Unknown since when, we started deferring the eglMakeCurrent for the
current framebuffer till we started painting on it, which means we
are preparing for rendering a view without guarantees that the
framebuffer we will paint to is the current drawing surface for the
EGL context.
A fairly common case where that assumption will break is multimonitor
set ups, in this case we will be preparing to paint to a view while
the current draw surface is that of the previously rendered view's.
Mesa will in this case return EGL_BAD_SURFACE when querying the buffer
age, since the surface is not yet the current draw surface. This
makes us give up on buffer age checks, and paint the whole view. Since
the problem repeats when painting the next view, we are effectively
doing full-screen redraws on all monitors.
Since cogl usually works implicitly, and querying the buffer age is
meaningless if you're not meant to paint on a surface, make the surface
the current draw surface implicitly before querying the buffer age.
This brings us glorious partial invalidations back when several views
had to be repainted.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/906
In order to avoid log spamming, just warn once it starts to happen, not
on every frame for every onscreen. Just knowing that this is happening
is a hint that something's going wrong.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/906
Say you're using intel gen3, you poor soul. Your big-GL maxes out at 1.5
unless you use dirty tricks, but you do have GLES2. We try to fall back
to GLES in this case, but we only ever say eglBindAPI(EGL_OPENGL_API).
So when we go to do CreateContext, even though we think we've requested
GLES 2.0, the driver will compare that "2.0" against the maximum big-GL
version, and things will fail.
Fix this by binding EGL_OPENGL_ES_API before trying a GLES context.
https://gitlab.gnome.org/GNOME/mutter/issues/635
In find_onscreen_for_xid() we want to loop over the framebuffers
and skip any that is not onscreen.
The code today does this by negating the framebuffer type variable
and skipping if that equals COGL_FRAMEBUFFER_TYPE_ONSCREEN. This
actually works as the enum used will function as a boolean:
typedef enum _CoglFramebufferType {
COGL_FRAMEBUFFER_TYPE_ONSCREEN,
COGL_FRAMEBUFFER_TYPE_OFFSCREEN
} CoglFramebufferType;
But it is a bit weird logic and fragile if more types are added.
(not that I can think of any different type...)
To simplify this, and to silence a warning in clang this patch just
changes it to a != test.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/905
There are still environment variables for these controls, but having
them in a config file doesn't really make sense for mutter. Even if it
did we probably don't want to be parsing the same file as some
standalone version of cogl.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/902
Since 3.34, the gnome-shell package was cleaned up to only depend
on gnome-control-center-filesystem at build-time. However one of
the gnome-shell tests needs the gettext ITS file for keybindings
provided by the main gnome-control-center package (in fact, the
COPR package is stripped down to just that file), so install that
explicitly.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/901
This allows xdg_popup.grab() to work with styli. Without this check
we would bail out and emit xdg_popup.popup_done, leaving stylus users
unable to interact with popup menus, comboboxes, etc...
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/886
When a touch sequence was rejected, the emulated pointer events would be
replayed with old timestamps. This caused issues with grabs as they
would be ignored due to being too old. This was mitigated by making sure
device event timestamps never travelled back in time by tampering with
any event that had a timestamp seemingly in the past.
This failed when the most recent timestamp that had been received were
much older than the timestamp of the new event. This could for example
happen when a session was left not interacted with for 40+ days or so;
when interacted with again, as any new timestamp would according to
XSERVER_TIME_IS_BEFORE() still be in the past compared to the "most
recent" one. The effect is that we'd always use the `latest_evtime` for
all new device events without ever updating it.
The end result of this was that passive grabs would become active when
interacted with, but would then newer be released, as the timestamps to
XIAllowEvents() would out of date, resulting in the desktop effectively
freezing, as the Shell would have an active pointer grab.
To avoid the situation where we get stuck with an old `latest_evtime`
timestamp, limit the tampering with device event timestamp to 1) only
pointer events, and 2) only during the replay sequence. The second part
is implemented by sending an asynchronous message via the X server after
rejecting a touch sequence, only potentially tampering with the device
event timestamps until the reply. This should avoid the stuck timestamp
as in those situations, we'll always have a relatively up to date
`latest_evtime` meaning XSERVER_TIME_IS_BEFORE() will not get confused.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/886
This way, we can simply pop up the Looking Glass and run:
>>> Meta.add_clutter_debug_flags(Clutter.DebugFlag.PICK, 0, 0)
And measure specific actions or events on GNOME Shell.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/862
As we do not prevent the SwapBuffers call from happening, those also
do count. Results in clip area calculations to be right for monitors
that previously did not get invalidated.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/888
Rather than just the latest one, otherwise it might leave the patch
submitter to iterate over every commit, if they didn't know every patch
needed a reference.
Closes: #1809
The passive phrasing makes it sound like there's something inherently
broken with the commit, rather than simply being missing an annotation
that the author can add.
Closes: #1809
Make ClutterActor paint using ClutterTransformNode, ClutterClip
node, and ClutterActorNode. Essencially, the actor node is a
replacement for clutter_actor_continue_paint().
An interesting aspect of this commit is that the order of the
operations is reversed to be preserved.
Before being able to remove the dummy node hack, we'll need to
make ClutterEffects compatible with paint nodes first -- and
naturally, that's enough content for its own merge request.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/872
ClutterActorNode is a paint node that runs the 'paint'
function of an actor. It is a useful helper node to be
used during the transition to paint nodes.
The role of ClutterActorNode will change over time. For
now, it is just a call to clutter_actor_continue_paint(),
which also paints the effects. When ClutterEffect is
ported to paint nodes, ClutterActorNode will morph to
only notify the actor about the painting, and will become
a private node to Clutter.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/872
In a similar vein to commit 8fd55fef853. This notably failed when setting
the focus on the stage (eg. to redirect key events to Clutter actors).
Deeper in MetaDisplay focus updating machinery, it would check
meta_stage_is_focused() which would still return FALSE at the time it's
called.
This would not typically have side effects, but our "App does not respond"
dialogs see the focus change under their feet, so they try to bring
themselves to focus again. This results in a feedback loop.
Changing the order results in later checks on the X11 POV of the focus
being correct, so focus is not mistakenly stolen from the close dialog,
and it actually succeeds in keeping the key focus.
Fixes: https://gitlab.gnome.org/GNOME/gnome-shell/issues/1607https://gitlab.gnome.org/GNOME/mutter/merge_requests/876