The units under the conformance test suite should be able to use
external files. Linking the files in tests/conform like the
interactive tests do seems like a hack piled on top of a hack, so
instead we should provide a programmatic way for a conformance
test unit to get the full path of a file, regardless of where the
tests/data directory is.
We can use a define to get the full path of tests/data and then
a function using g_build_filename() to construct the path to the
file we want.
This test tried to do too much, and I can't remember the last time I saw this
test work.
It no longer tries to create a texture from an offscreen actor and it no
longer tries to use shaders.
It does though show that chaining of clutter_texture_new_from_actor now
works, and that animating the source actor is reflected in textures created
from it.
When run you should see three actors:
- on the left is the pristine source actor rotating around the y-axis
- in the middle is the first texture created from the source actor
- and on the right a texture created from the middle actor
Note: the somewhat strange bobbing of the middle and right textures is
actually correct given how it was decided long ago to map the transformed
(to screen space) allocation of the source actor to the texture. When the
hand spins around the perspective projection of the top of the hand results
in the origin of the texture bobbing up to a higher stage position, but the
position of the textures is fixed. This design also means we end up
reallocating our offscreen draw buffer every frame that the actors
transformed size changes, which isn't ideal.
Since offscreen rendering is internally forced to be upside down Cogl
needs to reverse the glFrontFace winding order so as not to interfere
with the use of cogl_set_backface_culling_enabled()
This ensures we test that mechanism.
Mostly this was written to verify that we don't flip the data read back from
an offscreen draw buffer. (since all offscreen rendering is done upside
down)
This adds a basic test to check that rendering a few colored rectangles
offscreen works and that the modelview gets restored when switching back to
the previous buffer.
Unlike OpenGL Cogl puts the origin of windows/viewports at the top left
instead of bottom left. This test verifies that we correctly translate Cogl
viewports to OpenGL viewports for the awkward cases where the given viewport
has an offset and/or the viewport has a different size to the current draw
buffer.
It helps to be able to quickly glance at the definition to see which
quadrant of the test actor should be which color, so when debugging a
problem and looking at the visual output you can easily verify if it's being
flipped upside down/left to right.
This contains four tests :-
- A regular onscreen source with a clone next to it
- An offscreen source with a clone. This is currently commented out
because it no longer works.
- An onscreen source with a rectangular clip and a clone.
- An onscreen source with a clip from a path and a clone.
The sources are all a 2x2 grid of colors. Each clone is tested that it
either contains the color that should be at that grid position or that
the stage color is showing through if the source is clipped.
* layout-manager: (50 commits)
docs: Reword a link
layout, docs: Add more documentation to LayoutManager
layout, docs: Fix description of Bin properties
layout, bin: Use ceilf() instead of casting to int
layout, docs: Add long description for FlowLayout
layout, box: Clean up
layout, box: Write long description for Box
layout, docs: Remove unused functions
layout: Document BoxLayout
layout: Add BoxLayout, a single line layout manager
layout: Report the correct size of FlowLayout
layout: Resizing the stage resizes the FlowLayout box
layout: Use the get_request_mode() getter in BinLayout
layout: Change the request-mode along with the orientation
actor: Add set_request_mode() method
[layout] Remove FlowLayout:wrap
[layout] Rename BinLayout and FlowLayout interactive tests
[layout] Skip invisible children in FlowLayout
[layout] Clean up and document FlowLayout
[layout] Snap children of FlowLayout to column/row
...
The additional check draws another front facing rectangle but this time with
the texture coords flipped on the x axis. The code that handles sliced
textures in cogl-primitives.c makes some suspicious changes to the geometry
when the texture coords are inverted.
As part of an incremental process to have Cogl be a standalone project we
want to re-consider how we organise the Cogl source code.
Currently this is the structure I'm aiming for:
cogl/
cogl/
<put common source here>
winsys/
cogl-glx.c
cogl-wgl.c
driver/
gl/
gles/
os/ ?
utils/
cogl-fixed
cogl-matrix-stack?
cogl-journal?
cogl-primitives?
pango/
The new winsys component is a starting point for migrating window system
code (i.e. x11,glx,wgl,osx,egl etc) from Clutter to Cogl.
The utils/ and pango/ directories aren't added by this commit, but they are
noted because I plan to add them soon.
Overview of the planned structure:
* The winsys/ API is the API that binds OpenGL to a specific window system,
be that X11 or win32 etc. Example are glx, wgl and egl. Much of the logic
under clutter/{glx,osx,win32 etc} should migrate here.
* Note there is also the idea of a winsys-base that may represent a window
system for which there are multiple winsys APIs. An example of this is
x11, since glx and egl may both be used with x11. (currently only Clutter
has the idea of a winsys-base)
* The driver/ represents a specific varient of OpenGL. Currently we have "gl"
representing OpenGL 1.4-2.1 (mostly fixed function) and "gles" representing
GLES 1.1 (fixed funciton) and 2.0 (fully shader based)
* Everything under cogl/ should fundamentally be supporting access to the
GPU. Essentially Cogl's most basic requirement is to provide a nice GPU
Graphics API and drawing a line between this and the utility functionality
we add to support Clutter should help keep this lean and maintainable.
* Code under utils/ as suggested builds on cogl/ adding more convenient
APIs or mechanism to optimize special cases. Broadly speaking you can
compare cogl/ to OpenGL and utils/ to GLU.
* clutter/pango will be moved to clutter/cogl/pango
How some of the internal configure.ac/pkg-config terminology has changed:
backendextra -> CLUTTER_WINSYS_BASE # e.g. "x11"
backendextralib -> CLUTTER_WINSYS_BASE_LIB # e.g. "x11/libclutter-x11.la"
clutterbackend -> {CLUTTER,COGL}_WINSYS # e.g. "glx"
CLUTTER_FLAVOUR -> {CLUTTER,COGL}_WINSYS
clutterbackendlib -> CLUTTER_WINSYS_LIB
CLUTTER_COGL -> COGL_DRIVER # e.g. "gl"
Note: The CLUTTER_FLAVOUR and CLUTTER_COGL defines are kept for apps
As the first thing to take advantage of the new winsys component in Cogl;
cogl_get_proc_address() has been moved from cogl/{gl,gles}/cogl.c into
cogl/common/cogl.c and this common implementation first trys
_cogl_winsys_get_proc_address() but if that fails then it falls back to
gmodule.
When computing the pixels value of a ClutterUnits value we should
be caching the value to avoid recomputing for every call of
clutter_units_to_pixels(). We already have a flag telling us to
return the cached value, but we miss the mechanism to evict the
cache whenever the Backend settings affecting the conversion, that
is default font and resolution, change.
In order to implement the eviction we can use a "serial"; the
Backend will have an internal serial field which we retrieve and
put inside the ClutterUnits structure (we split one of the two
64 bit padding fields into two 32 bit fields to maintain ABI); every
time we call clutter_units_to_pixels() we compare the units serial
with that of the Backend; if they match and pixels_set is set to
TRUE then we just return the stored pixels value. If the serials
do not match then we unset the pixels_set flag and recompute the
pixels value.
We can verify this by adding a simple test unit checking that
by changing the resolution of ClutterBackend we get different
pixel values for 1 em.
http://bugzilla.openedhand.com/show_bug.cgi?id=1843
Input Methods require to be able to set a "pre-edit string", that is
a string that it's just displayed into the Text actor without being
committed to the actor's buffer. The string might require custom Pango
attributes, and an update of the cursor position.
FlowLayout should compute the correct height for the assigned width when
in horizontal flow, and the correct width for the assigned height when
in vertical flow. This means pre-computing the number of lines inside
the get_preferred_width() and get_preferred_height(). We can then cache
the computed column width and row height, cache them inside the layout
and then use them when allocating the children.
FlowLayout is a layout manager that arranges its children in a
reflowing line; the orientation controls the major axis for the
layout: horizontal, for reflow on the Y axis, and vertical, for
reflow on the X axis.
There are three potential variants to add a child inside a Box
with a BinLayout:
- clutter_box_pack(), a variadic argument function which
allows passing arbitrary LayoutMeta properties and values;
- clutter_bin_layout_add(), which uses the backpointer to
the container from the LayoutManager and sets the layout
properties directly without GValue (de)marshalling
- clutter_container_add_actor() and
clutter_bin_layout_set_alignment(), similar to the
clutter_bin_layout_add() function above, but split in two
The test-box interactive test should exercise all three variants.
The ClutterBox::add method is a simple wrapper around the Container
add_actor() method and the LayoutManager layout properties API. It
allows adding an actor to a Box and setting the layout properties in
one call.
If the LayoutManager used by the Box does not support layout properties
then the add() method short-circuits out.
Along with the varargs version of the method there's also a vector-based
variant, for language bindings to use.
Each actor managed by a BinLayout policy should reside inside its
own "layer", with horizontal and vertical alignment. The :x-align
and :y-align properties of the BinLayout are the default alignment
policies, which are copied to each new "layer" when it is created.
The set_alignment() and get_alignment() methods of BinLayout can
be changed to operate on a specific "layer".
The whole machinery uses the new ChildMeta support inside the
LayoutManager base abstract class.
Current parsing of units has a number of shortcomings:
* a number followed by trailing space (without any unit specified) was
not recognized,
* "5 emeralds" was parsed as 5em,
* the way we parse the digits after the separator makes us lose
precision for no good reason (5.0 is parsed as 5.00010014...f which
makes g_assert_cmpfloat() fail)
Let's define a stricter grammar we can recognize and try to do so. The
description is in EBNF form, removing the optional <> which is a pain
when having to write DocBook, and using '' for the terminal symbols.
Last step, add more ClutterUnits unit test to get a better coverage of
the grammar we want to parse.
Reviewed-by: Emmanuele Bassi <ebassi@linux.intel.com>
Parse #rgb and #rrggbb in addition to forms with the alpha channel
specified. This allows conversion of colour strings from documents such as
CSS where the alpha channel is not specified when using '#' notation.
This patch also adds the relevant conformance test.
The user-initiated resize is conflicting with the allocated size. This
happens because we change the size of the stage's X Window behind the
back of the size allocation machinery.
Instead, we should change the size of the actor whenever we receive a
ConfigureNotify event to reflect the new size of the actor.
I just wasted a silly amount time trying to bisect an apparently broken
cogl-test-multitexture until I realized it was just silently failing to load
any textures.
This unit verifies that an Actor class will invoke the get_preferred_*
virtual functions unless the caching is in effect; it also verifies
that the cached values are correctly evicted.
The size requisition and allocation mechanisms should be thoroughly
tested to avoid unwanted regressions.
For starters, we can test the explicit size setting and the side
effects of calling clutter_actor_set_size().
The test-script.json UI definition still used old types, like
ClutterLabel and ClutterCloneTexture. It should move to the classes
that have replaced them.
We need to test that the depth sorting of ClutterGroup works correctly
in case we wish to change the data structure that stores the children,
and do so without changing the default behaviour.
in tests/interactive/Makefile.am add wrapper.sh to EXTRA_DIST otherwise
interactive unit tests wont be runnable when building from distributed
tarballs.
We should follow the convention for boxed types initializers of:
<type_name>_from_<another_type> (boxed, value)
For ClutterUnits as well; so:
clutter_units_pixels -> clutter_units_from_pixels
clutter_units_em -> clutter_units_from_em
...
We should still keep the short-hand version as a macro, though.
The ClutterColor conformance test should have a unit for verifying
the RGB<->HLS conversion code, especially the ability to roundtrip
between the two colorspaces.
AM_LDFLAGS is ignored by the LDFLAGS target, and it's also not the right
place to put the libraries used by the linker.
Thanks to Vincent Untz for spotting this.
The perspective test was used essentially to determine whether the
perspective set up in COGL worked correctly. The perspective code
has been changed a lot since Clutter 0.3: we rely on client-side
matrices and we use floating point; so, all the conditions the test
was supposed to verify do not exist anymore.
Fixes and adds a unit test for creating and drawing using materials with
COGL_INVALID_HANDLE texture layers.
This may be valid if for example the user has set a texture combine string
that only references a constant color.
_cogl_material_flush_layers_gl_state will bind the fallback texture for any
COGL_INVALID_HANDLE layer, later though we could explicitly check when the
current blend mode does't actually reference a texture source in which case
binding the fallback texture is redundant.
This tests drawing using cogl_rectangle, cogl_polygon and
cogl_vertex_buffer_draw.
To allow for flushing of batched geometry within Cogl we can't support users
directly calling glReadPixels. glReadPixels is also awkward, not least
because it returns upside down image data.
All the unit tests have been swithed over and clutter_stage_read_pixels now
sits on top of this too.
test-cogl-tex-getset was assuming it was dealing with
COGL_PIXEL_FORMAT_RGBA_8888 but since merging the premultiplcation branch
the pixel format is actually COGL_PIXEL_FORMAT_RGBA_8888_PRE
Texture data is now in premultiplied format and the shader should
output a premultiplied color if the default blend mode is being
used. Shaders that directly manipulate the rgb values now
unpremultiply and premultiply again afterwards.
Now that we can safely check for an uninitialized Clutter we
don't have side effects in calling one of the functions like
clutter_x11_enable_xinput(), which require to be called before
any other Clutter function.
The input device API is split halfway thorugh the backends in a very
weird way. The data structures are private, as they should, but most
of the information should be available in the main API since it's
generic enough.
The device type enumeration, for instance, should be common across
every backend; the accessors for device type and id should live in the
core API. The internal API should always use ClutterInputDevice and
not the private X11 implementation when dealing with public structures
like ClutterEvent.
By adding accessors for the device type and id, and by moving the
device type enumeration into the core API we can cut down the amount
of symbols private and/or visible only to the X11 backends; this way
when other backends start implementing multi-pointer support we can
share the same API across the code.
The test-easing interactive demo for the high-level animation API
is a bit "flat". Instead of using a Rectangle actor we should
probably be using something more "interesting" -- like a CairoTexture
with a gradient.
In order to chain up animations using clutter_actor_animate() and
friends you have to use an idle handler that guarantees that the
main loop spins at least once after the animation pointer has been
detached from the actor.
This has several drawbacks, first and foremost the fact that the
slice of the main loop for the idle handler might be starved by
other operations, like redrawing. This inevitably leads to tricks
with priorities and the like, contributing to the overall complexity.
Instead, we should guarantee that the animation instance created by
clutter_actor_animate() is valid for the ::completed signal until
it reaches its default handler; after that, the animation is detached
from the actor and destroyed. This means that it's possible to
create a new animation after the first is complete by simply using
g_signal_connect_after().
This unfortunately makes it impossible to keep a reference to the
animation pointer attached to the actor by using g_object_ref(); a
way to "fix" this would be to have a clutter_animation_attach()
and a clutter_animation_detach() pair of methods that allow attaching
any animation to an actor. This might overcomplicate what it is
the simple animation API, though, so it's currently not implemented
and left for future versions.
The test-easing interactive demo has been modified to show how
the animation queuing works by adding a command line switch that
recenters the animated actor once the first animation has ended.
In order to be ready for the next major version of GLib we need to
disable single header inclusion by using the G_DISABLE_SINGLE_INCLUDES
define in the build process.
The test has been broken since the change to use floats instead of
fixed point because it was passing degrees to sin and cos but they
expect radians.
It was further broken since the timeline changes because it was
directly using the parameter of the new-frame signal as a frame number
but it now represents the elapsed time.
We need to fix the VBO premultiplication; we also do not need to
forcibly queue a redraw in an idle handler: the timeline and the
master clock will do that for us.
The test-actors test (and its clones, test-actor-clone and
test-paint-wrapper) was written a long time ago for a different API
and has been tweaked to bits. We should probably have something a
little bit more complicated, but at least we should not use semantics
and coding patterns from Clutter 0.2, otherwise we won't be testing
anything except that Clutter 0.2 worked.
Merge branch 'premultiplication'
[cogl-texture docs] Improves the documentation of the internal_format args
[test-premult] Adds a unit test for texture upload premultiplication semantics
[fog] Document that fogging only works with opaque or unmultipled colors
[test-blend-strings] Explicitly request RGBA_888 tex format for test textures
[premultiplication] Be more conservative with what data gets premultiplied
[bitmap] Fixes _cogl_bitmap_fallback_unpremult
[cogl-bitmap] Fix minor copy and paste error in _cogl_bitmap_fallback_premult
Avoid unnecesary unpremultiplication when saving to local data
Don't unpremultiply Cairo data
Default to a blend function that expects premultiplied colors
Implement premultiplication for CoglBitmap
Use correct texture format for pixmap textures and FBO's
Add cogl_color_premultiply()
cogl_texture_new_from_data lets you specify a source format for the users given
data, and an internal format which the user wants the GPU to see. This unit
test verifies that the users data is premultiplied, un-premultiplied or
left alone for a number of (source format, internal format) pairs.
cogl_texture_set_region allows specifying a source format, and the internal
format is determined from the texture being updated. As above we test
a number of format pairs and check Cogl is converting data correctly.
The test verifies that if the user allows COGL_FORMAT_ANY for the
internal_format then by default Cogl will choose a premultipled format for
RGBA textures.
Note: Currently this only tests cogl_texture_new_from_data and
cogl_texture_set_region, we should also test cogl_texture_new_from_file,
cogl_texture_new_from_bitmap and cogl_texture_new_from_foreign.
The fixed function fogging provided by OpenGL only works with unmultiplied
colors (or if the color has an alpha of 1.0) so since we now premultiply
textures and colors by default a note to this affect has been added to
clutter_stage_set_fog and cogl_set_fog.
test-depth.c no longer uses clutter_stage_set_fog for this reason.
In the future when we can depend on fragment shaders we should also be
able to support fogging of premultiplied primitives.
This test assumes that the textures will be stored internally with exactly
the color given so that specific texture combining arithmetic can be
tested. Using COGL_PIXEL_FORMAT_ANY allows Cogl to internally premultiply
the textures, so we have to explicitly request an unmultiplied format.
Many operations, like mixing two textures together or alpha-blending
onto a destination with alpha, are done most logically if texture data
is in premultiplied form. We also have many sources of premultiplied
texture data, like X pixmaps, FBOs, cairo surfaces. Rather than trying
to work with two different types of texture data, simplify things by
always premultiplying texture data before uploading to GL.
Because the default blend function is changed to accommodate this,
uses of pure-color CoglMaterial need to be adapted to add
premultiplication.
gl/cogl-texture.c gles/cogl-texture.c: Always premultiply
non-premultiplied texture data before uploading to GL.
cogl-material.c cogl-material.h: Switch the default blend functions
to ONE, ONE_MINUS_SRC_ALPHA so they work correctly with premultiplied
data.
cogl.c: Make cogl_set_source_color() premultiply the color.
cogl.h.in color-material.h: Add some documentation about
premultiplication and its interaction with color values.
cogl-pango-render.c clutter-texture.c tests/interactive/test-cogl-offscreen.c:
Use premultiplied colors.
http://bugzilla.openedhand.com/show_bug.cgi?id=1406
Signed-off-by: Robert Bragg <robert@linux.intel.com>
Merge branch 'master-clock-updates'
* master-clock-updates: (22 commits)
Change the paint forcing on the Text cache text
[timelines] Improve marker hit check and don't fudge the delta
Revert "[timeline] Don't clamp the elapsed time when a looping tl reaches the end"
[tests] Don't add a newline to the end of g_test_message calls
[test-timeline] Add a marker at the beginning of the timeline
[timeline] Don't clamp the elapsed time when a looping tl reaches the end
[master-clock] Throttle if no redraw was performed
[docs] Update Clutter's API reference
Force a paint instead of calling clutter_redraw()
Fix clutter_redraw() to match the redraw cycle
Run the repaint functions inside the redraw cycle
Remove useless manual timeline ticking
Move elapsed-time calculations into ClutterTimeline
Limit the frame rate when not syncing to VBLANK
Decrease the main-loop priority of the frame cycle
Avoid motion-compression in test-picking test
Compress events as part of the frame cycle
Remove stage update idle and do updates from the master clock
Call g_main_context_wakeup() when we start running timelines
Remove unused msecs_delta member
...
The changes in the master clock and the repaint cycle have been
changed, and broke the way the test for the Text actor cache of
PangoLayouts forces a redraw.
We have to call clutter_actor_paint() on the Stage embedding the
Text actor we want to test; this is kinda fugly because if the
Layout has changed it will end up causing a reallocation cycle
in the middle of the Text actor paint. Since it's a test case,
and since forcing redraws is a bit of a hack as well, we can
close both our eyes on that.
This reverts commit 9c5663d671.
The patch was causing problems for applications that expect the
elapsed_time to be at either end of the timeline when the completed
signal is fired. For example test-behave swaps the direction of the
timeline in the completed handler but if the time has overflowed the
end then the timeline would only take a short time to get back the
beginning. This caused the animation to just vibrate around the
beginning.
The new-frame signal of a timeline was previously guaranteed to be
emitted with the elapsed_time set to the end before it emits the
completed signal. This doesn't necessarily make sense for looping
timelines because it would cause the elapsed time to be clamped to a
slightly off value whenever the timeline restarts. This patch makes it
perform the wrap around before emitting the new-frame signal so that
the elapsed time always corresponds to the time elapsed since the
timeline was started.
Additionally it no longer fudges the msecs_delta property to make the
marker check work so clutter_timeline_get_delta will always return the
wall clock time since the last frame.
The master clock now works fine whether or not there are any stages,
so in the timeline conformance tests don't need to set up their
own times.
Set CLUTTER_VBLANK=none for the conformance tests, which in addition
to removing an test-environment dependency, will result in the ticking
for timeline tests being throttled to the default frame rate.
http://bugzilla.openedhand.com/show_bug.cgi?id=1637
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Instead of calculating a delta in the master clock, and passing that
into each timeline, make each timeline individually responsible for
remembering the last time and computing the delta.
This:
- Fixes a problem where we could spin infinitely processing
timeline-only frames with < 1msec differences.
- Makes timelines consistently start timing on the first frame;
instead of doing different things for the first started timeline
and other timelines.
- Improves accuracy of elapsed time computations by avoiding
accumulating microsecond => millisecond truncation errors.
http://bugzilla.openedhand.com/show_bug.cgi?id=1637
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
clutter-master-clock.c clutter-master-clock.h: When the
SYNC_TO_VBLANK feature is not available, wait for 1/frame_rate
seconds since the start of the last frame before drawing the next
frame. Add _clutter_master_clock_start_running() to abstract
the usage of g_main_context_wakeup()
clutter-stage.c: Add _clutter_master_clock_start_running()
clutter-main.c: Update docs for clutter_set_default_frame_rate()
clutter_get_default_frame_rate() to no longer talk about timeline
frame rates.
test-text-perf.c test-text.c: Set a frame rate of 1000fps so that
frame-rate limiting doesn't affect the result.
http://bugzilla.openedhand.com/show_bug.cgi?id=1637
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Using clutter_stage_get_actor_at_pos() rather than synthesizing
events; the synthesized events were being compressed, so we were
only tesitng one pick per frame.
http://bugzilla.openedhand.com/show_bug.cgi?id=1637
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
The clutter_stage_fullscreen() and clutter_stage_unfullscreen() are
a GDK-ism. The underlying implementation is already using an accessor
with a boolean parameter.
This should take the amount of collisions between properties, methods
and signals to zero.
The :fullscreen property is very much confusing as it is implemented.
It can be written to a value, but the whole process might fail. If we
set:
g_object_set (stage, "fullscreen", TRUE, NULL);
and the fullscreen process fails or it is not implemented, the value
will be reset to FALSE (if we're lucky) or left TRUE (most of the
times).
The writability is just a shorthand for invoking clutter_stage_fullscreen()
or clutter_stage_unfullscreen() depending on a boolean value without
using an if.
The :fullscreen property also greatly confuses high level languages,
since the same symbol is used:
- for a method name (Clutter.Stage.fullscreen())
- for a property name (Clutter.Stage.fullscreen)
- for a signal (Clutter.Stage::fullscreen)
For these reasons, the :fullscreen should be renamed to :fullscreen-set
and be read-only. Implementations of the Stage should only emit the
StageState event to change from normal to fullscreen, and the Stage
will automatically update the value of the property and emit a notify
signal for it.
ClutterEvent is not really gobject-introspection friendly because
of the whole discriminated union thing. In particular, if you get
a ClutterEvent in a signal handler, you probably can't access the
event-type-specific fields, and you probably can't call methods
like clutter_key_event_symbol() either, because you can't cast the
ClutterEvent to a ClutterKeyEvent.
The cleanest solution is to turn every accessor into ClutterEvent
methods, accepting a ClutterEvent* and internally checking the event
type.
Fixes bug:
http://bugzilla.openedhand.com/show_bug.cgi?id=1585
The test was quiting after the 2nd frame but it should be the third frame because
the test doesn't actually check results until the third frame due to the workaround
for drivers with broken glReadPixels.
(When first written the test would have been verified with the
clutter_main_quit() commented out which gives visual feedback of what the
test does, so the off by one would have snuck in just before uncommenting
and pushing.)
The load-finished signal has a GError* argument which is meant to
signify whether the loading was successful. However many of the
places in ClutterTexture that emit this signal directly pass their
'error' variable which is a GError** and will be NULL or not
completely independently of whether there was an error. If the
argument was dereferenced it would probably crash.
The test-texture-async interactive test case should also verify
that the ::load-finished signal is correctly emitted.
Fixes bug:
http://bugzilla.openedhand.com/show_bug.cgi?id=1622
The texture filters are now a property of the material layer rather
than the texture object. Whenever a texture is painted with a material
it sets the filters on all of the GL textures in the Cogl texture. The
filter is cached so that it won't be changed unnecessarily.
The automatic mipmap generation has changed so that the mipmaps are
only generated when the texture is painted instead of every time the
data changes. Changing the texture sets a flag to mark that the
mipmaps are dirty. This works better if the FBO extension is available
because we can use glGenerateMipmap. If the extension is not available
it will temporarily enable automatic mipmap generation and reupload
the first pixel of each slice. This requires tracking the data for the
first pixel.
The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with
COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to
auto-mipmapping. The mipmap generation is now effectively free if you
are not using a mipmap filter mode so you would only want to disable
it if you had some special reason to generate your own mipmaps.
ClutterTexture no longer has to store its own copy of the filter
mode. Instead it stores it in the material and the property is
directly set and read from that. This fixes problems with the filters
getting out of sync when a cogl handle is set on the texture
directly. It also avoids the mess of having to rerealize the texture
if the filter quality changes to HIGH because Cogl will take of
generating the mipmaps if needed.
Instead of passing a boolean value, the ::allocate virtual function
should use a bitmask and flags. This gives us room for expansion
without breaking API/ABI, and allows to encode more information to
the allocation process instead of just changes of absolute origin.
Units as they have been implemented since Clutter 0.4 have always been
misdefined as "logical distance unit", while they were just pixels with
fractionary bits.
Units should be reworked to be opaque structures to hold a value and
its unit type, that can be then converted into pixels when Clutter needs
to paint or compute size requisitions and perform allocations.
The previous API should be completely removed to avoid collisions, and
a new type:
ClutterUnits
should be added; the ability to install GObject properties using
ClutterUnits should be maintained.
Timelines no longer work in terms of a frame rate and a number of
frames but instead just have a duration in milliseconds. This better
matches the working of the master clock where if any timelines are
running it will redraw as fast as possible rather than limiting to the
lowest rated timeline.
Most applications will just create animations and expect them to
finish in a certain amount of time without caring about how many
frames are drawn. If a frame is going to be drawn it might as well
update all of the animations to some fraction of the total animation
rather than rounding to the nearest whole frame.
The 'frame_num' parameter of the new-frame signal is now 'msecs' which
is a number of milliseconds progressed along the
timeline. Applications should use clutter_timeline_get_progress
instead of the frame number.
Markers can now only be attached at a time value. The position is
stored in milliseconds rather than at a frame number.
test-timeline-smoothness and test-timeline-dup-frames have been
removed because they no longer make sense.
All the underlying implementation and the public entry points have
been switched to floats; the only missing bits are the Actor properties
that deal with positioning and sizing.
This usually means a major pain when dealing with GValues and varargs
functions. While GValue will warn you when dealing with the wrong
conversions, varags will simply die an horrible (and hard to debug)
death via segfault. Nothing much to do here, except warn people in the
release notes and hope for the best.
If it doesn't queue a redraw and allow the backend to clear and swap
the buffers then the results will be skewed because it is not
predictable when the driver will actually render the scene.
Previously indices were tightly bound to a particular Cogl vertex buffer
but we would like to be able to share indices so now we have
cogl_vertex_buffer_indices_new () which returns a CoglHandle.
In particular we could like to have a shared set of indices for drawing
lists of quads that can be shared between the pango renderer and the
Cogl journal.
cogl_enable_depth_test and cogl_enable_backface_culling have been renamed
and now have corresponding getters, the new functions are:
cogl_set_depth_test_enabled
cogl_get_depth_test_enabled
cogl_set_backface_culling_enabled
cogl_get_backface_culling_enabled
Originally cogl_vertex_buffer_add_indices let the user pass in their own unique
ID for the indices; now the Id is generated internally and returned to the
caller.
It's now possible to add arrays of indices to a Cogl vertex buffer and
they will be put into an OpenGL vertex buffer object. Since it's quite
common for index arrays to be static it saves the OpenGL driver from
having to validate them repeatedly.
This changes the cogl_vertex_buffer_draw_elements API: It's no longer
possible to provide a pointer to an index array at draw time. So
cogl_vertex_buffer_draw_elements now takes an indices identifier that
should correspond to an idendifier returned when calling
cogl_vertex_buffer_add_indices ()
Setting up layer combine functions and blend modes is very awkward to do
programatically. This adds a parser for string based descriptions which are
more consise and readable.
E.g. a material layer combine function could now be given as:
"RGBA = ADD (TEXTURE[A], PREVIOUS[RGB])"
or
"RGB = REPLACE (PREVIOUS)"
"A = MODULATE (PREVIOUS, TEXTURE)"
The simple syntax and grammar are only designed to expose standard fixed
function hardware, more advanced combining must be done with shaders.
This includes standalone documentation of blend strings covering the aspects
that are common to blending and texture combining, and adds documentation
with examples specific to the new cogl_material_set_blend() and
cogl_material_layer_set_combine() functions.
Note: The hope is to remove the now redundant bits of the material API
before 1.0
The CoglTexture constructors expose the "max-waste" argument for
controlling the maximum amount of wasted areas for slicing or,
if set to -1, disables slicing.
Slicing is really relevant only for large images that are never
repeated, so it's a useful feature only in controlled use cases.
Specifying the amount of wasted area is, on the other hand, just
a way to mess up this feature; 99% the times, you either pull this
number out of thin air, hoping it's right, or you try to do the
right thing and you choose the wrong number anyway.
Instead, we can use the CoglTextureFlags to control whether the
texture should not be sliced (useful for Clutter-GST and for the
texture-from-pixmap actors) and provide a reasonable value for
enabling the slicing ourself. At some point, we might even
provide a way to change the default at compile time or at run time,
for particular platforms.
Since max_waste is gone, the :tile-waste property of ClutterTexture
becomes read-only, and it proxies the cogl_texture_get_max_waste()
function.
Inside Clutter, the only cases where the max_waste argument was
not set to -1 are in the Pango glyph cache (which is a POT texture
anyway) and inside the test cases where we want to force slicing;
for the latter we can create larger textures that will be bigger than
the threshold we set.
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Signed-off-by: Robert Bragg <robert@linux.intel.com>
Signed-off-by: Neil Roberts <neil@linux.intel.com>
* master:
[cogl-vertex-buffer] Ensure the clip state before rendering
[test-text-perf] Small fix-ups
Add a test for text performance
[build] Ensure that cogl-debug is disabled by default
[build] The cogl GE macro wasn't passing an int according to the format string
Use the right internal format for GL_ARB_texture_rectangle
[actor_paint] Ensure painting is a NOP for actors with opacity = 0
Make backface culling work with vertex buffers
- Fix a typo in a for loop in create_label which left 'i'
uninitialised and caused a crash if you're unlucky.
- Set the CLUTTER_VBLANK=none environment variable.
- Don't quit on a keypress.
- Trailing whitespace tidy up.
Print out the cursor and selection positions in order to verify
the behaviour of the Text actor.
This is a likely candidate for a conformance test unit as well.
The picking test has two configurables: the number of actors and
the number of events per frame. It makes sense to have them as
command line options to test with multiple configurations without
having to change defines and recompile.
COGLenum, COGLint and COGLuint which were simply typedefs for GL{enum,int,uint}
have been removed from the API and replaced with specialised enum typedefs, int
and unsigned int. These were causing problems for generating bindings and also
considered poor style.
The cogl texture filter defines CGL_NEAREST and CGL_LINEAR etc are now replaced
by a namespaced typedef 'CoglTextureFilter' so they should be replaced with
COGL_TEXTURE_FILTER_NEAREST and COGL_TEXTURE_FILTER_LINEAR etc.
The shader type defines CGL_VERTEX_SHADER and CGL_FRAGMENT_SHADER are handled by
a CoglShaderType typedef and should be replaced with COGL_SHADER_TYPE_VERTEX and
COGL_SHADER_TYPE_FRAGMENT.
cogl_shader_get_parameteriv has been replaced by cogl_shader_get_type and
cogl_shader_is_compiled. More getters can be added later if desired.
With the recent change to internal floating point values, ClutterUnit
has become a redundant type, defined to be a float. All integer entry
points are being internally converted to floating point values to be
passed to the GL pipeline with the least amount of conversion.
ClutterUnit is thus exposed as just a "pixel with fractionary bits",
and not -- as users might think -- as generic, resolution and device
independent units. not that it was the case, but a definitive amount
of people was convinced it did provide this "feature", and was flummoxed
about the mere existence of this type.
So, having ClutterUnit exposed in the public API doubles the entry
points and has the following disadvantages:
- we have to maintain twice the amount of entry points in ClutterActor
- we still do an integer-to-float implicit conversion
- we introduce a weird impedance between pixels and "pixels with
fractionary bits"
- language bindings will have to choose what to bind, and resort
to manually overriding the API
+ *except* for language bindings based on GObject-Introspection, as
they cannot do manual overrides, thus will replicate the entire
set of entry points
For these reason, we should coalesces every Actor entry point for
pixels and for ClutterUnit into a single entry point taking a float,
like:
void clutter_actor_set_x (ClutterActor *self,
gfloat x);
void clutter_actor_get_size (ClutterActor *self,
gfloat *width,
gfloat *height);
gfloat clutter_actor_get_height (ClutterActor *self);
etc.
The issues I have identified are:
- we'll have a two cases of compiler warnings:
- printf() format of the return values from %d to %f
- clutter_actor_get_size() taking floats instead of unsigned ints
- we'll have a problem with varargs when passing an integer instead
of a floating point value, except on 64bit platforms where the
size of a float is the same as the size of an int
To be clear: the *intent* of the API should not change -- we still use
pixels everywhere -- but:
- we remove ambiguity in the API with regard to pixels and units
- we remove entry points we get to maintain for the whole 1.0
version of the API
- we make things simpler to bind for both manual language bindings
and automatic (gobject-introspection based) ones
- we have the simplest API possible while still exposing the
capabilities of the underlying GL implementation
There were several functions I believe no one is currently using that were
only implemented in the GL backend (cogl_offscreen_blit_region and
cogl_offscreen_blit) that have simply been removed so we have a chance to
think about design later with a real use case.
There was one nonsense function (cogl_offscreen_new_multisample) that
sounded exciting but in all cases it just returned COGL_INVALID_HANDLE
(though at least for GL it checked for multisampling support first!?)
it has also been removed.
The MASK draw buffer type has been removed. If we want to expose color
masking later then I think it at least would be nicer to have the mask be a
property that can be set on any draw buffer.
The cogl_draw_buffer and cogl_{push,pop}_draw_buffer function prototypes
have been moved up into cogl.h since they are for managing global Cogl state
and not for modifying or creating the actual offscreen buffers.
This also documents the API so for example desiphering the semantics of
cogl_offscreen_new_to_texture() should be a bit easier now.
The units in the Timeline test suite just rely on the timeline
being a timeout automatically advanced by the main loop. This
is not the case anymore, since the merge of the master-clock.
To make the test units work again we need to "emulate" the master
clock without effectively having a stage to redraw; we do this
by creating a frame source and manually advancing the timelines
we create for test purposes, using the advance_msecs() "protected"
method.
With the change in commit 87e4e2 painting of hidden source actors
in ClutterClone was fixed. This commit changes the test-actor-clone
to visually verify this.
Setting the wrap mode on the PangoLayout seems to have disappeared
during the text-actor-layout-height branch merge so this brings it
back. The test for this in test-text-cache no longer needs to be
disabled.
We also shouldn't set the width on the layout if there is no wrapping
or ellipsizing because otherwise it implicitly enables wrapping. This
only matters if the actor gets allocated smaller than its natural
size.
Bug 1138 - No trackable "mapped" state
* Add a VISIBLE flag tracking application programmer's
expected showing-state for the actor, allowing us to
always ensure we keep what the app wants while tracking
internal implementation state separately.
* Make MAPPED reflect whether the actor will be painted;
add notification on a ClutterActor::mapped property.
Keep MAPPED state updated as the actor is shown,
ancestors are shown, actor is reparented, etc.
* Require a stage and realized parents to realize; this means
at realization time the correct window system and GL resources
are known. But unparented actors can no longer be realized.
* Allow children to be unrealized even if parent is realized.
Otherwise in effect either all actors or no actors are realized,
i.e. it becomes a stage-global flag.
* Allow clutter_actor_realize() to "fail" if not inside a toplevel
* Rework clutter_actor_unrealize() so internally we have
a flavor that does not mess with visibility flag
* Add _clutter_actor_rerealize() to encapsulate a somewhat
tricky operation we were doing in a couple of places
* Do not realize/unrealize children in ClutterGroup,
ClutterActor already does it
* Do not realize impl by hand in clutter_stage_show(),
since showing impl already does that
* Do not unrealize in various dispose() methods, since
ClutterActor dispose implementation already does it
and chaining up is mandatory
* ClutterTexture uses COGL while unrealizable (before it's
added to a stage). Previously this breakage was affecting
ClutterActor because we had to allow realize outside
a stage. Move the breakage to ClutterTexture, by making
ClutterTexture just use COGL while not realized.
* Unrealize before we set parent to NULL in clutter_actor_unparent().
This means unrealize() implementations can get to the stage.
Because actors need the stage in order to detach from stage.
* Update clutter-actor-invariants.txt to reflect latest changes
* Remove explicit hide/unrealize from ClutterActor::dispose since
unparent already forces those
Instead just assert that unparent() occurred and did the right thing.
* Check whether parent implements unrealize before chaining up
Needed because ClutterGroup no longer has to implement unrealize.
* Perform unrealize in the default handler for the signal.
This allows non-containers that have children to work properly,
and allows containers to override how it's done.
* Add map/unmap virtual methods and set MAPPED flag on self and
children in there. This allows subclasses to hook map/unmap.
These are not signals, because notify::mapped is better for
anything it's legitimate for a non-subclass to do.
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Bug 1513 - Allow passing in ClutterPickMode to
clutter_stage_get_actor_at_pos()
At the moment, clutter_stage_get_actor_at_pos() uses CLUTTER_PICK_ALL
internally to find an actor. It would be useful to allow passing in
ClutterPickMode to clutter_stage_get_actor_at_pos(), so that the caller
can specify CLUTTER_PICK_REACTIVE as a criteria.
Three tests are now performed on the picked squares. First there is no
covering actor which is the same as the original test. Then there is a
hidden covering actor which should not affect the results. Finally
there is a covering actor with a clip set on it so that only actors
at the borders of the stage should be pickable.
The wrap mode sub-test inside the ClutterText layout cache test
unit has been broken by the recent changes inside the Text actor.
The sub-test itself might require tweaking.
The cogl_is_* functions were showing up quite high on profiles due to
iterating through arrays of cogl handles.
This does away with all the handle arrays and implements a simple struct
inheritance scheme. All cogl objects now add a CoglHandleObject _parent;
member to their main structures. The base object includes 2 members a.t.m; a
ref_count, and a klass pointer. The klass in turn gives you a type and
virtual function for freeing objects of that type.
Each handle type has a _cogl_##handle_type##_get_type () function
automatically defined which returns a GQuark of the handle type, so now
implementing the cogl_is_* funcs is just a case of comparing with
obj->klass->type.
Another outcome of the re-work is that cogl_handle_{ref,unref} are also much
more efficient, and no longer need extending for each handle type added to
cogl. The cogl_##handle_type##_{ref,unref} functions are now deprecated and
are no longer used internally to Clutter or Cogl. Potentially we can remove
them completely before 1.0.
There is no need for a custom hsl to rgb converter since Clutter implements
this logic; originally it wasn't quite as optimal, but that has now been
fixed.
Using test-cogl-vertex-buffer as a test case which is CPU bound due to
hls -> rgb conversions this alternative algorithm looked to be ~10%
faster when tested on an X61s Lenovo.
The test is a sanity check that dynamic updating of vertex data via the cogl
vertex buffer api works and has reasonable performance. (though it can't be
considered a well designed benchmark since it wastes casual amounts of CPU
time simply choosing pretty colors.)
The code also aims to demonstrate one way of creating, updating and efficiently
drawing a quad mesh structure via the vertex buffer api which could be applied
to lots of different use cases.
Only have load-data-async and load-async properties, both are construct
only and the latter adds the former load-size-async behavior on top of
load-data-async.
The fog and perspective API is currently split in two parts:
- the floating point version, using values
- the fixed point version, using structures
The relative properties are using the structure types, since they
are meant to set multiple values at the same time. Instead of
using bare values, the whole API should be coalesced into two
simple calls using structures to match the GObject properties.
Thus:
clutter_stage_set_fog (ClutterStage*, const ClutterFog*)
clutter_stage_get_fog (ClutterStage*, ClutterFog*)
clutter_stage_set_perspective (ClutterStage*, const ClutterPerspective*)
clutter_stage_get_perspective (ClutterStage*, ClutterPerspective*)
Which supercedes the fixed point and floating point variants.
More importantly, both ClutterFog and ClutterPerspective should
using floating point values, since that's what get passed to
COGL anyway.
ClutterFog should also drop the "density" member, since ClutterStage
only allows linear fog; non-linear fog distribution can be achieved
using a signal handler and calling cogl_set_fog() directly; this keeps
the API compact yet extensible.
Finally, there is no ClutterStage:fog so it should be added.
The ClutterColor API has some inconsistencies:
- the string deserialization function does not match the rest of
the conversion function naming policy; the naming should be:
clutter_color_parse() -> clutter_color_from_string()
and the first parameter should be the ClutterColor that will
be set from the string, not the string itself (a GDK-ism).
- the fixed point API should not be exposed, especially in the
form of ClutterFixed values
- the non-fixed point HLS conversion functions do not make any
sense. The values returned should be:
hue := range [ 0, 360 ]
luminance := range [ 0, 1 ]
saturation := range [ 0, 1 ]
like the current fixed point API does. Returning a value in
the [ 0, 255 ] range is completely useless
- the clutter_color_equal() should be converted for its use inside
a GHashTable; a clutter_color_hash() should be added as well
- the second parameter of the clutter_color_shade() function should
be the shading factor, not the result (another GDK-ism). this way
the function call can be translated from this:
color.shade(out result, factor)
to the more natural:
color.shade(factor, out result)
This somewhat large commit fixes all these issues and updates the
internal users of the API.
The libdisable-npots library is just used as a helper as part of
make test so it should not be installed.
If noinst_* is used then automake will generate a static library but
this won't work with LD_PRELOAD so we then need an extra custom rule
to link that into a shared library. The custom rule uses the $(LINK)
Makefile var which gets put in the Makefile because of the static
library. We pass libtool a stub -rpath option which causes it to
generate a shared library.
The test now explicitly reads back from the framebuffer to sanity check that
texturing is happening as expected, and it now uses a fixed 2x2 texture instead
of redhand.png since redhand.png doesn't have a power of two size which can
cause the vertex buffer code to complain on hardware not supporting npot
textures.
The TEST_CONFORM_TODO macro is a simple placeholder macro that
adds the test function to the "/todo" namespace and skips the
test.
It can be used for tests that are known to fail because of bugs
that haven't been fixed yet, or because of features not yet
implemented.
test-vertex-buffer-configuous now needs redhand.png so it should be
copied in to the build directory. This is copied from similar code in
the tests/interactive Makefile.
ClutterModel has an interactive test but lacks a conformance
unit for automatic testing.
This is the beginning of that unit, which covers the population
and iteration over a ListModel.
Sometimes a test unit should not be executed depending on a
condition. It would be good to have a macro doing this, along
with TEST_CONFORM_SIMPLE().
Additionally, the skipped unit should be added to a specific
namespace, so that any coverage report will be able to catch it.
For this reason, here's TEST_CONFORM_SKIP() which follows the
syntax:
TEST_CONFORM_SKIP (condition, namespace, function);
If condition evaluates to FALSE the test is skipped and the
unit added to the "/skipped" namespace.
The test no longer requires an XID argument to run; instead it creates its
own X Window. The test now also aims to demonstrate whether mipmapping is
working, and clearly informs you if fallbacks are being used for GLX tfp.
Fixes some blending issues when using color arrays since we were
conflicting with the cogl_enable state + fixes a texture layer
validation bug.
Adds a basic textured triangle to test-vertex-buffer-contiguous.
The test simply creates an odd sized texture with different colors at
each of the four corners. It then renders the texture and verifies
that the colors are the expected values. This should help ensure that
the sliced texture rendering code is working properly.
The :alignment property is prone to generate confusion: developers
will set it thinking that the contents of a ClutterText will
automagically align themselves.
Instead of using the generic term :alignment, and following the
GTK+ convention, we should use a more specific term, conveying the
actual effect of the property: alignment of the lines with respect
to each other, and not to the overall allocated area.
See bug 1428:
http://bugzilla.openedhand.com/show_bug.cgi?id=1428
This makes it consistent with cogl_rectangle_with_{multi,}texture_coords.
Notably the reason cogl_rectangle_with_{multi,}texture_coords wasn't changed
instead is that the former approach lets you describe back facing rectangles.
(though technically you could pass negative width/height values to achieve
this; it doesn't seem as neat.)
Bug 1349 - Using the anchor point to set the scale center is messy
The branch adds an extra center point for scaling which can be used
for example to set a scale about the center without affecting the
position of the actor.
The scale center can be specified as a unit offset from the origin or
as a gravity. If specified as a gravity it will be stored as a
fraction of the actor's size so that the position will track when the
actor changes size.
The anchor point and rotation centers have been modified so they can
be set with a gravity in the same way. However, only the Z rotation
exposes a property to set using a gravity because the other two
require a Z coordinate which doesn't make sense to interpret as a
fraction of the actor's width or height.
Conflicts:
clutter/clutter-actor.c
During the upgrade to cogl material, test-backface-culling was
switched to use cogl_rectangle instead of cogl_texture_rectangle to
draw the textures. However, cogl_rectangle takes a width and height
instead of the the top-left and bottom-right vertices so the
rectangles were being drawn in the wrong place.
* generic-actor-clone:
Remove CloneTexture from the API
[tests] Clean up the Clone interactive test
Rename ActorClone to Clone/2
Rename ActorClone to Clone/1
Improves the unit test to verify more awkward scaling and some corresponding fixes
Implements a generic ClutterActorClone that doesn't need fbos.
Conflicts:
clutter/cogl/gl/cogl-texture.c
clutter/cogl/gles/cogl-primitives.c
* cogl-material:
clutter-{clone-,}texture weren't updating their material opacity.
Updates GLES1 support for CoglMaterial
Normalizes gl vs gles code in preperation for synching material changes
Removes cogl_blend_func and cogl_alpha_func
Fully integrates CoglMaterial throughout the rest of Cogl
[cogl-material] Restore the GL_TEXTURE_ENV_MODE after material_rectangle
[cogl-material] Make the user_tex_coords parameter of _rectangle const
[test-cogl-material] Remove return value from material_rectangle_paint
Add cogl-material.h and cogl-matrix.h to libclutterinclude_HEADERS
[cogl-material] improvements for cogl_material_rectangle
[cogl-material] Adds a cogl_material_set_color function
[cogl-material] Some improvements for how we sync CoglMaterial state with OpenGL
[cogl-material] Converts clutter-texture/clutter-clone-texture to the material API
[doc] Hooks up cogl-material reference documentation
Updates previous GLES multi-texturing code to use CoglMaterial
Adds a CoglMaterial abstraction, which includes support for multi-texturing
[doc] Hooks up cogl-matrix reference documentation
Adds CoglMatrix utility code
[tests] Adds an interactive unit test for multi-texturing
[multi-texturing] This adds a new cogl_multi_texture API for GL,GLES1 + GLES2
ClutterClone supercedes ClutterCloneTexture, since it can clone
every kind of actor -- including composite ones.
This is another "brain surgery with a shotgun" kind of commit: it
removes CloneTexture and updates every test case using CloneTexture
to ClutterClone. The API fallout is minimal, luckily for us.
This glues CoglMaterial in as the fundamental way that Cogl describes how to
fill in geometry.
It adds cogl_set_source (), which is used to set the material which will be
used by all subsequent drawing functions
It adds cogl_set_source_texture as a convenience for setting up a default
material with a single texture layer, and cogl_set_source_color is now also
a convenience for setting up a material with a solid fill.
"drawing functions" include, cogl_rectangle, cogl_texture_rectangle,
cogl_texture_multiple_rectangles, cogl_texture_polygon (though the
cogl_texture_* funcs have been renamed; see below for details),
cogl_path_fill/stroke and cogl_vertex_buffer_draw*.
cogl_texture_rectangle, cogl_texture_multiple_rectangles and
cogl_texture_polygon no longer take a texture handle; instead the current
source material is referenced. The functions have also been renamed to:
cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords
and cogl_polygon respectivly.
Most code that previously did:
cogl_texture_rectangle (tex_handle, x, y,...);
needs to be changed to now do:
cogl_set_source_texture (tex_handle);
cogl_rectangle_with_texture_coords (x, y,....);
In the less likely case where you were blending your source texture with a color
like:
cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */
cogl_texture_rectangle (tex_handle, x, y,...);
you will need your own material to do that:
mat = cogl_material_new ();
cogl_material_set_color4ub (r,g,b,a);
cogl_material_set_layer (mat, 0, tex_handle));
cogl_set_source_material (mat);
Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use
cog_rectangle_with_texure_coords since these are the coordinates that
cogl_rectangle will use.
For cogl_texture_polygon; as well as dropping the texture handle, the
n_vertices and vertices arguments were transposed for consistency. So
code previously written as:
cogl_texture_polygon (tex_handle, 3, verts, TRUE);
need to be written as:
cogl_set_source_texture (tex_handle);
cogl_polygon (verts, 3, TRUE);
All of the unit tests have been updated to now use the material API and
test-cogl-material has been renamed to test-cogl-multitexture since any
textured quad is now technically a test of CoglMaterial but this test
specifically creates a material with multiple texture layers.
Note: The GLES backend has not been updated yet; that will be done in a
following commit.
Step two: rename the object and its methods.
While we're at it, adhere more strictly to the coding style
practises; rename :clone-source to :source; add a setter method
for the :source property; take a reference on the source actor
to avoid it disappearing while we're still accessing it.
This removes a lot of code from test-cogl-primitives to make it easier
to follow. The TestCoglBox custom actor has gone and instead a blank
ClutterGroup is created with a paint signal handler.
Instead of rendering constantly and updating when a GTimer elapses a
second, a ClutterTimeline is used with 1 fps and a new redraw is
queued every frame.
The custom main loop is replaced with a regular call to clutter_main.
This fixes the close button of the stage window so you can quit
without having to press Ctrl+C.
The rotation centers are now tested in a similar way to the anchor
point and scale centers.
The notification handling code has been simplified a bit to handle the
increased amount of properties.
Since we override the clean-generic target in order to remove
the shell scripts we create for each conformance test unit, we
cannot use CLEANFILES to remove the test reports.
The maintainer compiler flags we use trigger warnings and errors
in the autogenerated code that gtk-doc creates to scan the header
and source files. Since we cannot control that, and we must run
a distcheck with both --enable-gtk-doc and --enable-maintainer-flags
turned on, we need to use less-strict compiler flags when inside
the doc/reference subdirectories.
The way to do this is to split the maintainer compiler flags into
their own Makefile variable, called MAINTAINER_CFLAGS. The we
can use $(MAINTAINER_CFLAGS) in the INCLUDES or _CFLAGS sections
of each part of the source directories we wish to check with the
anal retentiveness suited for maintainers.
* float-alpha-value:
[script] Parse easing modes by name
[docs] Update the easing modes documentation
[animation] Implement new easing functions
[animation] Move the alpha value to floating point
This better reflects the fact that the api manages sets of vertex attributes,
and the attributes really have no implied form. It is only when you use the
attributes to draw that they become mesh like; when you specify how they should
be interpreted, e.g. as triangle lists or fans etc. This rename frees up the
term "mesh", which can later be applied to a concept slightly more fitting.
E.g. at some point it would be nice to have a higher level abstraction that
sits on top of cogl vertex buffers that adds the concept of faces. (Somthing
like Blender's mesh objects.) There have also been some discussions over
particle engines, and these can be defined in terms of emitter faces; so some
other kind of mesh abstraction might be usefull here.
Okey; to summarise the changes...
We have converted Clutter and Cogl over to using floating point internally
instead of 16.16 fixed, but we have maintained the cogl-fixed API as a
utility to applications in case they want to implement their own optimizations.
The Clutter API has not changed (though ClutterFixed and ClutterUnit are now
internally floats) but all Cogl entry points have been changed to accept floats
now instead of CoglFixed.
To summarise the rationale...
There have been a number of issues with using fixed point though out Clutter
and Cogl including: lack of precision, lack of range, excessive format
conversion (GPUs tend to work nativly with IEEE floats) and maintainability.
One of the main arguments for fixed point - performance - hasn't shown
itself to be serious in practice so far since we seem to be more limited
by GPU performance and making improvements regarding how we submit data to
OpenGL[ES]/the GPU has had a more significant impact.
Ref: The recent multiple rectangle queuing changes + the
cogl-texture-agressive-batching branch which show significant performance
gains, and that recent tests on the ipodtouch (ARM + MBX) also showed no
loss of performance running with floats.
So finally; please forgive the inevitable fallout, this is a far reaching
change. There are still a few known issues with the fixed to float
conversion but enough works for all our conformance tests to pass, and the
remaining issues hopefully wont be too tricky to solve. For reference two
tags will be available either side of this change: "cogl-fixed-end" and
"cogl-float-start"
The easing modes for a ClutterAlpha can either be parsed by using
the enumeration "nickname" (the shorthand form of the enumeration
value) or by using the common naming policy used in other
animation frameworks, like:
easeInCubic
easeOutElastic
easeInOutBounce
Instead of using our own homegrown alpha functions, we should
use the easing functions also shared by other animation frameworks,
like jQuery and Tween, in the interests of code portability.
The easing functions have been defined by Robert Penner and
are divided into three categories:
In Out InOut
Each category has a particular curve:
Quadratic
Cubic
Quartic
Quintic
Sinusoidal
Exponential
Circular
In addition, there are "physical" curves:
Elastic
Back (overshooting cubic)
Bounce (exponentially decaying parabolic)
Finally, the Linear curve is also provided as a reference.
The functions are private, and are meant to be used only
through their logical id as provided by the AnimationMode
enumeration.
The tests should be updated as well to match the new
easing functions.
The current Alpha value is an unsigned integer that can be used
implicitly as a fixed point value. This makes writing an alpha
function overshooting below and above the current range basically
impossible without complicating an already complex code, and
creating weird corner cases.
For this reason, the Alpha value should be defined as a floating
point normalized value, spanning a range between 0.0 and 1.0; in
order to allow overshooting, the valid range is extended one unit
below and one unit above, thus making it -1.0 .. 2.0.
This commit updates the various users of the ClutterAlpha API
and the tests cases.
This commit also removes all the current alpha functions exposed
in the public API.
To deal with all the corner cases that couldn't be scripted a number of patches
were written for the remaining 10% of the effort.
Note: again no API changes were made in Clutter, only in Cogl.