrapper for the virtual. The virtual
assumes the matrix parameter is in/out and applies the actor's
transformation on top of any existing transformations. This causes
unexpected semantics that are inconsistent with the documentation.
This changes clutter_glx_texture_pixmap_update_area so it defers the
call to glXBindTexImageEXT until our pre "paint" signal handler which
makes clutter_glx_texture_pixmap_update_area cheap to call.
The hope is that mutter can switch to reporting raw damage updates to
ClutterGLXTexturePixmap and we can use these to queue clipped redraws.
A new (internal only currently) API, _clutter_actor_queue_clipped_redraw
can be used to queue a redraw along with a clip rectangle in actor
coordinates. This clip rectangle propagates up to the stage and clutter
backend which may optionally use the information to optimize stage
redraws. The GLX backend in particular may scissor the next redraw to
the clip rectangle and use GLX_MESA_copy_sub_buffer to present the stage
subregion.
The intention is that any actors that can naturally determine the bounds
of updates should queue clipped redraws to reduce the cost of updating
small regions of the screen.
Notes:
» If GLX_MESA_copy_sub_buffer isn't available then the GLX backend
ignores any clip rectangles.
» queuing multiple clipped redraws will result in the bounding box of
each clip rectangle being used.
» If a clipped redraw has a height > 300 pixels then it's promoted into
a full stage redraw, so that the GPU doesn't end up blocking too long
waiting for the vsync to reach the optimal position to avoid tearing.
» Note: no empirical data was used to come up with this threshold so
we may need to tune this.
» Currently only ClutterX11TexturePixmap makes use of this new API. This
is done via a new "queue-damage-redraw" signal that is emitted when
the pixmap is updated. The default handler queues a clipped redraw
with the assumption that the pixmap is being painted as a rectangle
covering the actors transformed allocation. If you subclass
ClutterX11TexturePixmap and change how it's painted you now also
need to override the signal handler and queue your own redraw.
Technically this is a semantic break, but it's assumed that no one
is currently doing this.
This still leaves a few unsolved issues with regards to optimizing sub
stage redraws that need to be addressed in further work so this can only
be considered a stepping stone a this point:
» Because we have no reliable way to determine if the painting of any
given actor is being modified any optimizations implemented using
_clutter_actor_queue_redraw_with_clip must be overridable by a
subclass, and technically must be opt-in for existing classes to avoid
a change in semantics. E.g. consider that a user connects to the paint
signal for ClutterTexture and paints a circle instead of a rectangle.
In this case any original logic to queue clipped redraws would be
incorrect.
» Currently only the implementation of an actor has enough information
with which to queue clipped redraws. E.g. It is not possible for
generic code in clutter-actor.c to queue a clipped redraw when hiding
an actor because actors have no way to report a "paint box". (remember
actors can draw outside their allocation and actors with depth may
also be projected outside of their allocation)
» The current plan is to add a actor_class->get_paint_cuboid()
virtual so actors can report a bounding cube for everything they
would draw in their current state and use that to queue clipped
redraws against the stage by projecting the paint cube into stage
coordinates.
» Our heuristics for promoting clipped redraws into full redraws to
avoid blocking the GPU while we wait for the vsync need improving:
» vsync issues aren't relevant for redirected/composited applications
so they should use different heuristics. In this case we instead
need to trade off the cost of blitting when using glXCopySubBuffer
vs promoting to a full redraw and flipping instead.
commit 511e5ceb51 accidentally removed the #ifdef COGL_ENABLE_DEBUG
guards around the "cogl-debug" and "cogl-no-debug" cogl_args[] which
this patch restores.
The FlowLayout fails to provide a preferred size in case no sizing is
specified on one axis. It should, instead, have the preferred size of
the sum of its children, depending on the orientation property.
http://bugzilla.openedhand.com/show_bug.cgi?id=2013
Some EGL drivers for embedded devices require a specific framebuffer
device to be opened and passed to eglCreateWindowSurface(). Since it's
optional, we can provide an environment variabled called
CLUTTER_FB_DEVICE that can be used to specify the path of the device
to be opened.
http://bugzilla.openedhand.com/show_bug.cgi?id=1997
Update the EGL native framebuffer backend to be 1.2-ready:
» create the EGL context and the surface inside the create_context()
implementation so that a context is always available
» simplify the StageWindow implementation
» clean up old code
http://bugzilla.openedhand.com/show_bug.cgi?id=1997
Just like _cogl_texture_2d_new_with_size(),
_cogl_texture_2d_new_from_bitmap() needs to check if an unsliced
texture can be created at the given size, or if hardware
limitations prevent this.
http://bugzilla.openedhand.com/show_bug.cgi?id=2014
Signed-off-by: Neil Roberts <neil@linux.intel.com>
cogl_read_pixels() no longer asserts that the format passed in is
RGBA_8888 but instead accepts any format. The appropriate GL enums for
the format are passed to glReadPixels so OpenGL should be perform a
conversion if neccessary.
It currently assumes glReadPixels will always give us premultiplied
data. This will usually be correct because the result of the default
blending operations for Cogl ends up with premultiplied data in the
framebuffer. However it is possible for the framebuffer to be in
whatever format depending on what CoglMaterial is used to render to
it. Eventually we may want to add a way for an application to inform
Cogl that the framebuffer is not premultiplied in case it is being
used for some special purpose.
If the requested format is not premultiplied then Cogl will convert
it. The tests have been changed to read the data as premultiplied so
that they won't be affected by the conversion. Picking in Clutter has
been changed to use COGL_PIXEL_FORMAT_RGB_888 because it doesn't need
the alpha component. clutter_stage_read_pixels is left unchanged
because the application can't specify a format for that so it seems to
make most sense to store unpremultiplied values.
http://bugzilla.openedhand.com/show_bug.cgi?id=1959
* stage-min-size-rework:
docs: Update minimum size accessors
actor: Use the TOPLEVEL flag instead of a type check
[stage] Use min-width/height props for min size
The clutter-profile.c print_report() code would crash if no stats had
been gathered because uprof would return NULL for the "Redrawing" timer
which we then dereferenced.
This changes the code to start by checking for the "Mainloop",
"Redrawing" and "Do Pick" timers and if none are present it returns
immediately without generating any report.
Since using addresses that might change is something that finally
the FSF acknowledge as a plausible scenario (after changing address
twice), the license blurb in the source files should use the URI
for getting the license in case the library did not come with it.
Not that URIs cannot possibly change, but at least it's easier to
set up a redirection at the same place.
As a side note: this commit closes the oldes bug in Clutter's bug
report tool.
http://bugzilla.openedhand.com/show_bug.cgi?id=521
There is no need for us to check for low-level functions and header
files, especially since we haven't been checking the results until
now. This makes cross-compiling slightly more bearable.
If the actor is an internal child of another actor then we should call
unparent() when destroying it, like clutter_actor_reparent() does;
otherwise we'll leak the actor, since the parent holds a reference to
it.
http://bugzilla.openedhand.com/show_bug.cgi?id=2009
Instead of shadowing these properties with different properties with the
same names on stage, actually use them. Behaviour should be identical,
except the minimum stage size can now be enforced by setting the
min-width/height properties as well as using the set_minimum_size
function.
If we do not unset the Stage we will have stale data, and the Crossing
event when re-entering a Stage will not be emitted, as the actor under
the pointer might be the same as before.
This adds a COGL_INDICES_TYPE_UNSIGNED_INT enum value so that unsigned
ints can be used with cogl_vertex_buffer_indices_new. Unsigned ints
are not supported in core on GLES so a feature flag has also been
added to advertise this. GLES only sets the feature if the
GL_OES_element_index_uint extension is available. It is an error to
call indices_new() with unsigned ints unless the feature is
advertised.
http://bugzilla.openedhand.com/show_bug.cgi?id=1998
Allow a ClutterModel to be constructed through the ClutterScript API.
Currently this allows a model to be generated like like this:
{
"id" : "test-model",
"type" : "ClutterListModel",
"columns" : [
[ "text-column", "gchararray" ],
[ "int-column", "gint" ],
[ "actor-column", "ClutterRectangle" ]
]
}
where 'columns' is an array containing arrays of column-name,
column-type pairs.
http://bugzilla.openedhand.com/show_bug.cgi?id=2007
The code has gotten really complicated to follow.
As soon as we have a sync-to-vblank mechanism we should just bail out.
Also, __GL_SYNC_TO_VBLANK (which is used by nVidia) should be assumed
equivalent to a CLUTTER_VBLANK_GLX_SWAP.
We should explain what a "key frame" is for ClutterAnimator, possibly
with some sort of visual cue.
This allows me to demonstrate my poor skills at using Inkscape, as well
as my overall bad taste for graphics design.
The top-level types list was comically out of date, and it was only
determining whether the type we were constructing was initially unowned
or a full object. We can safely replace it with a simple type check.
It would be useful to be able to share the Timeline across different
animator instances, or with different animation constructs. Also this
allows sharing definitions of Timelines in ClutterScript.
The arguments for remove_key() can be NULL, but there is an extraneous
assertion that fails if they are. The pre-conditions should match the
documentation, in this case.
A sub-class of ClutterBox might add ChildMeta support, and since
pack_at() does not go through clutter_container_add_actor(), we
need to manually call the create_child_meta() ourselves.
It is conceivable that Container implementations might add children
outside of the Container::add() implementation - e.g. for packing at
a specific index. Since the addition (and removal) might happen outside
the common path we need to expose all the API that is implicitly called
by ClutterContainer when adding and removing a child - namely the
ChildMeta creation and destruction.
Previously the GLES2 backend needed a special wrapper for
glBindTexture because it needed to know the internal GL format of the
texture in order to correctly implement the GL_MODULATE texture env
mode. When GL_MODULATE is used then the RGB values are taken from the
previous texture layer rather than being fetched from the
texture. However since the material API was added Cogl no longer uses
the GL_MODULATE texture env mode but instead always uses GL_COMBINE.
Compiling the GLES2 backend broke since the more-texture-backends
branch merge because the cogl_get_internal_gl_format function was
removed and there was one place in GLES2 specific code that was using
this to bind the texture.
The texture layer combine functions are now hard coded to GL_COMBINE
instead of GL_MODULATE. The combine function can be customized with
all the parameters of GL_COMBINE. A shader is generated to implement
the given parameters.
Currently it will try to generate code for the constant color but it
will use a uniform which does not exist.
The GLES2 backend for Cogl is failing to compile because
GL_MAX_TEXTURE_UNITS is not defined. Let's define it and provide a
wrapper which uses GL_MAX_TEXTURE_IMAGE_UNITS or
COGL_GLES2_MAX_TEXTURE_UNITS, whichever is the smallest.
A bogus ClutterInterpolation argument had been carried from
clutter_animator_set_interpolation to clutter_animator_get_interpolation
in copy and paste.
GLib 2.24 (but starting from the 2.23.2 unstable release) added a new
macro for collecting GValues from a va_list.
The newly added G_VALUE_COLLECT_INIT() macro should be used in place
of initializing the GValue and calling G_VALUE_COLLECT(), and improves
the collection performances by avoiding multiple checks, free and
initialization calls.
The installed _HEADERS should be the public ones and the enumeration
types; repeating clutter-x11-texture-pixmap.h breaks with automake 1.11
and doesn't strictly make any sense.
http://bugzilla.openedhand.com/show_bug.cgi?id=2002
When set_container() is called with a NULL container we cannot use the
passed pointer to unset the CLUTTER_ACTOR_NO_LAYOUT flag. We should
store a back pointer to the container as object data (there's no need
to add a Private data structure in this case) and unset the flag on the
back pointer instead.
Previously only ClutterGroup was able to set the CLUTTER_ACTOR_NO_LAYOUT
flag which allows clutter-actor.c to avoid a relayout when showing or
hiding fixed layout containers. Instead of it being the responsibility
of the container to set this flag this patch makes the layout manager
itself decide in the ::set_container method. This way both ClutterBox
and ClutterGroup can take advantage of the optimization.
g_list_insert_sorted inserts the new actor before all others that
compare equal so for the normal case when all actors have depth==0
this has the surprising behaviour of layering the actors in reverse
order. To fix this it now manually inserts the actor in the right
place by searching until it finds an actor at a higher depth and
inserting before that.
http://bugzilla.openedhand.com/show_bug.cgi?id=1988
This reverts commit 939e56e2b1.
Changing the depth sort function to have inconsistent behaviour for
nodes that compare equal breaks the stability of g_list_sort. It ends
up so that every time clutter_container_sort_depth_order is called the
order of all actors with the same depth is reversed.
http://bugzilla.openedhand.com/show_bug.cgi?id=1988
To aid in the debugging of Clutter stage resize issues this adds a
COGL_DEBUG=opengl option that will trace "some select OpenGL calls"
(currently just glViewport calls)
Most Cogl debugging code conditions are marked as G_UNLIKELY with the
intention of having the CPU branch prediction always assume the
path is disabled so having debugging support in release binaries has
negligible overhead.
This patch simply fixes a few cases where we weren't using G_UNLIKELY.
COGL_DEBUG=all wasn't previously useful as there are several options
that change the behaviour of Cogl and all together wouldn't help anyone
debug anything.
This patch makes it so COGL_DEBUG=all|verbose now only enables options
that don't change the behaviour of Cogl, i.e. they only affect the
amount of noise we'll print to a terminal.
In addition to that this patch also improves the output from
COGL_DEBUG=help so we now print a table of options including one liner
descriptions of what each option enables.
Some of the ClutterDebugFlags are not meant as a logging facility: they
actually change Clutter's behaviour at run-time.
It would be useful to have this distinction ratified, and thus split
ClutterDebugFlags into two: one DebugFlags for logging facilities and
another set of flags for behavioural changes.
This split is warranted because:
• it should be possible to do "CLUTTER_DEBUG=all" and only have
log messages on the output
• it should be possible to use behavioural modifiers even on a
Clutter that has been compiled without debugging messages
support
The commit adds two new debugging flags:
ClutterPickDebugFlags - controlled by the CLUTTER_PICK environment
variable
ClutterPaintDebugFlags - controlled by the CLUTTER_PAINT environment
variable
The PickDebugFlags are:
nop-picking
dump-pick-buffers
While the PaintDebugFlags is:
disable-swap-events
The mechanism is equivalent to the CLUTTER_DEBUG environment variable,
but it does not depend on the debug level selected when configuring and
compiling Clutter. The picking and painting debugging flags are
initialized at clutter_init() time.
http://bugzilla.openedhand.com/show_bug.cgi?id=1991
The motion event compression should be affected by the device field of
the event; that is: we should compress motion events coming from the
same device.
If an actor is on the boundary of a Stage and the pointer for a device
enters the Stage over that actor, the sequence of events currently is:
➔ ENTER (source: actor, related: NULL)
➔ MOTION
Thus the Stage never gets an ENTER event. This is a regression from
Clutter 1.0.
The correct sequence is:
➔ ENTER (source: stage, related: NULL)
➔ ENTER (source: actor, related: stage)
➔ MOTION
This also maps to the sequence of events sythesized by Clutter when
leaving the Stage through an actor overlapping the Stage boundary.
http://bugzilla.moblin.org/show_bug.cgi?id=9781
The introduction of the StageManager in 0.8 implied that the first Stage
instance to be created was automatically assigned the status of "default
stage". This was all well and good, since the default stage was created
behind the curtains by the initialization sequence.
Now that the initialization sequence does not create a default stage any
longer, it means that the first stage created using clutter_stage_new()
gets to be the default, and all special and warm and fuzzy - which also
means that the first stage created by clutter_stage_new() cannot be
destroyed or handled as any other stage. Whoopsie.
Let's go back to the old semantics: the stage created by the first
invocation of clutter_stage_get_default() is the default stage, and
nothing else can be set as default. One day we'll be able to break the
API and the whole default stage business will be a thing of the past.
Embedding toolkits should benefit from a proper documentation of
clutter_input_device_update_from_event(): its meaning, its use and
the caveats for the "update_stage" argument.
We now never query the width and height of the given texture object
from OpenGL. The problem is that the user may be creating a Cogl
texture from a texture_from_pixmap object where glTexImage2D was
never called and the texture_from_pixmap spec doesn't clarify that
it's reliable to query the width from OpenGL.
This should address:
http://bugzilla.openedhand.com/show_bug.cgi?id=1502
Thanks to Johan Bilien for reporting
Embedding toolkits most likely will disable the event handling, so all
the input device code will not be executed. Unfortunately, the newly
added synthetic event generation of ENTER and LEAVE event pairs depends
on having input devices.
In order to unbreak things without reintroducing the madness of the
previous code we should allow embedding toolkits to just update the
state of an InputDevice by using the data contained inside the
ClutterEvent. This strategy has two obvious reasons:
• the embedding toolkit is creating a ClutterEvent by translating
a toolkit-native event anyway
• this is exactly what ClutterStage does when processing events
We are, essentially, deferring input device handling to the embedding
toolkits, just like we're deferring event handling to them.
The DeviceManager class should be abstract in Clutter, and implemented
by each backend, as different backends will have different ways to
detect, initialize and list devices; the X11 backend alone has *two*
ways of dealing with devices.
This commit makes DeviceManager an abstract class and delegates the
device initialization and enumeration to per-backend sub-classes.
The responsible for creating the device manager is, obviously, the
backend singleton.
The X11 and Win32 backends have been updated to the new layout; the
Win32 backend has been updated blindly, so it might require additional
testing.
ConfigureNotify is delivered on window movements too, but there is no
need to queue a relayout on these as the viewport hasn't changed size.
Check for the window actually changing size on ConfigureNotify before
queueing a relayout.
This fixes laggy window movement when moving a window in response to
Clutter mouse motion events.
The size and position of the window rectangle for clipping in
try_pushing_rect_as_window_rect is calculated by projecting the
rectangle coordinates. Due to rounding errors, this can end up with
slightly off numbers like 34.999999. These were then being cast
directly to an integer so it could end up off by one.
This uses a new macro called COGL_UTIL_NEARBYINT which is a
replacement for the C99 nearbyint function.
If an actor is lying on the border of the Stage it might miss the LEAVE
event when the pointer of a device leaves the Stage window. Since the
backend is unsetting the Stage back pointer on the InputDevice we can
queue the emission of a LEAVE event on the pointer actor as well.
http://bugzilla.moblin.org/show_bug.cgi?id=9677
As well as manually setting the geometry size, we needed to queue a
relayout. This is what the ConfigureNotify handler would normally do,
but we don't get this event when using a foreign window (obviously).
This should fix resizing in things like gtk-clutter.
If we get into the resize function and it's a foreign window, set the
geometry size so that the allocate will set the backend size and call
glViewport.
Setting/unsetting fullscreen on a mapped or unmapped window now works
correctly.
If you unfullscreen a window that was initially full-screened, it will
unset the fullscreen hint and the WM will likely push the size down to
the largest valid size.
If the window was previously un-fullscreened, Clutter will restore the
previous size.
Fullscreening also now works if the WM switches the hint without the
application's knowledge (as happens when you resize a window to the size
of the screen, for example, with stock metacity).
If FBOs aren't supported then it will end up very slow to reorganize
the atlas. Also currently the CoglTexture2D backend will refuse to
create any textures anyway so the full atlas texture won't be created.
cogl_texture_2d_new may fail in certain circumstances so
cogl_atlas_texture_reserve_space should detect this and also
fail. This will cause cogl_texture_new to fallback to a sliced
texture.
Thanks to Vladimir Ivakin for reporting this problem.
When we resize, we relied on the stage's allocate to re-initialise the
GL viewport. Unfortunately, if we resized within Clutter, the new size
was cached before the window is actually resized, so glViewport wasn't
being called after resizing (some of the time, it's a race condition).
Change the way resizing works slightly so that we only resize when the
geometry size doesn't match our preferred size, and queue a relayout on
ConfigureNotify so the glViewport gets called.
Also change window creation slightly so that setting the size of a
window before it's realized works correctly.
Since the "internal" state is global, it will leak onto actors that you
didn't intend for it to, because it applies not just to the actors you
create, but also to any actors *they* create. Eg, if you have a dialog
box class, you might push/pop_internal around creating its buttons, so
that those buttons get marked as internal to the dialog box. But
ctx->internal_child will still be set during the *button*'s constructor
as well, and so, eg, the label and icon inside the button actor will
*also* be marked as internal children, even if that isn't what the
button class wanted.
The least intrusive change at this point is to make push_internal() and
pop_internal() two methods of the Actor class, and take a ClutterActor
pointer as the argument - thus moving the locality of the internal_child
counter to the Actor itself.
http://bugzilla.openedhand.com/show_bug.cgi?id=1990
The master clock might have a Stage during its destruction phase,
without a StageWindow attached to it. If this happens and we try
to dereference the StageWindow to get its class and call a virtual
function we might experience some slight turbulence and... then...
explode.
http://bugzilla.openedhand.com/show_bug.cgi?id=1987
The signal-swapped-after:: modifier for signal connection inside the
clutter_actor_animate* variadic arguments functions is not mentioned in
the documentation.
In the frenzy of the last 10mins before API freeze, I obviously forgot
to update the OpenGL path for _cogl_buffer_hints_to_gl_enum(). This
commit fixes this.
When the atlas is reorganised we could potentially be moving around
textures that are already referenced in the journal. We therefore need
to flush the journal otherwise they will be rendered with incorrect
texture coordinates. We also need to flush the journal even if we are
not reorganizing so that we can rely on the old texture contents
remaining in the atlas after migrating a texture out.
When creating a Cogl sub-texture, if the full texture is also a sub
texture it will now just offset the x and y and reference the full
texture instead. This avoids one level of indirection when rendering
the texture which reduces the chances of getting rounding errors in
the calculations.
Since get_paint_opacity() recurses through the hierarchy it might lead
to a lot of type checks while we walk the parent-child chain. We can
split the recursive function from the public entry point and perform the
type check just once.
• Remove unused variables.
• Do not pre-initialize ClutterActor's GType; pre-emptive optimizations
like these are more black magic than real optimization.
Remove an useless assignment. The n_expand_children is not used outside
the extra_space check, and if n_expand_children is 0 then the extra
space we allocate is 0.
• Remove one unused variable.
• We ignore the result of get_timeline_internal() so we need to tell
the compiler that - though a better solution would be to split the
timeline implicit creation into its own function.
Do not de-reference a void*; use a temporary variable -- after
checking the contents of the pointer. This actually simplifies
the readability and avoids pulling a Lisp with the parentheses.
The function _cogl_get_max_texture_units is called quite often while
rendering and it returns a constant value so we might as well cache
the result. Calling glGetInteger on Mesa can be expensive because it
flushes a lot of state.
An initial pass over the Cogl source code using the Clang static
analysis tool flagged a few low hanging issues such as un-used variables
or redundant initializing of variables which this patch fixes.
All the cogl_rectangle* APIs normalize their input into into an array of
_CoglMutiTexturedRect rectangles and pass these on to our work horse;
_cogl_rectangles_with_multitexture_coords. The definition of
_CoglMutiTexturedRect had 4 separate float members, x_1, y_1, x_2 and
y_2 which meant for some common cases we were having to copy out from an
array into these members. We are now able to simply point into the users
array avoiding a copy which seems desirable when submiting lots of
rectangles.
This uses the G_GNUC_DEPRECATED macros to mark the
cogl_{texture,vertex_buffer,shader}_ref and unref APIs as deprecated.
Since this flagged that cogl-pango-display-list.c and
clutter-glx-texture-pixmap.c were still using deprecated _ref/_unref
APIs they have now been changed to use the cogl_handle_ref/unref API
instead.
The function prototypes for the primitives API were spread between
cogl-path.h and cogl-texture.h and should have been in a
cogl-primitives.h.
As well as shuffling the prototypes around into more sensible places
this commit splits the cogl-path API out from cogl-primitives.c into
a cogl-path.c
We've had complaints that our Cogl code/headers are a bit "special" so
this is a first pass at tidying things up by giving them some
consistency. These changes are all consistent with how new code in Cogl
is being written, but the style isn't consistently applied across all
code yet.
There are two parts to this patch; but since each one required a large
amount of effort to maintain tidy indenting it made sense to combine the
changes to reduce the time spent re indenting the same lines.
The first change is to use a consistent style for declaring function
prototypes in headers. Cogl headers now consistently use this style for
prototypes:
return_type
cogl_function_name (CoglType arg0,
CoglType arg1);
Not everyone likes this style, but it seems that most of the currently
active Cogl developers agree on it.
The second change is to constrain the use of redundant glib data types
in Cogl. Uses of gint, guint, gfloat, glong, gulong and gchar have all
been replaced with int, unsigned int, float, long, unsigned long and char
respectively. When talking about pixel data; use of guchar has been
replaced with guint8, otherwise unsigned char can be used.
The glib types that we continue to use for portability are gboolean,
gint{8,16,32,64}, guint{8,16,32,64} and gsize.
The general intention is that Cogl should look palatable to the widest
range of C programmers including those outside the Gnome community so
- especially for the public API - we want to minimize the number of
foreign looking typedefs.
OpenGL is an implementation detail for Cogl so it's not appropriate to
expose OpenGL extensions through the Cogl API.
Note: Clutter is currently still using this API, because it is still
doing raw GL calls in ClutterGLXTexturePixmap, so this introduces a
couple of (legitimate) build warnings while compiling Clutter.
This replaces code like this:
if (CLUTTER_ACTOR_IS_VISIBLE (self))
clutter_actor_queue_redraw (self);
with:
clutter_actor_queue_redraw (self);
clutter_actor_queue_redraw internally knows what can be optimized when
the actor is not visible, but it also knows that the queue_redraw signal
must always be sent in case a ClutterClone is cloning a hidden actor.
ClutterGroup::foreach was recently changed (ref: ce030a3fce) to use
g_list_foreach() to iterate the children instead of manually iterating
the list so it would safely handle calls like:
clutter_container_foreach (container, clutter_actor_destroy);
(In this example clutter_actor_destroy will result in the current
list item being iterated being freed.)
There is a lot of duplication between ClutterGroup and ClutterBox so
this makes the two files diff-able so that new fixes can easily be
ported to both and bug fixes missing in one or the other can be spotted
more easily. This doesn't change the behaviour of either actor; it's
really just a shuffle around of code and normalizes the coding style to
make the files comparable.
This has already uncovered one bug in ClutterBox, and also highlights
a bug in ClutterGroup + many other actors:
1) ClutterGroup::real_foreach was recently changed to use
g_list_foreach instead of manually iterating the child list so it can
safely handle calls like:
clutter_container_foreach (container, clutter_actor_destroy);
ClutterBox is still manually iterating the list.
2) In ClutterGroup we guard _queue_redraw() calls like this:
if (CLUTTER_ACTOR_IS_VISIBLE (container))
clutter_actor_queue_redraw (CLUTTER_ACTOR (container));
In ClutterBox we don't:
I think ClutterBox is correct here because
clutter_actor_queue_redraw already optimizes the case where the
actor's not visible, but it also considers that the actor may be
cloned and so the guard in ClutterGroup could break clones. This
actually highlights a wider clutter bug since the same kinds of
guards can be found in all other clutter actors.
The signbit macro is defined in C99 so it should be available but some
versions of GCC don't appear to define it by default. If it's not
available we can use a hack to test the bit directly.
If the stage associated to the InputDevice is not set we should
short-circuit out and return NULL. This will result in a pick()
done on the event's stage - if applicable.
http://bugzilla.moblin.org/show_bug.cgi?id=9602
Instead of returning a sub-pixel height round up the preferred height to
the nearest integral value that is not less than the size reported by
Pango, once converted in pixels.
This fixes some backwards logic for asserting that we have a GLX major
version == 1 and a minor version >= 2. (NB: Although we technically
depend on GLX 1.3 features, we still have to support drivers that report
GLX 1.2 because there are a lot of mesa drivers out there incorrectly
report GLX 1.2 even though they export extensions that depend on GLX
1.3)
A material layer can not be considered equal if it is using different
texture filtering modes. This was causing problems where rectangles
with different filters would end up batched together and then rendered
with the wrong filter mode.
If your OpenGL driver supports GLX_INTEL_swap_event that means when
glXSwapBuffers is called it returns immediatly and an XEvent is sent when
the actual swap has finished.
Clutter can use the events that notify swap completion as a means to
throttle rendering in the master clock without blocking the CPU and so it
should help improve the performance of CPU bound applications.
Some extensions only support GLX versions > 1.3 and may not support
old style X Windows as GLXDrawables, so we now create GLXWindows for
stages when possible.
Commit d2bdd3cb62 fixed some compiler warnings but also broke the
ability to create a stage. Although not having warnings from the
compiler is nice, it is also nice to be able to create a stage so lets
not invert the meaning of the error check.
The function modifies the pixels pointed by p in-place so the pointer
can not be constant. The compiler was accepting this because the
modification is done from inline assembler.
_cogl_texture_driver_gen is needed to set the texture minification
mode to Cogl's default of GL_LINEAR. There was also a line to set this
in _cogl_texture_2d_new_with_size but it wasn't working because it was
called *before* the texture was bound. If the texture was later
rendered with the default material it then it would end up with GL's
default mipmap filtering mode but without mipmaps so it would render
white squares instead.
This adds a fast path for premultiplying an RGBA image using SSE2
instructions. SSE registers are 128-bit and we need at least 16-bits
per component for the intermediate result of the multiplication so we
can do two pixels in parallel with one register. The function
interleaves 2 SSE registers to multiply 4 pixels in one function call
with the hope that this will pipeline better.
http://bugzilla.openedhand.com/show_bug.cgi?id=1939
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
• Add the function name in the warning, since the text is the same in
both clutter_actor_raise() and clutter_actor_lower().
• If an actor has a name then prefer it to the type name.
OpenGL ES has no PBO extension, so we fallback to using a malloc'ed
buffer. Make sure the OpenGL-only defines don't leak into the OpenGL ES
compilation.
First, let's add a new public feature called, surprisingly,
COGL_FEATURE_PBOS to check the availability of PBOs and provide a
fallback path when running on older GL implementations or on OpenGL ES
In case the underlying OpenGL implementation does not provide PBOs, we
need a fallback path (a malloc'ed buffer). The CoglPixelBufer
constructors will instanciate a subclass of CoglBuffer that handles
map/unmap and set_data() with a malloc'ed buffer.
The public feature is useful to check before using set_data() on a
buffer as it will mean doing a memcpy() when not supporting PBOs (in
that case, it's better to create the texture directly instead of using a
CoglBuffer).
The only goal of using COGL buffers is to use them to create
textures. cogl_texture_new_from_buffer() is the new symbol to create
textures out of buffers.
This subclass of CoglBuffer aims at wrapping PBOs or other system
surfaces like DRM buffer objects. Two constructors are available:
cogl_pixel_buffer_new() with a size when you only care about the size of
the buffer (such a buffer can be used to store several texture data such
as the three planes of a I420 frame).
cogl_pixel_buffer_new_full() is more a 1:1 mapping between the data and
an underlying surface, with the possibility of having access to a low
level memory buffer that may have a stride.
Buffer objects are cool! This abstracts the buffer API first introduced
by GL_ARB_vertex_buffer_object and then extended to other objects.
The coglBuffer abstract class is intended to be the base class of all
the buffer objects, letting the user map() buffers. If the underlying
implementation does not support buffer objects (or only support VBO but
not FBO for instance), fallback paths should be provided.
The only way the user has to set the mipmap filters is through the
material/layer API. This API defaults to GL_LINEAR/GL_LINEAR for the max
and min filters. With the main use case of cogl being 2D interfaces, it
makes sense do default to GL_LINEAR for the min filter.
When creating new textures, we did not set any filter on them, using
OpenGL defaults': GL_NEAREST_MIPMAP_LINEAR for the min filter and
GL_LINEAR for the max filter. This will make the driver allocate memory
for the mipmap tree, memory that will not be used in the nominal case
(as the material API defaults to GL_LINEAR).
This patch tries to ensure that the min filter is set to GL_LINEAR
before any glTexImage*() call is done on the texture by setting the
filter when generating new OpenGL handles.
Some GL functions have a return value that the GE() macro is not able to
handle. Let's define a new Ge_RET() macro which will be able to handle
functions such as glMapBuffer().
While at it, removed the unused variadic dots to the GE() macro.
* animator-parser:
docs: Describe the Animation definition syntax
animator: Provide a ClutterScript parser
animator: Allow retrieving type property type from a key
script: Use a node when resolving an animation mode
The whole point of having the Animator class is that the developer can
describe a complex animation using ClutterScript. Hence, ClutterAnimator
should hook into the Script machinery and parse a specific description
format for its keys.
When asking a key for its target value we also ask the developer to pass
in an initialized GValue - but we don't make it easy to know the type of
the GValue. A developer has to ask the GObject class for the GParamSpec
and then initialize the GValue, instead.
Since we know the type of the GValue we should provide a getter for it.
We should also allow developers to throw at us GValue with compatible and
transformable types.
Finally, all the accessors should be constified.
Instead of taking a string and duplicating the "is it a string or an
integer" check in both Alpha and Animation, the function in
ClutterScript that resolves the animation mode values should take a
JsonNode and do all the checks it needs.
When we trashed the contents of the stencil buffer during
_cogl_path_fill_nodes we marked the clip stack state as dirty and expected
the clip stack code would clean up our glStencilFunc state.
The problem is that we only try and update the clip state during
_cogl_journal_init (when we flush the framebuffer state) which is only
called when the journal first gets something logged in it.
To make sure the stencil state is cleaned up we now also flush the journal
so _cogl_journal_init will be called for the next logged rectangle.
If we aren't syncing to vblank or if the last dispatch didn't cause a
redraw then the master clock will try to wait at least a small amount
of time before dispatching again. However if time goes backwards then
it would not do a dispatch until time catches up again. To fix this it
know just runs a dispatch immediately if time goes backwards.
This is related to Moblin bug #3839. There was a similar fix for this
in 9dc012c07, however that only fixed the case where timelines
wouldn't update. If there are no animations running then the master
clock won't even try updating timelines until time catches up.
http://bugzilla.o-hand.com/show_bug.cgi?id=1974
* origin/cwiiis-stage-resize:
[stage-x11] Set the default size differently
[stage] Set default size correctly
Revert "[x11] Don't set actor size on ConfigureNotify"
[x11] Don't set actor size on ConfigureNotify
[stage] Now that get_geometry works, use it
[stage-x11] make get_geometry always get geometry
[stage] Get the current size correctly
[stage] Set minimum width/height to 1x1
[stage] Add set/get_minumum_size
ClutterAnimator is a class for managing the animation of multiple
properties of multiple actors over time with keyframing of values.
The Animator class is meant to be used to effectively describe
animations using the ClutterScript definition format, and to construct
complex implicit animations from the ground up.
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
We want to set the default size without triggering the layout machinary,
so change the window creation process slightly so we start with a
640x480 window.
Due to the way the new sizing works, clutter stage must set its size in
init (to maintain old behaviour) and the properties on the X11 stage
must be initialised to 1x1 so that it actually goes ahead with the
resize.
Fixes stages that aren't user resizable and have no size set from
appearing at 1x1.
Calling clutter_actor_set_size in response to ConfigureNotify makes
setting the size of the stage racy - the most common result of which
seems to be that you can't set the stage dimensions to anything less
than 640x480.
Instead, add a first_allocation bit to the private structure of the X11
stage and force the first resize (necessary or the default stage will be
a 1x1 window).
We want the actual window geometry in clutter_stage_set_minimum_size,
not the set size. Now that the geometry function has been changed to do
what it says, use it.
Now that we have a minimum size getter on the stage object, change
get_geometry to actually always return the geometry. This fixes stages
that are set as user-resizable appearing at 1x1 size.
This will need changing in other back-ends too.
Get the current size of the stage correctly in
clutter_stage_set_minimum_size. The get_geometry StageWindow function is
not equivalent of the current size, use clutter_actor_get_size().
This adds three new texture backends.
- CoglTexture2D: This is a trimmed down version of CoglTexture2DSliced
which only supports a single texture and only works with the
GL_TEXTURE_2D target. The code is a lot simpler so it has a less
overheads than dealing with slices. Cogl will use this wherever
possible.
- CoglSubTexture: This is used to get a CoglHandle to represent a
subregion of another texture. The texture can be used as if it was a
standalone texture but it does not need to copy the resources.
- CoglAtlasTexture: This collects RGB and RGBA textures into a single
GL texture with the aim of reducing texture state changes and
increasing batching. The backend will try to manage the atlas and
may move the textures around to close gaps in the texture. By
default all textures will be placed in the atlas.
There was a typo in getting the height of the full texture to check
whether the sub region fits so that it was using the width
instead. This was causing crashes when debugging is enabled for some
apps.
The reason why we have a dummy, offscreen Window when we create the
GLX context is that GLX does not like it when you ask the context for
features if it's not made current to a Drawable. Maybe in the future
it will allow us to do so, but right now we have to make do with what
GLX offers us.
In cogl_texture_new_from_file we create and own a temporary
bitmap. There's no need to copy this data if we need to do a premult
conversion so instead it just does conversion before passing it on to
cogl_texture_new_from_bitmap.
The Cogl atlas code was using _cogl_texture_prepare_for_upload with a
NULL pointer for the dst_bmp to determine the internal format of the
texture without converting the bitmap. It needs to do this to decide
whether the texture will go in the atlas before wasting time on the
conversion. This use of the function is a little confusing so that
part of it has been split out into a new function called
_cogl_texture_determine_internal_format. The code to decide whether a
premult conversion is needed has also been split out.
Bind ctrl-backspace and ctrl-del to functions that delete a word before
or after the cursor, respectively.
Selection does not affect the deletion, but current selection is
preserved. This mimicks GTK+ functionality in GtkTextView and GtkEntry.
http://bugzilla.openedhand.com/show_bug.cgi?id=1767
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
The SDL API is far too limited for the windowing system needs of
Clutter; the status of the SDL backend was always experimental, and
since the Windows platform is supported by a native backend there is
no point in having the SDL backend around any more.
The Win32 backend now implements the create_context method which
creates a context and binds it to a 1x1 invisible window. That way
there will always be a context bound and the features can be retrieved
without creating the default stage. This reflects the changes in
1c6ffc8..b245d55 to the GLX backend.
Instead of using g_critical() inside the create_context() implementation
of the ClutterBackendGLX we should use the passed GError, so that the
error message can bubble up to the caller.
Instead of creating the default stage during initialization we can
now safely create it whenever clutter_stage_get_default() is called.
To maintain the invariant, the default stage is immediately realized
by Clutter itself.
Since we must guarantee that Cogl has a GL context to query, it is too
late to use the "dummy Window" trick from within the get_features()
virtual function implementation.
Instead, we can create a dummy Window from create_context() itself and
leave it around - basically trading a default stage with a dummy X
window.
We need to have the dummy X window around all the time so that the
GLX context can be selected and made current.
High level toolkits might wish to construct a PangoFontDescription and
then set it directly on a ClutterText actor proxy or sub-class.
ClutterText should have a :font-description property to set (and get)
the PangoFontDescription.
http://bugzilla.openedhand.com/show_bug.cgi?id=1960
Commit 92a375ab4 changed the initial value of max_texcoord_attrib_unit
to -1 so that it could disable the texture coord array for the first
texture unit when there are no texture coords used in the vbo. However
max_texcoord_attrib_unit was an unsigned value so this actually became
G_MAXUINT. The disabling loop at the bottom still worked because
G_MAXUINT+1==0 but the check for whether any texture unit is greater
than max_texcoord_attrib_unit was failing so it would always end up
disabling all texture units. This is now fixed by changing
max_texcoord_attrib_unit to be signed.
The commit ecbb7ce41a exposed some issues
when positioning the cursor with the mouse pointer: the selection is
not moved along with the cursor when inserting a single character or a
string.
Also, some freeze_notify() are called too early, leading to decoupling
from their respective thaw_notify().
http://bugzilla.openedhand.com/show_bug.cgi?id=1955
The documentation for ClutterGroup behaviour when setting an explicit
size is not accurate - or, actually, it was accurate by the time
ClutterGroup was first written but has been neglected in the following
release cycles.
To avoid confusion for new users of Clutter the documentation should be
slightly expanded, mentioning the exact semantics of ClutterGroup with
regards to: preferred size, explicitly set size and how to constrain the
visible area of a ClutterGroup to an explicitly set size.
Based on a patch by: Neil Roberts <neil@linux.intel.com>
When we disable the per-actor events delivery Clutter replicates the X11
implicit soft grab for motion events with off-stage. The implicit grab
is done whenever the pointer of a device leaves a window with a button
still pressed; with the implicit grab in place the window still receives
motion events even after the LeaveNotify - until the button is released.
The implicit grab is not honoured in the per-actor event deliver case,
though, so we have a mismatch between two in theory equivalent cases.
Luckily, the fix is pretty trivial: when we check for a motion event
with a stage set but without an actor set, and that has off-stage
coordinates, we arbitrarily set the source to be the stage of the event
and emit the pointer event.
When deciding if a material layer is equal it now compares the GL
target and texture number if the textures are not sliced. This is
needed to get batching across atlased textures.
Cogl accepts a pixel format for both the data in memory and the
internal format to be used for the texture. If they do not match then
it would convert them using the CoglBitmap functions before uploading
the data. However, GL also lets you specify both formats so it makes
more sense to let GL do the conversion. The driver may need the
texture in a specific format so it may end up being converted anyway.
The cogl_texture_upload_data functions have been removed and replaced
with a single function to prepare the bitmap. This will only do the
premultiplication conversion because that is the only part that GL
can't do directly.
The premult part of _cogl_convert_premult has now been split out as
_cogl_convert_premult_status. _cogl_convert_premult has been renamed
to _cogl_convert_format to make it less confusing. The premult
conversion is now done in-place instead of copying the
buffer. Previously it was copying the buffer once for the format
conversion and then copying it again for the premult conversion. The
premult conversion never changes the size of the buffer so it's quite
easy to do in place. We can also use the separated out function
independently.
The internal format of the atlas texture is still set to the
appropriate format so Cogl will disable blending for textures that are
intended to be RGB. This should end up ignoring the alpha channel from
the texture in the atlas. This makes the code slightly easier to
maintain and should also improve the chances of batching.
Since we're allowing allocation cycles saying that calling
queue_relayout() inside an allocation cycle "is not allowed" is kind of
confusing. We should say that "it is not recommended".
* device-manager: (37 commits)
x11: Re-enable XI1 extension keyboards
x11: Always handle core device events before XI events
docs: Documentation fixes for DeviceManager
device-manager: Fix the signals definition
docs: Add sections for InputDevice and DeviceManager
docs: Add clutter_input_device_get_device_name()
tests: Print out the device details on motion
Always register core devices
device: Remove unused is_default member
win32: Experimental implementation of device support
tests: Print the device name, as well as its Id
x11: Fill out the :name property of the InputDevices
device: Add the :name property to InputDevice
x11: Store core devices on the X11 Backend singleton
device: Unset the cursor actor when leaving the stage
device: Add pointer actor getter
x11: Discard the LeaveNotify for off-stage ButtonRelease
device: Do not overwrite the stage for an InputDevice
event: Off-stage button releases have a click count of 1
event: Scroll events do not have click count
...
Added a "selection-bound" notify on clutter_text_clear_selection as it
changes the value.
Added utility function clutter_text_set_positions, in order to
change both cursor position and selection bound inside a
g_object_[freeze/thaw]_notify block
Added g_object_[freeze/thaw]_notify in other functions that changes
both cursor position and selection bound
Solves http://bugzilla.openedhand.com/show_bug.cgi?id=1955
ClutterStage has both set_key_focus() and get_key_focus() methods, but
there is no :key-focus property. This means that it is not possible to
get notifications when the key-focus has changes except by connecting to
both the ::key-focus-in and ::key-focus-out signals and do additional
bookkeeping.
http://bugzilla.openedhand.com/show_bug.cgi?id=1956
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
The TimeoutPool is not used by ClutterTimeline any more, so we need to
remove a sentence from its description. We also need to fix the gtk-doc
syntax errors.
Instead of assigning a new colour to each quad of a batch, the
rectangle debugging code now assigns a new colour to each batch so
that it can be used to visually see what is being batched. The colour
is stored in a global variable that is reset during cogl_clear. This
improves the chances that the same colour will be used for a batch in
the next frames to avoid flickering.
When setting up the state for the vertex buffer,
enable_state_for_drawing_buffer tries to keep track of the highest
numbered texture unit in use. It then disables any texture arrays for
units that were previously enabled if they are greater than that
number. However if there is no texturing in the VBO then the max used
unit would be left at 0 which it would later think meant unit 0 is
still in use so it wouldn't disable it. To fix this it now initialises
the max used unit to -1 which it should interpret as ‘no units are in
use’ so it will later disable the arrays for all units.
Thanks to Jon Mayo for reporting the bug.
http://bugzilla.openedhand.com/show_bug.cgi?id=1957
We were checking the number of texture units against the GL enum that is
used in glGetInteger() to query that number. Let's abstract this in a
little function.
Took the opportunity to dig a bit on the usage of GL limits for the
number of texture (image) units and document our use of them. We'll need
something finer grained if we want to fully exploit texture image units
with a programmable pipeline.
The index field of CoglTextureUnit was never set, leading to the
creation of units with index set to 0. When trying to retrieve a texture
unit by its index (!= 0) with _cogl_get_texture_unit(), a new one was
created as it could not find it back in the list of textures units:
ctx->texture_units.
http://bugzilla.openedhand.com/show_bug.cgi?id=1958
The :opacity property is defined using a GParamSpecUchar. This usually
leads to issues with language bindings that don't have an 'unsigned
char' type and that need to explicitly handle the conversion between
G_TYPE_UCHAR and G_TYPE_INT or G_TYPE_UINT.
The property definition already specifies an interval size of [0, 255]
on the values; more importantly, GObject already implicitly transforms
between G_TYPE_UCHAR and G_TYPE_UINT (the GValue transformation
functions are registered at type system initialization time) so
switching between a GParamSpecUchar and a GParamSpecUint should not be
an ABI break.
I have tested a simple program using the opacity property before and
after the change and I cannot see any run-time warnings related to this
issue.
Be more drastic if the internal state is broken, and assert() if the
expected Alpha and Timeline instances we need are not valid. This
usually implies a library bug or a massive heap corruption.
The Animation code does transformation of values between type A and A'
after checking for compatibility using g_value_type_compatible(). This
is incorrect: compatibility means that the two types can be copied. The
correct conversion should follow:
if (compatible (type (A), type (A')))
copy (A, A');
else
if (transformable (type (A), type (A')))
transform (A, A');
else
error("Unable to trasform type A in A'");
The transformation might still fail, so we need to check for errors
there as well as a fall-through case.
We should not just check for compatibility, but also for the ability to
transform a GValue of type A into another of type A'.
Usually compatibility is enough, especially if types can be
introspected beforehand; some times, though, we also need to check for
transformability as a type can provide the transformation functions
necessary for the operation.
The commit 1c69c61745 which improved the
protection against timeline removals during the master clock advancement
was only doing half the job - and actually broke the chaining of
animations inside the ::completed signal.
We cannot simply take a reference on the timelines and still use the list
held by the master clock because the do_tick() might result in the
creation of a new timeline, which gets added at the end of the list with
no reference increase and thus gets disposed at the end of the iteration.
We also cannot steal the master clock timelines list because a timeline
might be removed as the direct result of do_tick() and remove_timeline()
would not find the timeline, failing and leaving a dangling pointer
behind.
For this reason we copy the list of timelines out of the one that the
Master Clock holds, take a reference on each timeline, advance them all,
release the reference and free the list.
The extension keyboard support in XInput 1.x is hopelessly broken.
Nevertheless, it's possible to use some bits of it, as we prefer the
core keyboard events to the XInput events, thus at least having proper
handling for X11 key events on the Stage window.
The XI 1.0 layer is complementary to the X11 core devices handling; this
means that core events will still be emitted for the core pointer and
keyboard devices, and that secondary (floating) devices should be
handled on top of that.
Thus, the XI event handling code should be executed (if explicitly
compiled in and enabled) if the core device events have not been parsed.
Note: this is going away with XI2, which completely replaces both core and
XI1 events.
Even with XInput support we should always register core devices. This
allows us to handle enter and leave events correctly on the Stage and
to have a working XInput 1.x support in Clutter.
Mostly lifted from the core pointer and keyboard X11 backend support.
The win32 backend registers two devices (a core pointer and a core
keyboard) and assigns them to the event structure when doing the
translation from native events to Clutter events.
Thanks to: Samuel Degrande <Samuel.Degrande@lifl.fr> for testing this
patch.
Instead of overloading the device id of 0 and 1 we should treat the core
devices as special, and have a pointer inside the X11 backend singleton
structure, for fast access.
When an InputDevice leaves a stage we set the stage member of
InputDevice to NULL. We should also unset the cursor_actor (as the
device is obviously not on an actor any more).
When the device re-enters the Stage the ENTER/LEAVE event generation
machinery will then be able to emit the ENTER event on the Stage.
If the user presses a button on a pointer device and then moves out the
Stage X11 will emit the following events:
LeaveNotify ➔ MotionNotify ... ➔ ButtonRelease ➔ LeaveNotify
The second LeaveNotify differs from the first by the state field.
Unfortunately, ClutterCrossingEvent doesn't have a modifier_state field
like other events, so we cannot provide a way for programmatically
distinguishing them from a Clutter perspective. This is also an X11-ism
we might not even want to replicate on every backend with sane
enter/leave semantics.
For this reason we should check inside the X11 event processing if the
pointer device has already left the Stage and ignore the second
LeaveNotify.
The Stage field of an InputDevice is set by the backend, whenever the
pointer enters or leaves the Stage. The Stage should not overwrite the
stage field for every event it processes.
The previous state for the device is used by the click count machinery
and we should not be overwriting it at every event; instead, we should
use a parallel storage for the current state coming from the windowing
system.
The device manager does not need to update the state of the devices
when the user has disabled the delivery of motion events to actors:
the events will always be delivered as they are to the stage.
The LEAVE/ENTER event pairs should be queued during the InputDevice
update process, when we change the actor under the device pointer.
This commit cleans up the event emission code inside clutter-main.c
and the logic of the event processing.
The InputDevice objects stores pointer coordinates, state, stage and
the actor under the cursor, so if the current backend provides us with
one attached to the Event structure then we want the InputDevice itself
to update its state and give us the ClutterActor underneath the
pointer's cursor.
Even when we are not using XInput we now have fallback devices; the
X11 backend should always assign the default devices when translating
the X events to Clutter events.
Use the device manager to store the input devices. Also, provide
two fallback devices when initializing the X11 backend: device 0
for the pointer and device 1 for the keyboard.
Previously the atlas textures were being created with whatever format
the first sub texture is in. Only three formats are supported so this
only matters if the first texture is a premultiplied alpha
texture. Instead it now masks out the premultiplied bit so that the
textures are always either RGB_888 or RGBA_8888.
The win32 backend now handles the WM_SETCURSOR message and sets a
fully transparent cursor if the cursor-visible property has been
cleared on the stage. The icon is stored in the library via a resource
file. The instance handle for the DLL is needed to load the resource
so there is now a DllMain function to grab the handle.
g_list_foreach has better protection against the current node being
removed. This will happen for example if someone calls
clutter_container_foreach(container, clutter_actor_destroy). This was
causing valgrind errors for the conformance tests which do just that.
When uploading texture data it was just calling cogl_texture_set_data
on the large texture. This would attempt to convert the data to the
format of the large texture. All of the textures with alpha channels
are stored together regardless of whether they are premultiplied so
this was causing premultiplied textures to be unpremultiplied
again. It now just uploads the data ignoring the premult bit of the
format so that it only gets converted once.
With the atlas texture backend ensuring the mipmaps can make it become
a completely different texture which will have different texture
coordinates or may even be sliced. Therefore we need to ensure the
mipmaps before deciding which quads to log in the journal. This adds a
new private function to cogl-material which ensures the mipmaps if
needed.
The sub texture backend doesn't work well as a completely general
texture backend because for example when rendering with cogl_polygon
it needs to be able to tranform arbitrary texture coordinates without
reference to the other coordintes. This can't be done when the texture
coordinates are a multiple of one because sometimes the coordinate
should represent the left or top edge and sometimes it should
represent the bottom or top edge. For example if the s coordinates are
0 and 1 then 1 represents the right edge but if they are 1 and 2 then
1 represents the left edge.
Instead the sub-textures are now documented not to support coordinates
outside the range [0,1]. The coordinates for the sub-region are now
represented as integers as this helps avoid rounding issues. The
region can no longer be a super-region of the texture as this
simplifies the code quite a lot.
There are two new texture virtual functions:
transform_quad_coords_to_gl - This transforms two pairs of coordinates
representing a quad. It will return FALSE if the coordinates can
not be transformed. The sub texture backend uses this to detect
coordinates that require repeating which causes cogl-primitives
to use manual repeating.
ensure_non_quad_rendering - This is used in cogl_polygon and
cogl_vertex_buffer to inform the texture backend that
transform_quad_to_gl is going to be used. The atlas backend
migrates the texture out of the atlas when it hits this.
When calculating the next integer position for negative coordinates it
would not increment if the position is already a multiple of one so we
need to manually add one.