Turn MetaOutput into a GObject and move it to a separate file. This
changes the storage format, resulting in changing the API for accessing
MetaOutputs from using an array, to using a GList.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
We currently don't have any shadow class for combo box popups,
which means the default shadow of normal windows is used. That's
clearly odd given that the two are very different, and isn't
consistent with GTK+-3's client-side shadows for popups. While
we could add a dedicated shadow class, the designers are fine
with reusing the existing shadow for dropdown-menus, so let's
do that.
https://bugzilla.gnome.org/show_bug.cgi?id=744667
If the meta_window_actor_effect_completed() triggers inconsistent
accounting, there's also high chances that the thaw call will be
unexpected at this time too, which will lead to a g_error().
This makes mutter more lenient to effect_completed() calls of the
right type (i.e. those triggering freeze/thaw) being performed more
times than necessary in the upper parts. A warning will be issued,
but the process won't abort.
https://bugzilla.gnome.org/show_bug.cgi?id=777691
Not having a surface actor would cause the window actor state to be
considered frozen, thus causing various state (such as geometry, shape
etc) synchronization to be delayed until thawed. If the window actor
was "thawed" due to having a surface set, not all state would be
properly synchronized, causing the thawed window actor to be displayed
incorrectly.
This patch fixes this by putting state synchronization after thawing in
a common function, calling it both from frozen count decreasing and
surface setting.
This fixes for example misplaced menus in Steam.
https://bugzilla.gnome.org/show_bug.cgi?id=770991
CoglFrameInfo is a frame info container associated with a single
onscreen framebuffer. The clutter stage will eventually support drawing
a stage frame with multiple onscreen framebuffers, thus needs its own
frame info container.
This patch introduces a new stage signal 'presented' and a accompaning
ClutterFrameInfo and adapts the stage windows and past onscreen frame
callbacks users to use the signal and new info container.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Instead of assuming there is a single onscreen framebuffer, use the
helper functions for setting the frame callback and getting the frame
counter.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Before this commit, on Wayland, the buffer rect would have the size of
the attached Wayland buffer, no matter the scale. The scale would then
be applied ad-hoc by callers when a sane rectangle was needed. This
commit changes buffer_rect to rather represent the surface rect (i.e.
what is drawn on the stage, including client side shadow). The users of
buffer_rect will no longer need to scale the buffer_rect themself to
get a usable rectangle.
https://bugzilla.gnome.org/show_bug.cgi?id=763431
While CoglError is a define to GError, it doesn't follow the convention
of ignoring errors when NULL is passed, but rather treats the error as
fatal :-(
That's clearly unwanted for a compositor, so make sure to always pass
an error parameter where a runtime error is possible (i.e. any CoglError
that is not a malformed blend string).
https://bugzilla.gnome.org/show_bug.cgi?id=765058
Some windows, like Chromium and Steam, are technically CSD in that they
don't want a system titlebar and draw their own, but we should still
provide them with a shadow.
We may access it during painting even if it has been freed. For now,
manually unset it during the MetaWaylandSurface cleanup; in the future
make MetaWaylandSurface a GObject and make the surface pointer a weak
reference.
https://bugzilla.gnome.org/show_bug.cgi?id=744453
The elementary guys would like this as an API, and I don't see any
reason to refuse -- this is quite nice shadow painting code :)
For some reason, gobject-introspection can't seem to cope with
MetaWindowShape. I'll look into it a bit later, but for now, mark
the function it has trouble with as (skip).
A much less hacky version of maximize / unmaximize is reimplemented
in terms of this, but it could also eventually be used for fullscreen /
unfullscreen, and tile / untile.
This just exposes the type and the singleton getter necessary to make
it available to introspection. We'll expose more functionality as it
becomes needed.
https://bugzilla.gnome.org/show_bug.cgi?id=743745
If the app finished multiple frames before we sent _NET_WM_FRAME_DRAWN,
we could add the send_frame_messages_timer multiple times. In the rare
case that the app immediately closed the window, the older timeout
could potentially then run on the freed actor.
https://bugzilla.gnome.org/show_bug.cgi?id=738686
* Use -1 rather than 0 as a flag for pending queue entries; 0 is
a valid frame_counter value from Cogl.
* Consistently handle the fact we can have more than one pending
entry. It's app misbehavior to submit a new frame before
_NET_WM_FRAME_DRAWN is received; but we accept such frame messages,
so we can't just leak them.
* If we remove send_frame_message_timer, assign the current frame counter
to pending entries.
* To try to avoid regressing on this, when sending _NET_WM_FRAME_TIMINGS
messages, if we have stale messages, or messages with no frame drawn
time, warn and remove them from the queue rather than just accumulating.
* Improve commenting.
https://bugzilla.gnome.org/show_bug.cgi?id=738686
WindowActors can outlive their corresponding window to animate unmap.
Unredirecting the actor does not make sense in that case, so make
sure to not request it.
https://bugzilla.gnome.org/show_bug.cgi?id=740133
According to the documentation, the method returns "whether the X window
that the actor was displaying has been destroyed" - that is very much
true when we delay the actual actor destruction for a destroy animation,
so update the method accordingly.
https://bugzilla.gnome.org/show_bug.cgi?id=735927
When a window is destroyed, the corresponding actor may still be
kept around for the destroy effect. But as the actor is removed
from the compositor's stack list immediately, the compositor will
always stack it above "valid" window actors - this is not what we
want, so only update the compositor's list when the actor is
actually destroyed.
https://bugzilla.gnome.org/show_bug.cgi?id=735927
It's a deprecated API that can surprise us. Namely, when the internal
format passed is COGL_PIXEL_FORMAT_ANY, it will *always* allocate an
RGBA8888 pixel format texture, even if we only passed it a RGB format
or even an A8 format.
cogl_texture_2d_new_with_data is the newer, better API and doesn't have
these warts.
Connecting to size-changed is wrong -- size-changed tells us when
we *told* the X server or resize the window. For X11, we're sort of
guaranteed that the surface will be updated at some point before the
next frame, but for Xwayland, we can't be sure that the new surface is
attached at this point.
This fixes weird artifacts when resizing apps like xclock.
This was wrong for subsurfaces that extend beyond the parent's shape,
since the paint volume would be wrong in this case. Instead of using the
shape region which can be out of date and wrong, just use the union of
our children's volumes, which is a lot easier to manage.
The output_id is more of an opaque identifier for the monitor, based on
its underlying ID from the windowing system. Since we also use the term
"output_id" for the output's index, rename our use of the opaque cookie
"output_id" to "winsys_id".
This signal is emitted the first time a frame of contents of the
window is completed by the application and has been drawn on the
screen. This is meant to be used for performance measurement of
application startup.
https://bugzilla.gnome.org/show_bug.cgi?id=732343
With get_input_region existing, get_input_rect is a misnomer. Really,
it's about the geometry of the output surface, and it's only used that
way in the compositor code.
Way back when in GNOME 3.2, get_input_rect was added when we added
invisible borders. get_outer_rect was always synonymous with server-side
geometry of the toplevel. get_outer_rect was used for both user-side
policy (the "frame rect") and to get the geometry of the window.
Invisible borders were meant to extend the input region of the frame
window silently. Since most users of get_outer_rect cared about the
frame rect, we kept that the same and added a new method, get_input_rect
to get the full rect of the framed window with all invisible borders for
input kept on.
As time went on and CSD and Wayland became a reality, the relationship
between the server-side geometry and the "frame rect" became more
complicated, as can be evidenced by the recent commits. Since clients
don't tend to be framed anymore, they set their own input region.
get_buffer_rect is also sort of a poor name, since X11 doesn't really
have buffers, but we don't really have many other alternatives.
This doesn't change any of the code, nor the meaning. It will always
refer to the rectangle where the toplevel should be placed.
Scale surfaces based on output scale and the buffer scale set by them.
We pick the scale factor of the monitor there are mostly on.
We only handle native i.e non xwayland / legacy clients yet.
https://bugzilla.gnome.org/show_bug.cgi?id=728902
The code here before was completely wrong. Not only did it mix up
coordinate spaces of "client rect" vs. "frame rect", but it used
meta_frame_get_frame_bounds, which is specifically for the *visible*
bounds of a window!
In the case that we don't have a bounding or input shape region at
all on the client window, the input shape that we should apply is
the surface's natural shape. So, set the region to NULL to get the
natural rect picking semantics.
Compositors haven't been able to manage more than one screen for
quite a while. Merge MetaCompScreen into MetaCompositor, and update
the API to match.
We still keep MetaScreen in the public compositor API for compatibility
purposes.
Creating a new cogl texture may fail, in which case the intent to
free it will crash. While something is clearly wrong (insanely
large window, oom, ...), crashing the WM is harsh and we should
try to avoid it if at all possible, so carry on.
https://bugzilla.gnome.org/show_bug.cgi?id=722266
... and individually. It turns out that updating the opaque region
was causing the shape region to be updated, which was causing a new
shape mask to be generated and uploaded to the GPU. Considering
GTK+ regenerates the opaque region on pretty much any focus change,
this is not good.
At some point meta_window_actor_cull_out stopped calling
meta_cullable_cull_out_children which caused the unobscured region
to never be set for the stex.
https://bugzilla.gnome.org/show_bug.cgi?id=725216
For decorated windows, we don't want to apply any input
shape, because the frame is always rectangular and eats
all the input.
The real check is in meta-window-actor, where we consider
if we need to apply the bounding shape and the input shape
(or the intersection of the two) to the surface-actor,
but as an optimization we avoid querying the server in
meta-window.
Additionally, for undecorated windows, the "has input shape"
check is wrong if the window has a bounding shape but not an
input shape.
We need a MetaWaylandSurface to build a MetaSurfaceActor, but
we don't have one until we get the set_window_xid() call from
XWayland. On the other hand, plugins expect to see the window
actor right from when the window is created, so we need this
empty state.
Based on a patch by Jasper St. Pierre.
Turns out we only ever need to freeze/thaw whole windows, not
surfaces or subsurfaces.
This will allow removing the surface actor without losing
the count.
This time, to make way for MetaSurfaceActorEmpty. This also fixes
destroy effects as a side effect. It still has issues if we try
to re-assign an actor that's already toplevel (e.g. somebody
re-popping up a menu that's already being destroyed), but this
will be fixed soon.
The idea here is that MetaWindowActor will do the unparenting of
the surface actor when it itself is destroyed. To prevent bad issues
with picking, we only make the surface actor reactive when it's
toplevel.
We cannot intersect the the complete volume with the unobscured bounds
because it does not include the shadows. So just intersect it with the
windows's shape bounds and union it with the shadow bounds.
This also matches what the comment in the code says:
"We could compute an full clip region as we do for the window texture,
but the shadow is relatively cheap to draw, and a little more complex to clip,
so we just catch the case where the shadow is completely obscured
and doesn't need to be drawn at all."
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
It's mostly equivalent to the case where we've already detached
the pixmap, *except* for the x11_size_changed case. We can simply
detach the pixmap at the time the window changes size, though.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
We guarantee ourselves that a valid pixmap will appear any time
that the window is painted. The window actor will be scheduled
for a repaint if it's added / removed from the scene graph, like
during construction, if the size changes, or if we receive damage,
which are the existing use cases where this function is called.
So, I can't see any reason that we queue a redraw in here.
With the split into surface actors, we don't have an easy place
we can use to queue a redraw, and since it's unnecessary, we can
just drop it on the floor.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
We can never have a window actor that represents either the X root
window or the stage window, so it doesn't make sense to bail out
early in case we do.
I'd imagine that this came from a much earlier version of the code
where the compositor was much separate and had its own MapNotify
handling.
Since the unredirected window MetaWindowActor is stacked on top, it
will naturally get culled out of the process, so we can remove the
special casing here. Unfortunately, with the way that the code is
currently structured, it's too difficult to actually prevent setting
the clip / visible regions if the window is redirected, so just let
those be set for unredirected windows for now.
The input region was set on the shaped texture, but the shaped texture
was never picked properly, as it was never set to be reactive. Move the
pick implementation and reactivity to the MetaSurfaceActor, and update
the code everywhere else to expect a MetaSurfaceActor.
Traditionally, WMs unmap windows when minimizing them, and map them
when restoring them or wanting to show them for other reasons, like
upon creation.
However, as metacity morphed into mutter, we optionally chose to keep
windows mapped for the lifetime of the window under the user option
"live-window-previews", which makes the code keep windows mapped so it
can show window preview for minimized windows in other places, like
Alt-Tab and Expose.
I removed this preference two years ago mechanically, by removing all
the if statements, but never went through and cleaned up the code so
that windows are simply mapped for the lifetime of the window -- the
"architecture" of the old code that maps and unmaps on show/hide was
still there.
Remove this now.
The one case we still need to be careful of is shaded windows, in which
we do still unmap the client window. In the future, we might want to
show previews of shaded windows in the overview and Alt-Tab. In that
we'd also keep shaded windows mapped, and could remove all unmap logic,
but we'd need a more complex method of showing the shaded titlebar, such
as using a different actor.
At the same time, simplify the compositor interface by removing
meta_compositor_window_[un]mapped API, and instead adding/removing the
window on-demand.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
We want to remove a bunch of auxilliary duties from the MetaWindowActor
and MetaSurfaceActor, including some details of how culling is done.
Move the unobscured region culling code to the MetaShapedTexture, which
helps the actor become "more independent".
https://bugzilla.gnome.org/show_bug.cgi?id=720631
When we traversed down to reset the culling state, previously we
would just skip any actors that wanted culling. In order to properly
reset the unobscured_region before painting, we need to traverse down
to these places as well. Do this by calling cull_out with NULL regions
for both arguments, and adapt existing cull_out implementations to
match.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
I know it's confusing with the triple negative, but unredirected is how
we track it elsewhere: we have an 'unredirected' flag, and 'should_unredirect'.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
We currently ignore the unobscured region when we have mapped clones in
meta_window_actor_process_damage and meta_window_actor_damage_all but
use it unconditionally when computing the paint volume.
This is wrong. We should ignore it there as well or we will end up with
empty clones if the cloned window is completly obscured
(like the tray icons in gnome-shell).
https://bugzilla.gnome.org/show_bug.cgi?id=721596
We need to do this for XWayland windows, since we only get the event
telling us they're an XWayland window after the compositor knows about
the window.
I know it's confusing with the triple negative, but unredirected is how
we track it elsewhere: we have an 'unredirected' flag, and 'should_unredirect'.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
We no longer unmap the toplevel windows during normal operation. The
toplevel state is tied to the window's lifetime.
Call meta_compositor_add_window / meta_compositor_remove_window instead...
Traditionally, WMs unmap windows when minimizing them, and map them
when restoring them or wanting to show them for other reasons, like
upon creation.
However, as metacity morphed into mutter, we optionally chose to keep
windows mapped for the lifetime of the window under the user option
"live-window-previews", which makes the code keep windows mapped so it
can show window preview for minimized windows in other places, like
Alt-Tab and Expose.
I removed this preference two years ago mechanically, by removing all
the if statements, but never went through and cleaned up the code so
that windows are simply mapped for the lifetime of the window -- the
"architecture" of the old code that maps and unmaps on show/hide was
still there.
Remove this now.
The one case we still need to be careful of is shaded windows, in which
we do still unmap the client window. Theoretically, we might want to
show previews of shaded windows in the overview and Alt-Tab, so we remove
the complex unmap tracking for this later.
We need to set the number of components on the CoglTextureRectangle to
prevent wasting too much GPU memory. As we need to do this before we call
cogl_texture_set_region, just remove the meta_texture_rectangle_new wrapper,
and make callers call cogl_texture_rectangle_new_with_size directly.
The shadow is added in the paint step, not as a separate actor,
so the raise is a no-op. It also gets rid of an annoying misspelling
that's driving me crazy.
Since subsurfaces won't have toplevel MetaWindowActors, we need to
use MetaSurfaceActor instead. These are embedded in the MetaWindowActor,
just like MetaShapedTexture was (in fact, MetaSurfaceActor now contains
a MetaShapedTexture)
Make MetaWindowActor chain up to the generic default MetaCullable
implementation, and remove the helper methods for MetaSurfaceActor
and MetaShapedTexture.
Instead of hardcoded knowledge of certain classes in MetaWindowGroup,
create a generic interface that all actors can implement to get parts of
their regions culled out during redraw, without needing any special
knowledge of how to handle a specific actor.
The names now are a bit suspect. MetaBackgroundGroup is a simple
MetaCullable that knows how to cull children, and MetaWindowGroup is the
"toplevel" cullable that computes the initial two regions. A future
cleanup here could be to merge MetaWindowGroup / MetaBackgroundGroup so
that we only have a generic MetaSimpleCullable, and move the "toplevel"
cullability to be a MetaCullableToplevel.
https://bugzilla.gnome.org/show_bug.cgi?id=714706
For clarity, rename meta_window_get_outer_rect() to match terminology
we use elsewhere. The old function is left as a deprecated
compatibility wrapper.
When a Wayland compositor, simply rely on the clutter actor allocation
changed signal to sync geometry and emit window actor size changed
signals.
Attaching a wl_buffer to a MetaShapedTexture will signal allocation
changed on the corresponding MetaSurfaceActor, which the MetaWindowActor
is listening to.
Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
https://bugzilla.gnome.org/show_bug.cgi?id=705502
Instead of having MetaWindowActor only have one single MetaShapedTexture
as actor drawing its content, introduce a new abstract MetaSurfaceActor
that takes care of drawing.
This is one step in the direction to decouple MetaWaylandSurface with a
MetaWindow and MetaWindowActor (except for shell/xdg surfaces) in order
to finally support subsurfaces like features, or any feature where
window is not drawn using a single texture.
The first step, implemented in this patch, is to not have
MetaWindowActor work directly with a shaped texture. There are still
some cases where it simply gets the texture and goes on as before, but
this should be changed by either removing the need of going via
MetaWindowActor or by adding some generic interface to MetaSurfaceActor
that doesn't limit its functionality to one shaped texture.
There should be no visible difference nor after this patch, but
meta_window_actor_get_texture() and meta_surface_actor_get_texture()
should be deprecated when equivalent functionality has been introduced.
Signed-off-by: Jonas Ådahl <jadahl@gmail.com>
https://bugzilla.gnome.org/show_bug.cgi?id=705502
The current time offset calculation is wrong. It is supposed to calculate
the offset between the current time and the
"time where it message should be sent" (last_time + interval).
Fix the math to actually do that.
https://bugzilla.gnome.org/show_bug.cgi?id=709340
We must set x11_size_changed even if we are frozen, as every window
size change makes the X server drop the pixmap, and we might lose
the information at the next thaw() if the window changes size
twice in one frame (so we would keep drawing with the old pixmap
until something else causes another resize)
We must send frame_drawn and frame_timing messages to even when
we don't actually queue a redraw on screen to comply with the
WM sync spec.
So throttle such apps to down to a ~100ms interval.
https://bugzilla.gnome.org/show_bug.cgi?id=703332
When we get a damage event we update the window by calling
meta_shaped_texture_update_area which queues a redraw on the actor.
We can avoid that for obscured regions by comparing the damage area to
our visible area.
This patch causes _NET_WM_FRAME_DRAWN messages to be not sent in some cases
where they should be sent; they will be added back in a later commit.
https://bugzilla.gnome.org/show_bug.cgi?id=703332
When drawing entirely opaque regions, we traditionally kept blending on
simply because it made the code more convenient and obvious to handle.
However, this can cause lots of performance issues on GPUs that aren't
too powerful, as they have to readback the buffer underneath.
Keep track of the opaque region set by windows (through _NET_WM_OPAQUE_REGION,
Wayland opaque_region hints, standard RGB32 frame masks or similar), and draw
those rectangles separately through a different path with blending turned off.
https://bugzilla.gnome.org/show_bug.cgi?id=707019
We need to use g_signal_connect_object(), rather than g_signal_connect(),
because the window actor can be destroyed before the window emits
the final notify::appears-focused inside unmanage, if the plugin
decides that it doesn't want to animate the destruction (which
happens with dialogs and the default plugin)
https://bugzilla.gnome.org/show_bug.cgi?id=706207
The previous code was leaving focus fields dirty in MetaWaylandPointer
and MetaWaylandKeyboard at time (which could crash the X server
because of invalid object IDs)
The new code is more tighly integrated in the normal X11 code
for handling keyboard focus (meaning that the core idea of input
focus is also correct now), so that meta_window_unmanage() can
do the right thing. As a side benefit, clicking on wayland clients
now unfocus X11 clients.
For the mouse focus, we need to clear the surface pointer when
the metawindowactor is destroyed (even if the actual actor is
kept alive for effects), so that a repick finds a different pointer
focus.
https://bugzilla.gnome.org/show_bug.cgi?id=705859
Remove window_surfaces, as the FIXME asks for. We don't need it
because we can obtain the surface from the MetaWindow, and
follow the wayland compositor path for both types of clients.
https://bugzilla.gnome.org/show_bug.cgi?id=705818
This copies the basic input support from the Clayland demo compositor.
It adds a basic wl_seat implementation which can convert Clutter mouse
events to Wayland events. For this to work all of the wayland surface
actors need to be made reactive.
The wayland keyboard input focus surface is updated whenever Mutter
sees a FocusIn event so that it will stay in synch with whatever
surface Mutter wants as the focus. Wayland surfaces don't get this
event so for now it will just give them focus whenever they are
clicked as a hack to test the code.
Authored-by: Neil Roberts <neil@linux.intel.com>
Authored-by: Giovanni Campagna <gcampagna@src.gnome.org>
This adds support for running mutter as a hybrid X and Wayland
compositor. It runs a headless XWayland server for X applications
that presents wayland surfaces back to mutter which mutter can then
composite.
This aims to not break Mutter's existing support for the traditional X
compositing model which means a single build of Mutter can be
distributed supporting the traditional model and the new Wayland based
compositing model.
TODO: although building with --disable-wayland has at least been tested,
I still haven't actually verified that running as a traditional
compositor isn't broken currently.
Note: At this point no input is supported
Note: multiple authors have contributed to this patch:
Authored-by: Robert Bragg <robert@linux.intel.com>
Authored-by: Neil Roberts <neil@linux.intel.com>
Authored-by: Rico Tzschichholz.
Authored-by: Giovanni Campagna <gcampagna@src.gnome.org>
We now track whether a window has an input shape specified via the X
Shape extension. Intersecting that with the bounding shape (as required
by the X Shape extension) we use the resulting rectangles to paint
window silhouettes when picking. As well as improving the correctness of
picking this should also be much more efficient because typically when
only picking solid rectangles then the need to actually render and issue
a read_pixels request can be optimized away and instead the picking is
done on the cpu.
This essentially just moves install_corners() from the compositor, through
the core, into the UI layer where it arguably should have been anyway,
leaving behind stub functions which call through the various layers. This
removes the compositor's special knowledge of how rounded corners work,
replacing it with "ask the UI for an alpha mask".
The computation of border widths and heights changes a bit, because the
width and height used in install_corners() are the
meta_window_get_outer_rect() (which includes the visible borders but not
the invisible ones), whereas the more readily-available rectangle is the
MetaFrame.rect (which includes both). Computing the same width and height
as meta_window_get_outer_rect() involves compensating for the invisible
borders, but the UI layer is the authority on those anyway, so it seems
clearer to have it do the calculations from scratch.
Bug: https://bugzilla.gnome.org/show_bug.cgi?id=697758
Signed-off-by: Simon McVittie <simon.mcvittie@collabora.co.uk>
Reviewed-by: Jasper St. Pierre <jstpierre@mecheye.net>