Since the Cogl 1.18 branch is actively maintained in parallel with the
master branch; this is a counter part to commit 1b83ef938fc16b which
re-licensed the master branch to use the MIT license.
This re-licensing is a follow up to the proposal that was sent to the
Cogl mailing list:
http://lists.freedesktop.org/archives/cogl/2013-December/001465.html
Note: there was a copyright assignment policy in place for Clutter (and
therefore Cogl which was part of Clutter at the time) until the 11th of
June 2010 and so we only checked the details after that point (commit
0bbf50f905)
For each file, authors were identified via this Git command:
$ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD
We received blanket approvals for re-licensing all Red Hat and Collabora
contributions which reduced how many people needed to be contacted
individually:
- http://lists.freedesktop.org/archives/cogl/2013-December/001470.html
- http://lists.freedesktop.org/archives/cogl/2014-January/001536.html
Individual approval requests were sent to all the other identified authors
who all confirmed the re-license on the Cogl mailinglist:
http://lists.freedesktop.org/archives/cogl/2014-January
As well as updating the copyright header in all sources files, the
COPYING file has been updated to reflect the license change and also
document the other licenses used in Cogl such as the SGI Free Software
License B, version 2.0 and the 3-clause BSD license.
This patch was not simply cherry-picked from master; but the same
methodology was used to check the source files.
This adds COGL_PIXEL_FORMAT_RG_88 and COGL_TEXTURE_COMPONENTS_RG in
order to support two-component textures. The RG components for a
texture is only supported if COGL_FEATURE_ID_TEXTURE_RG is advertised.
This is only available on GL 3, GL 2 with the GL_ARB_texture_rg
extension or GLES with the GL_EXT_texture_rg extension. The RG pixel
format is always supported for images because Cogl can easily do the
conversion if an application uses this format to upload to a texture
with a different format.
If an application tries to create an RG texture when the feature isn't
supported then it will raise an error when the texture is allocated.
https://bugzilla.gnome.org/show_bug.cgi?id=712830
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 568677ab3bcb62ababad1623be0d6b9b117d0a26)
Conflicts:
cogl/cogl-bitmap-packing.h
cogl/cogl-types.h
cogl/driver/gl/gl/cogl-driver-gl.c
tests/conform/test-read-texture-formats.c
tests/conform/test-write-texture-formats.c
This fixes the cogl_texture_get_components() prototype to have a return
type of CoglTextureComponents instead of CoglBool which was probably a
copy and paste error.
(cherry picked from commit 55b09f8a939db71ee5ff41afa0ed08cbe937a4ec)
This moves all of the automagic texture constructor prototypes from
cogl-texture.h into a new deprecated/cogl-auto-texture.h file. This also
moves cogl_texture_new_from_sub_texture() into
deprecated/cogl-auto-texture.c
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Texture allocation is now consistently handled lazily such that the
internal format can now be controlled using
cogl_texture_set_components() and cogl_texture_set_premultiplied()
before allocating the texture with cogl_texture_allocate(). This means
that the internal_format arguments to texture constructors are now
redundant and since most of the texture constructors now can't ever fail
the error arguments are also redundant. This now means we no longer
use CoglPixelFormat in the public api for describing the internal format
of textures which had been bad solution originally due to how specific
CoglPixelFormat is which is missleading when we don't support such
explicit control over the internal format.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 99a53c82e9ab0a1e5ee35941bf83dc334b1fbe87)
Note: there are numerous API changes for functions currently marked
as 'unstable' which we don't think are in use by anyone depending on
a stable 1.x api. Compared to the original patch though this avoids
changing the cogl_texture_rectangle_new_with_size() api which we know
is used by Mutter.
This introduces the internal idea of texture loaders that track the
state for loading and allocating a texture. This defers a lot more work
until the texture is allocated.
There are several intentions to this change:
- provides a means for extending how textures are allocated without
requiring all the parameters to be supplied in a single _texture_new()
function call.
- allow us to remove the internal_format argument from all
_texture_new() apis since using CoglPixelFormat is bad way of
expressing the internal format constraints because it is too specific.
For now the internal_format arguments haven't actually been removed
but this patch does introduce replacement apis for controlling the
internal format:
cogl_texture_set_components() lets you specify what components your
texture needs when it is allocated.
cogl_texture_set_premultiplied() lets you specify whether a texture
data should be interpreted as premultiplied or not.
- Enable us to support asynchronous texture loading + allocation in the
future.
Of note, the _new_from_data() texture constructors all continue to
allocate textures immediately so that existing code doesn't need to be
adapted to manage the lifetime of the data being uploaded.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c)
Note: Compared to the original patch, the ->premultipled state for
textures isn't forced to be %TRUE in _cogl_texture_init since that
effectively ignores the users explicitly given internal_format which was
a mistake and on master that change should have been made in the patch
that followed. The gtk-doc comments for cogl_texture_set_premultiplied()
and cogl_texture_set_components() have also been updated in-line with
this fix.
When reading a texture back by first wrapping it as an offscreen
framebuffer and using _read_pixels_into_bitmap() we now make sure the
offscreen framebuffer has an internal format that matches the
meta-texture being read not that of the current sub-texture being
iterated. In the case of atlas textures the subtexture is a shared
texture whose format doesn't reflect the premultipled alpha status of
individual atlas-textures, nor whether the alpha component is valid.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 6ee425d4f10acd8b008a2c17e5c701fc1d850f59)
CoglPixelFormat is not a good way of describing the internal
format of a texture because it's too specific given that we don't
actually have exact knowledge of the internal format used by the driver.
This makes cogl_texture_get_format private and in the future we'll
provide a better way of querying the channels and their precision.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit ffde82981f22bd0185a7f33e1e6e1479f4c295b8)
Note: Since we can't break API compatibility on the 1.x branch this adds
a cogl/deprecated/cogl-texture-deprecated.c file with a
cogl_texture_get_format() wrapper around the private api. This also
moves the cogl_texture_get_rowstride() and cogl_texture_ref/unref()
functions that were previously deprecated into cogl-texture-deprecated.c
The plan is to defer a lot more work in creating a texture until
allocation time. This means that for some texture backends we might not
know until after allocation whether the texture is sliced or can support
hardware repeating. This makes sure we trigger an allocation if either
of these are queried.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 4868582812dbcd5125495b312d858f751fc31e9d)
The plan is to defer a lot more work in creating a texture until
allocation time. This means we wont be able to assume that all textures
being used to render must have already been allocated when data was
specified.
The latest point at which we will generally require a texture to be
allocated will be when we need to know the underlying GL handle for a
texture and so this updates cogl_texture_get_gl_texture() to ensure the
texture is allocated.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 59f6fefc37524f492512a71b831760a218d9bb95)
Previously the private feature flags were stored in an enum and we
already had 31 flags. Adding the 32nd flag would presumably make it
add -2³¹ as one of the values which might cause problems. To avoid
this we'll just use an fixed-size array of longs and use indices for
the enum values like we do for the public features.
A slight complication with this is in the CoglDriverDescription where
we were previously using a static intialised value to describe the set
of features that the driver supports. We can't easily do this with the
flags array so instead the features are stored in a fixed-size array
of indices.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit d94cb984e3c93630f3c2e6e3be9d189672aa20f3)
Conflicts:
cogl/cogl-context-private.h
cogl/cogl-context.c
cogl/cogl-private.h
cogl/cogl-renderer.c
cogl/driver/gl/cogl-pipeline-opengl.c
cogl/driver/gl/gl/cogl-driver-gl.c
cogl/driver/gl/gl/cogl-pipeline-progend-fixed-arbfp.c
cogl/driver/gl/gles/cogl-driver-gles.c
cogl/driver/nop/cogl-driver-nop.c
This renames cogl_offscreen_new_to_texture to
cogl_offscreen_new_with_texture. The intention is to then cherry-pick
this back to the cogl-1.16 branch so we can maintain a parallel
cogl_offscreen_new_to_texture() function which keeps the synchronous
allocation semantics that some clutter applications are currently
relying on.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit ecc6d2f64481626992b2fe6cdfa7b999270b28f5)
Note: Since we can't break the 1.x api on this branch this keeps a
thin shim around cogl_offscreen_new_with_texture to implement
cogl_offscreen_new_to_texture with its synchronous allocation
semantics.
This removes the gl centric _cogl_texture_prepare_for_upload api from
cogl-texture.c and instead adds a _cogl_bitmap_convert_for_upload() api
which everything now uses instead. GL specific code that needed the gl
internal/format/type enums returned by _cogl_texture_prepare_for_upload
now use ->pixel_format_to_gl directly.
Since there was a special case optimization in
cogl_texture_new_from_file that aimed to avoid copying the temporary
bitmap that's created for the given file and allow conversions to
happen in-place the new _cogl_bitmap_convert_for_upload() api supports
converting in place depending on a 'can_convert_in_place' argument.
This ability to convert bitmaps in-place has been integrated across the
different components as appropriate.
In updating cogl-texture-2d-sliced.c this was able to remove a number of
other GL specific parts to how spans are setup.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit e190dd23c655da34b9c5c263a9f6006dcc0413b0)
Conflicts:
cogl/cogl-auto-texture.c
cogl/cogl.symbols
If we make this per-context and create two Cogl contexts, some types
won't re-register, and we'll be in a broken state where some types will
be considered not to be texture types.
https://bugzilla.gnome.org/show_bug.cgi?id=693696
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 567f049d20554bb8ea4e40fa5e72a9fd0bbd409e)
The GLES2 driver wasn't compiling unless the GL driver is also enabled
because some run-time conditional code was directly using GL-only
defines.
This should also fix compiling using the stock GL headers on OS X
which don't define GL_NUM_EXTENSIONS.
https://bugzilla.gnome.org/show_bug.cgi?id=692420
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 661e1719aa0b95c409c568ec91ea52b8ff90519b)
_cogl_texture_spans_foreach_in_region first swaps over the texture
coordinates if they are flipped so that it can always iterate in a
positive direction. It sets a flag so that it will remember that the
coordinates are flipped. Before invoking the callback it is meant to
reflip the coordinates so that the callee doesn't need to be aware of
the flipping. However it was only flipping the sub-texture coordinates
and not the virtual coordinates. This was causing sliced textures to
draw their slice rectangles with the wrong geometry.
test-backface-culling was failing because of this.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit e7338a1e09cb22151374aefa6f0bb58485af9189)
This adds a cogl_texture_set_data function that is basically just a
convenience wrapper around cogl_texture_set_region. In the common case
where you want to upload the full contents of a mipmap level though this
api takes 4 less arguments (6 in total) so it's a bit simpler.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit e651dbdc4e4f03016a3dee513e3680270a4a9142)
Consistent with how we lazily allocate framebuffers this patch allows us
to instantiate textures but still specify constraints and requirements
before allocating storage so that we can be sure to allocate the most
appropriate/efficient storage.
This adds a cogl_texture_allocate() function that is analogous to
cogl_framebuffer_allocate() which can optionally be called to explicitly
allocate storage and catch any errors. If this function isn't used
explicitly then Cogl will implicitly ensure textures are allocated
before the storage is needed.
It is generally recommended to rely on lazy storage allocation or at
least perform explicit allocation as late as possible so Cogl can be
fully informed about the best way to allocate storage.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 1fa7c0f10a8a03043e3c75cb079a49625df098b7)
Note: This reverts the cogl_texture_rectangle_new_with_size API change
that dropped the CoglError argument and keeps the semantics of
allocating the texture immediately. This is because Mutter currently
uses this API so we will probably look at updating this later once
we have a corresponding Mutter patch prepared. The other API changes
were kept since they only affected experimental api.
There was a lot of redundancy in how we tracked the width and height of
different texture types which is greatly simplified by adding width and
height members to CoglTexture directly and removing the get_width and
get_height vfuncs from CoglTextureVtable
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 3236e47723e4287d5e0023f29083521aeffc75dd)
This moves the _cogl_texture_get_gl_format function from cogl-texture.c
to cogl-texture-gl.c and renames it _cogl_texture_gl_get_format.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f8deec01eff7d8d9900b509048cf1ff1c86ca879)
This remove cogl-internal.h in favour of using cogl-private.h. Some
things in cogl-internal.h were moved to driver/gl/cogl-util-gl-private.h
and the _cogl_gl_error_to_string function whose prototype was moved from
cogl-internal.h to cogl-util-gl-private.h has had its implementation
moved from cogl.c to cogl-util-gl.c
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 01cc82ece091aa3bec4c07fdd6bc9e5135fca573)
cogl_texture_set_region() and cogl_texture_set_region_from_bitmap() now
have a level argument so image data can be uploaded to a specific mipmap
level.
The prototype for cogl_texture_set_region was also updated to simplify
the arguments.
The arguments for cogl_texture_set_region_from_bitmap were reordered to
be consistent with cogl_texture_set_region with the source related
arguments listed first followed by the destination arguments.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 3a336a8adcd406b53731a6de0e7d97ba7932c1a8)
Note: Public API changes were reverted in cherry-picking this patch
This adds a driver/gl/cogl-texture-gl.c file and moves some gl specific
bits from cogl-texture.c into it. The moved symbols were also given a
_gl_ infix and the calling code was updated accordingly.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 2c9e81de70cc02d72b1ce9013c49e39300a05b6a)
_cogl_bitmap_new_with_malloc_buffer() now takes a CoglError for throwing
exceptional errors and all callers have been updated to pass through
any application error pointer as appropriate.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 67cad9c0eb5e2650b75aff16abde49f23aabd0cc)
This splits out the very high level texture constructors that may
internally construct one of several types of lower level texture due to
various constraints.
This also updates the prototypes for these constructors to take an
explicit context pointer and return a CoglError consistent with other
texture constructors.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit a1cabfae6ad50c51006c608cdde7d631b7832e71)
This allows apps to catch out-of-memory errors when allocating textures.
Textures can be pretty huge at times and so it's quite possible for an
application to try and allocate more memory than is available. It's also
very possible that the application can take some action in response to
reduce memory pressure (such as freeing up texture caches perhaps) so
we shouldn't just automatically abort like we do for trivial heap
allocations.
These public functions now take a CoglError argument so applications can
catch out of memory errors:
cogl_buffer_map
cogl_buffer_map_range
cogl_buffer_set_data
cogl_framebuffer_read_pixels_into_bitmap
cogl_pixel_buffer_new
cogl_texture_new_from_data
cogl_texture_new_from_bitmap
Note: we've been quite conservative with how many apis we let throw OOM
CoglErrors since we don't really want to put a burdon on developers to
be checking for errors with every cogl api call. So long as there is
some lower level api for apps to use that let them catch OOM errors
for everything necessary that's enough and we don't have to make more
convenient apis more awkward to use.
The main focus is on bitmaps and texture allocations since they
can be particularly large and prone to failing.
A new cogl_attribute_buffer_new_with_size() function has been added in
case developers need to catch OOM errors when allocating attribute buffers
whereby they can first use _buffer_new_with_size() (which doesn't take a
CoglError) followed by cogl_buffer_set_data() which will lazily allocate
the buffer storage and report OOM errors.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978)
Note: since we can't break the API for Cogl 1.x then actually the main
purpose of cherry picking this patch is to keep in-line with changes
on the master branch so that we can easily cherry-pick patches.
All the api changes relating stable apis released on the 1.12 branch
have been reverted as part of cherry-picking this patch so this most
just applies all the internal plumbing changes that enable us to
correctly propagate OOM errors.
The core profile of GL3 has removed support for component-alpha
textures. Previously the GL3 driver would just ignore this and try to
create them anyway. This would generate a GL error on Mesa.
To fix this the GL texture driver will now create a GL_RED texture
when GL_ALPHA textures are not supported natively. It will then set a
texture swizzle using the GL_ARB_texture_swizzle extension so that the
alpha component will be taken from the red component of the texture.
The swizzle is part of the texture object state so it only needs to be
set once when the texture is created.
The ‘gen’ virtual function of the texture driver has been changed to
also take the internal format as a parameter. The GL driver will now
set the swizzle as appropriate here.
The GL3 driver now reports an error if the texture swizzle extension
is not available because Cogl can't really work properly without out
it. The extension is part of GL 3.3 so it is quite likely that it has
wide support from drivers. Eventually we could get rid of this
requirement if we have our own GLSL front-end and we could generate
the swizzle ourselves.
When uploading or downloading texture data to or from a
component-alpha texture, we can no longer rely on GL to do the
conversion. The swizzle doesn't have any effect on the texture data
functions. In these cases Cogl will now force an intermediate buffer
to be used and it will manually do the conversion as it does for the
GLES drivers.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 32bacf81ebaa3be21a8f26af07d8f6eed6607652)
This adds a new CoglDriver for GL 3 called COGL_DRIVER_GL3. When
requested, the GLX, EGL and SDL2 winsyss will set the necessary
attributes to request a forward-compatible core profile 3.1 context.
That means it will have no deprecated features.
To simplify the explosion of checks for specific combinations of
context->driver, many of these conditionals have now been replaced
with private feature flags that are checked instead. The GL and GLES
drivers now initialise these private feature flags depending on which
driver is used.
The fixed function backends now explicitly check whether the fixed
function private feature is available which means the GL3 driver will
fall back to always using the GLSL progend. Since Rob's latest patches
the GLSL progend no longer uses any fixed function API anyway so it
should just work.
The driver is currently lower priority than COGL_DRIVER_GL so it will
not be used unless it is specificly requested. We may want to change
this priority at some point because apparently Mesa can make some
memory savings if a core profile context is used.
In GL 3, getting the combined extensions string with glGetString is
deprecated so this patch changes it to use glGetStringi to build up an
array of extensions instead. _cogl_context_get_gl_extensions now
returns this array instead of trying to return a const string. The
caller is expected to free the array.
Some issues with this patch:
• GL 3 does not support GL_ALPHA format textures. We should probably
make this a feature flag or something. Cogl uses this to render text
which currently just throws a GL error and breaks so it's pretty
important to do something about this before considering the GL3
driver to be stable.
• GL 3 doesn't support client side vertex buffers. This probably
doesn't matter because CoglBuffer won't normally use malloc'd
buffers if VBOs are available, but it might but worth making
malloc'd buffers a private feature and forcing it not to use them.
• GL 3 doesn't support the default vertex array object. This patch
just makes it create and bind a single non-default vertex array
object which gets used just like the normal default object. Ideally
it would be good to use vertex array objects properly and attach
them to a CoglPrimitive to cache the state.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 66c9db993595b3a22e63f4c201ea468bc9b88cb6)
This factors out all of the OpenGL specific code in cogl-texture-2d.c
into cogl-texture-2d-gl.c and where necessary adds indirection through
the CoglDriver vtable so that we can eventually start to experiment with
non-OpenGL backends for Cogl.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit ec57588671696bbe7ce714bdfe7324236146c9c0)
This renames the set_filters and set_wrap_mode_parameters texture
virtual functions to gl_flush_legacy_texobj_filters and
gl_flush_legacy_texobj_wrap_modes respectively to clarify that they are
opengl driver specific and that they are only used to support the legacy
opengl apis for setting filters and wrap modes where the state is
associated with texture objects instead of being associated with sampler
objects.
This part of an effort to clearly delimit our abstraction over opengl so
that we can start to consider non-opengl backends for Cogl.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 6f78b8a613340d7c6b736e51a16c625f52154430)
Although we use GLib internally in Cogl we would rather not leak GLib
api through Cogl's own api, except through explicitly namespaced
cogl_glib_ / cogl_gtype_ feature apis.
One of the benefits we see to not leaking GLib through Cogl's public API
is that documentation for Cogl won't need to first introduce the Glib
API to newcomers, thus hopefully lowering the barrier to learning Cogl.
This patch provides a Cogl specific typedef for reporting runtime errors
which by no coincidence matches the typedef for GError exactly. If Cogl
is built with --enable-glib (default) then developers can even safely
assume that a CoglError is a GError under the hood.
This patch also enforces a consistent policy for when NULL is passed as
an error argument and an error is thrown. In this case we log the error
and abort the application, instead of silently ignoring it. In common
cases where nothing has been implemented to handle a particular error
and/or where applications are just printing the error and aborting
themselves then this saves some typing. This also seems more consistent
with language based exceptions which usually cause a program to abort if
they are not explicitly caught (which passing a non-NULL error signifies
in this case)
Since this policy for NULL error pointers is stricter than the standard
GError convention, there is a clear note in the documentation to warn
developers that are used to using the GError api.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46)
Note: Since we can't change the Cogl 1.x api the patch was changed to
not rename _error_quark() functions to be _error_domain() functions and
although it's a bit ugly, instead of providing our own CoglError type
that's compatible with GError we simply #define CoglError to GError
unless Cogl is built with glib disabled.
Note: this patch does technically introduce an API break since it drops
the cogl_error_get_type() symbol generated by glib-mkenum (Since the
CoglError enum was replaced by a CoglSystemError enum) but for now we
are assuming that this will not affect anyone currently using the Cogl
API. If this does turn out to be a problem in practice then we would be
able to fix this my manually copying an implementation of
cogl_error_get_type() generated by glib-mkenum into a compatibility
source file and we could also define the original COGL_ERROR_ enums for
compatibility too.
Note: another minor concern with cherry-picking this patch to the 1.14
branch is that an api scanner would be lead to believe that some APIs
have changed, and for example the gobject-introspection parser which
understands the semantics of GError will not understand the semantics of
CoglError. We expect most people that have tried to use
gobject-introspection with Cogl already understand though that it is not
well suited to generating bindings of the Cogl api anyway and we aren't
aware or anyone depending on such bindings for apis involving GErrors.
(GnomeShell only makes very-very minimal use of Cogl via the gjs
bindings for the cogl_rectangle and cogl_color apis.)
The main reason we have cherry-picked this patch to the 1.14 branch
even given the above concerns is that without it it would become very
awkward for us to cherry-pick other beneficial patches from master.
This adds a new public cogl_texture_rectangle_new_from_foreign()
function so that we can look at removing the generic
cogl_texture_new_from_foreign().
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit af02792b336bb492c5bd11afc34a5dcd417503f6)
As part of our on-going goal to remove our dependence on a global Cogl
context this patch adds a pointer to the context to each CoglTexture
so that the various texture apis no longer need to use
_COGL_GET_CONTEXT.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 83131072eea395f18ab0525ea2446f443a6033b1)
textures[iter_y.index * n_y_spans + iter_x.index]
only works for vertical rectangles when n_x_spans > 0 (ie x != {0} )
is also wrong for horizontal rectangles ( x = {0, 1, 2, 3} , y = {0, 1}
-> second line will start at 2 = iter_y.index * n_y_spans + iter_x.index
-> iteration are 0, 1, 2, 3, \n 2, 3, 4, 5 instead of 0, 1, 2, 3 \n 4, 5, 6, 7
Reviewed-by: Robert Bragg <robert@linux.inte.com>
(cherry picked from commit bf0d187f1b5423b9ce1281aab1333fa2dfb9863f)
This adds some android specific api for creating a CoglBitmap from an
Android asset.
As part of the work it also seemed like a good time to change the
internal bitmap constructors to take an explicit CoglContext argument
and so the public cogl_bitmap_new_from_file() api was also changed
accordingly to take a CoglContext pointer as the first argument.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 099d6d1b505b55bbd09c50d081deb41ab5764e19)
Since we aren't able to break APIs on the 1.12 branch this cherry-pick
skips the change to cogl_bitmap_new_from_file()
Cogl has feature flags for basic npot texture support and then separate
flags for npot + repeat and npot + mipmap. If those three features are
available then there is a feature for full-npot support too for
convenience. The cogl_texture_2d_new_ constructors were checking for
full npot support and failing if not available but since we expose the
fine grained features to the user the user should be able to check the
limitations of npot textures and still choose to allocate them.
_cogl_texture_2d_can_create() now only checks for basic npot support
when creating a npot texture. Since this change also affects the
automagic cogl_texture_ constructors they now check for basic npot +
mipmap support before considering using a Texture2D.
Notably the cogl_texture_ constructors will try constructing a Texture2D
even if we don't have npot + repeat support since the alternative is a
sliced texture which will need manual repeating anyway. Accordingly the
Texture2D::can_hardware_repeat and ::transform_quad_coords_to_gl vfuncs
have been made aware of the npot + repeat feature flag.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 6f6c5734d076372d98d0ec331b177ef7d65aa67d)
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
Removing CoglHandle has been an on going goal for quite a long time now
and finally this patch removes the last remaining uses of the CoglHandle
type and the cogl_handle_ apis.
Since the big remaining users of CoglHandle were the cogl_program_ and
cogl_shader_ apis which have replaced with the CoglSnippets api this
patch removes both of these apis.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 6ed3aaf4be21d605a1ed3176b3ea825933f85cf0)
Since the original patch was done after removing deprecated API
this back ported patch doesn't affect deprecated API and so
actually this cherry-pick doesn't remove all remaining use of
CoglHandle as it did for the master branch of Cogl.
The Intel driver currently has an optimisation when calling
glReadPixels into a PBO so that it will use a blit instead of the Mesa
fallback path. However this only works if the GL_PACK_ALIGNMENT is
exactly 1, even if this would be equivalent to a higher alignment
value because the bpp*width is already aligned. To make it more likely
to hit this fast path, we now detect this situation and explicitly use
an alignment of 1. To make this work the texture driver needs to be
passed down the bpp*width as well as the rowstride when configuring
the alignment.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Instead of having a series of if-statements this adds an inline
function to calculate the alignment directly using ffs which is
probably slightly faster. Admittedly this is a pointless
micro-optimisation but I think it makes the code looks a bit neater
anyway.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Two of the meta texture constructors which take a flags parameter were
ignoring the COGL_TEXTURE_NO_AUTO_MIPMAP flag when creating an
underlying CoglTexture2D. These have now been fixed to call
cogl_primitive_texture_set_auto_mipmap after constructing the texture.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This adds public constructors which take a CoglBitmap to all primitive
texture types. This constructor should be considered the canonical
constructor for initializing the texture with data because it should
be possible to wrap any type of data in a CoglBitmap. Having at least
this single constructor avoids the need to have an explosion of
constructors such as new_from_data, new_from_pixel_buffer and
new_from_file etc.
The already available internal bitmap constructor for CoglTexture2D
has had its flags parameter removed under the assumption that flags do
not make sense for primitive textures. The meta constructor
cogl_texture_new_from_bitmap now just explicitly calls set_auto_mipmap
after constructing the texture depending on the value of the
COGL_TEXTURE_NO_AUTO_MIPMAP flag.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
get_texture_bits_via_offscreen does not check the return value of
cogl_framebuffer_read_pixels_into_bitmap which results into never
using the fallback path texture_get_cb.
cogl_framebuffer_read_pixels_into_bitmap does not check whether the framebuffer
is properly allocated though; so fix that as well.
https://bugzilla.gnome.org/show_bug.cgi?id=673137
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This extension allows an application to upload data in BGRA format. We
can use this to avoid a conversion in Cogl whenever it is given BGRA
data. This is quite useful when uploading data generated by Cairo
because at least on little-endian architectures that ends up as BGRA.
The patch just makes the pixel_format_to_gl implementation return
GL_BGRA_EXT for the data format and internal format whenever
COGL_PIXEL_FORMAT_BGRA_8888{,_PRE} is used.
A small caveat with this patch is that once a texture is created as
GL_BGRA, when later using glTexSubImage2D to update the texture it
must always be given data as GL_BGRA. Currently this just works out
because we store the internal format of a texture as a CoglPixelFormat
and we already swizzle the data if it does not match exactly on GLES.
However if we later switch to using a different enum for internal
formats then we might lose the ability to store the component ordering
so we'll have to think of another way to do this.
Cogl already had a vtable for the texture driver. This ended up being
used for some things that are not strictly related to texturing such
as converting between pixel formats and GL enums. Some other functions
that are driver dependent such as updating the features were not
indirected through a vtable but instead switched directly by looking
at the ctx->driver enum value. This patch normalises to the two uses
by adding a separate vtable for driver functions not related to
texturing and moves the pixel format conversion functions to it from
the texture driver vtable. It also adds a context parameter to all of
the functions in the new driver vtable so that they won't have to rely
on the global context.
This creates a CoglBitmap which points into an existing buffer in
system memory. That way it can be used to create a texture or to read
pixel data into. The function replaces the existing internal function
_cogl_bitmap_new_from_data but removes the destroy notify call back.
If the application wants notification of destruction it can just use
the cogl_object_set_user_data function as normal. Internally there is
now a convenience function to create a bitmap for system memory and
automatically free the buffer using that mechanism.
The name of the function is inspired by
cairo_image_surface_create_for_data which has similar semantics.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
On GLES, when reading texture data back it may need to allocate a
temporary CoglBitmap if the requested format is not supported by the
driver. Previously it would then copy this temporary buffer back into
the user's buffer by calling _cogl_bitmap_convert which would allocate
a second temporary buffer. It would then copy that data into the
user's buffer. This patch changes it to create a CoglBitmap which
points to the user's data and then convert directly into that buffer
using the new _cogl_bitmap_convert_into_bitmap.
This also fixes a small leak where target_bmp would not get freed if
the target format and the closest supported format do match.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
The idea is that CoglPixelBuffer should just be a buffer that can be
used for pixel data and it has no idea about the details of any images
that are stored in it. This is analogous to CoglAttributeBuffer which
itself does not have any information about the attributes. When you
want to use a pixel buffer you should create a CoglBitmap which points
to a region of the attribute buffer and provides the extra needed
information such as the width, height and format. That way it is also
possible to use a single CoglPixelBuffer with multiple bitmaps.
The changes that are made are:
• cogl_pixel_buffer_new_with_size has been removed and in its place is
cogl_bitmap_new_with_size. This will create a pixel buffer at the
right size and rowstride for the given width/height/format and
immediately create a single CoglBitmap to point into it. The old
function had an out-parameter for the stride of the image but with
the new API this should be queriable from the bitmap (although there
is no function for this yet).
• There is now a public cogl_pixel_buffer_new constructor. This takes
a size in bytes and data pointer similarly to
cogl_attribute_buffer_new.
• cogl_texture_new_from_buffer has been removed. If you want to create
a texture from a pixel buffer you should wrap it up in a bitmap
first. There is already API to create a texture from a bitmap.
This patch also does a bit of header juggling because cogl-context.h
was including cogl-texture.h and cogl-framebuffer.h which were causing
some circular dependencies when cogl-bitmap.h includes cogl-context.h.
These weren't actually needed in cogl-context.h itself but a few other
headers were relying on them being included so this adds the #includes
where necessary.
Reviewed-by: Robert Bragg <robert@linux.intel.com>