Currently, we select input events and GLX events conditionally,
depending on whether the user has disabled event retrieval.
We should, instead, unconditionally select input events even with event
retrieval disabled because we need to guarantee that the Clutter
internal state is maintained when calling clutter_x11_handle_event()
without requiring applications or embedding toolkits to select events
themselves. If we did that, we'd have to document the events to be
selected, and also update applications and embedding toolkits each time
we added a new mask, or a new class of events - something that's clearly
not possible.
See:
http://bugzilla.clutter-project.org/show_bug.cgi?id=998
for the rationale of why we did conditional selection. It is now clear
that a compositor should clear out the input region, since it cannot
assume a perfectly clean slate coming from us.
See:
http://bugzilla.clutter-project.org/show_bug.cgi?id=2228
for an example of things that break if we do conditional event
selection on GLX events. In that specific case, the X11 server ≤ 1.8
always pushed GLX events on the queue, even without selecting them; this
has been fixed in the X11 server ≥ 1.9, which means that applications
like Mutter or toolkit integration libraries like Clutter-GTK would stop
working on recent Intel drivers providing the GLX_INTEL_swap_event
extension.
This change has been tested with Mutter and Clutter-GTK.
Moves preprocessor #ifdef __linux_ above else statement, avoiding the
lack of an else block if __linux__ is not defined.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2212
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
The pixmap handling of both of the texture pixmap actors in Clutter is
now removed and instead it just creates a CoglTexturePixmapX11. Both
actors are now equivalent so there is no need to choose between the
two.
When clipped redraws were first supported in Clutter a heuristic was
added to promote tall clipped redraws into full redraws due to a concern
that using glXCopySubBuffer for tall rectangles would block the GPU for
too long waiting for the vtrace to be in a suitable position so that
tearing isn't seen. We've so far been unable to measure any impact from
this blocking even with full height windows so we are removing the
arbitrary threshold of 300px that was originally "plucked out of thin
air".
http://bugzilla.o-hand.com/show_bug.cgi?id=2136
This adds a _cogl_bind_gl_texture_transient function that should be used
instead of glBindTexture so we can have a consistent cache of the
textures bound to each texture unit so we can avoid some redundant
binding.
If we have the GLX_SGI_video_sync extension then it's possible to always
keep track for the video sync counter each time we call glXSwapBuffers
or do a sub stage blit. This then allows us to avoid waiting before
issuing a blit if we can see that the counter has already progressed.
Also since we expect that glXCopySubBuffer is synchronized to the vblank
we don't need to use glFinish () in conjunction with the vblank wait
since the vblank wait's only purpose is to add a delay.
The GLX_SGI_video_sync spec explicitly says that it's only supported for
direct contexts so we don't setup up the function pointers if
glXIsDirect () returns GL_FALSE.
Neither glXCopySubBuffer or glBlitFramebuffer are integrated with the
swap interval of a framebuffer so that means when we do partial stage
updates (as Mutter does in response to window damage) then the blits
aren't throttled which means applications that throw lots of damage
events at the compositor can effectively cause Clutter to run flat out
taking up all the system resources issuing more blits than can even be
seen.
This patch now makes sure we use the GLX_SGI_video_sync or a
DRM_VBLANK_RELATIVE ioctl to throttle blits to the vblank frequency as
we do when using glXSwapBuffers.
Currently glXCopySubBufferMESA is used for sub stage redraws, but in case
a driver does not support GLX_MESA_copy_sub_buffer we fall back to redrawing
the complete stage which isn't really optimal.
So instead to directly fallback to complete redraws try using GL_EXT_framebuffer_blit
to do the BACK to FRONT buffer copies.
http://bugzilla.openedhand.com/show_bug.cgi?id=2128
While this is totally fine (None is 0L and, in the pointer context, will
be converted in the right internal NULL representation, which could be a
value with some bits to 1), I believe it's clearer to use NULL instead
of None when we talk about pointers.
A server that supports GLX_BufferSwapComplete will always send
these events, so we should just silently ignore them if we've
chosen not to take advantage of the INTEL_swap_event GLX
extension.
http://bugzilla.openedhand.com/show_bug.cgi?id=2102
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Instead of simply aborting we now print out a warning, when a spurious
GLX_BufferSwapComplete event is handled since it seems that people are
coming across the problem (perhaps due to a buggy driver) and making
apps crash in this situation is a bit extreme.
glXSwapIntervalSGI only affects buffer swaps to the
current GLX drawable.
That means that calling it once in clutter_backend_glx_get_features
isn't sufficent, so set it up in clutter_backend_glx_ensure_context to
make sure it affects buffer swaps for the current drawable.
http://bugzilla.openedhand.com/show_bug.cgi?id=2044
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Move the size check after the NULL check, add the clip height into the
check logic and fix up the comment.
http://bugzilla.openedhand.com/show_bug.cgi?id=2040
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
* Add new clutter_geometry_union(), because writing union intersection
is harder than it looks. Fixes two problems with the inline code in
clutter_stage_glx_add_redraw_clip().
1) The ->x and ->y of were reassigned to before using them to
compute the new width and height.
2) since ClutterGeometry has unsigned width, x + width is unsigned,
and comparison goes wrong if either rectangle has a negative
x + width. (We fixed width for GdkRectangle to be signed for GTK+-2.0,
this is a potent source of bugs.)
* Use in clutter_stage_glx_add_redraw_clip()
* Account for the case where the incoming rectangle is empty, and don't
end up with the stage being entirely redrawn.
* Account for the case where the stage already has a degenerate
width and don't end up with redrawing only the new rectangle and not
the rest of the stage.
The better fix here for the second two problems is to stop using a 0
width to mean the entire stage, but this should work for now.
http://bugzilla.openedhand.com/show_bug.cgi?id=2040
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Fix clutter initialisation if argb visuals are enabled, setting a border
color on creating the dummy window. This should avoid BadMatch happening
when the depth of the root window visual is not the same of the depth
of the argb visual.
http://bugzilla.openedhand.com/show_bug.cgi?id=2011
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
This changes clutter_glx_texture_pixmap_update_area so it defers the
call to glXBindTexImageEXT until our pre "paint" signal handler which
makes clutter_glx_texture_pixmap_update_area cheap to call.
The hope is that mutter can switch to reporting raw damage updates to
ClutterGLXTexturePixmap and we can use these to queue clipped redraws.
A new (internal only currently) API, _clutter_actor_queue_clipped_redraw
can be used to queue a redraw along with a clip rectangle in actor
coordinates. This clip rectangle propagates up to the stage and clutter
backend which may optionally use the information to optimize stage
redraws. The GLX backend in particular may scissor the next redraw to
the clip rectangle and use GLX_MESA_copy_sub_buffer to present the stage
subregion.
The intention is that any actors that can naturally determine the bounds
of updates should queue clipped redraws to reduce the cost of updating
small regions of the screen.
Notes:
» If GLX_MESA_copy_sub_buffer isn't available then the GLX backend
ignores any clip rectangles.
» queuing multiple clipped redraws will result in the bounding box of
each clip rectangle being used.
» If a clipped redraw has a height > 300 pixels then it's promoted into
a full stage redraw, so that the GPU doesn't end up blocking too long
waiting for the vsync to reach the optimal position to avoid tearing.
» Note: no empirical data was used to come up with this threshold so
we may need to tune this.
» Currently only ClutterX11TexturePixmap makes use of this new API. This
is done via a new "queue-damage-redraw" signal that is emitted when
the pixmap is updated. The default handler queues a clipped redraw
with the assumption that the pixmap is being painted as a rectangle
covering the actors transformed allocation. If you subclass
ClutterX11TexturePixmap and change how it's painted you now also
need to override the signal handler and queue your own redraw.
Technically this is a semantic break, but it's assumed that no one
is currently doing this.
This still leaves a few unsolved issues with regards to optimizing sub
stage redraws that need to be addressed in further work so this can only
be considered a stepping stone a this point:
» Because we have no reliable way to determine if the painting of any
given actor is being modified any optimizations implemented using
_clutter_actor_queue_redraw_with_clip must be overridable by a
subclass, and technically must be opt-in for existing classes to avoid
a change in semantics. E.g. consider that a user connects to the paint
signal for ClutterTexture and paints a circle instead of a rectangle.
In this case any original logic to queue clipped redraws would be
incorrect.
» Currently only the implementation of an actor has enough information
with which to queue clipped redraws. E.g. It is not possible for
generic code in clutter-actor.c to queue a clipped redraw when hiding
an actor because actors have no way to report a "paint box". (remember
actors can draw outside their allocation and actors with depth may
also be projected outside of their allocation)
» The current plan is to add a actor_class->get_paint_cuboid()
virtual so actors can report a bounding cube for everything they
would draw in their current state and use that to queue clipped
redraws against the stage by projecting the paint cube into stage
coordinates.
» Our heuristics for promoting clipped redraws into full redraws to
avoid blocking the GPU while we wait for the vsync need improving:
» vsync issues aren't relevant for redirected/composited applications
so they should use different heuristics. In this case we instead
need to trade off the cost of blitting when using glXCopySubBuffer
vs promoting to a full redraw and flipping instead.
Since using addresses that might change is something that finally
the FSF acknowledge as a plausible scenario (after changing address
twice), the license blurb in the source files should use the URI
for getting the license in case the library did not come with it.
Not that URIs cannot possibly change, but at least it's easier to
set up a redirection at the same place.
As a side note: this commit closes the oldes bug in Clutter's bug
report tool.
http://bugzilla.openedhand.com/show_bug.cgi?id=521
The code has gotten really complicated to follow.
As soon as we have a sync-to-vblank mechanism we should just bail out.
Also, __GL_SYNC_TO_VBLANK (which is used by nVidia) should be assumed
equivalent to a CLUTTER_VBLANK_GLX_SWAP.
Some of the ClutterDebugFlags are not meant as a logging facility: they
actually change Clutter's behaviour at run-time.
It would be useful to have this distinction ratified, and thus split
ClutterDebugFlags into two: one DebugFlags for logging facilities and
another set of flags for behavioural changes.
This split is warranted because:
• it should be possible to do "CLUTTER_DEBUG=all" and only have
log messages on the output
• it should be possible to use behavioural modifiers even on a
Clutter that has been compiled without debugging messages
support
The commit adds two new debugging flags:
ClutterPickDebugFlags - controlled by the CLUTTER_PICK environment
variable
ClutterPaintDebugFlags - controlled by the CLUTTER_PAINT environment
variable
The PickDebugFlags are:
nop-picking
dump-pick-buffers
While the PaintDebugFlags is:
disable-swap-events
The mechanism is equivalent to the CLUTTER_DEBUG environment variable,
but it does not depend on the debug level selected when configuring and
compiling Clutter. The picking and painting debugging flags are
initialized at clutter_init() time.
http://bugzilla.openedhand.com/show_bug.cgi?id=1991
When we resize, we relied on the stage's allocate to re-initialise the
GL viewport. Unfortunately, if we resized within Clutter, the new size
was cached before the window is actually resized, so glViewport wasn't
being called after resizing (some of the time, it's a race condition).
Change the way resizing works slightly so that we only resize when the
geometry size doesn't match our preferred size, and queue a relayout on
ConfigureNotify so the glViewport gets called.
Also change window creation slightly so that setting the size of a
window before it's realized works correctly.
This uses the G_GNUC_DEPRECATED macros to mark the
cogl_{texture,vertex_buffer,shader}_ref and unref APIs as deprecated.
Since this flagged that cogl-pango-display-list.c and
clutter-glx-texture-pixmap.c were still using deprecated _ref/_unref
APIs they have now been changed to use the cogl_handle_ref/unref API
instead.
OpenGL is an implementation detail for Cogl so it's not appropriate to
expose OpenGL extensions through the Cogl API.
Note: Clutter is currently still using this API, because it is still
doing raw GL calls in ClutterGLXTexturePixmap, so this introduces a
couple of (legitimate) build warnings while compiling Clutter.
This fixes some backwards logic for asserting that we have a GLX major
version == 1 and a minor version >= 2. (NB: Although we technically
depend on GLX 1.3 features, we still have to support drivers that report
GLX 1.2 because there are a lot of mesa drivers out there incorrectly
report GLX 1.2 even though they export extensions that depend on GLX
1.3)
If your OpenGL driver supports GLX_INTEL_swap_event that means when
glXSwapBuffers is called it returns immediatly and an XEvent is sent when
the actual swap has finished.
Clutter can use the events that notify swap completion as a means to
throttle rendering in the master clock without blocking the CPU and so it
should help improve the performance of CPU bound applications.
Some extensions only support GLX versions > 1.3 and may not support
old style X Windows as GLXDrawables, so we now create GLXWindows for
stages when possible.
We want to set the default size without triggering the layout machinary,
so change the window creation process slightly so we start with a
640x480 window.
The reason why we have a dummy, offscreen Window when we create the
GLX context is that GLX does not like it when you ask the context for
features if it's not made current to a Drawable. Maybe in the future
it will allow us to do so, but right now we have to make do with what
GLX offers us.
Instead of using g_critical() inside the create_context() implementation
of the ClutterBackendGLX we should use the passed GError, so that the
error message can bubble up to the caller.
Since we must guarantee that Cogl has a GL context to query, it is too
late to use the "dummy Window" trick from within the get_features()
virtual function implementation.
Instead, we can create a dummy Window from create_context() itself and
leave it around - basically trading a default stage with a dummy X
window.
We need to have the dummy X window around all the time so that the
GLX context can be selected and made current.
These macros used to define Cogl wrappers for the GLenum values. There are
now Cogl enums everywhere in the API where these were required so we
shouldn't need them anymore. They were in the public headers but as
they are not neccessary and were not in the API docs for Clutter 1.0
it should be safe to remove them.
UProf is a small library that aims to help applications/libraries provide
domain specific reports about performance. It currently provides high
precision timer primitives (rdtsc on x86) and simple counters, the ability
to link statistics between optional components at runtime and makes report
generation easy.
This adds initial accounting for:
- Total mainloop time
- Painting
- Picking
- Layouting
- Idle time
The timing done by uprof is of wall clock time. It's not based on stochastic
samples we simply sample a counter at the start and end. When dealing with
the complexities of GPU drivers and with various kinds of IO this form of
profiling can be quite enlightening as it will be able to represent where
your application is blocking unlike tools such as sysprof.
To enable uprof accounting you must configure Clutter with --enable-profile
and have uprof-0.2 installed from git://git.moblin.org/uprof
If you want to see a report of statistics when Clutter applications exit you
should export CLUTTER_PROFILE_OUTPUT_REPORT=1 before running them.
Just a final word of caution; this stuff is new and the manual nature of
adding uprof instrumentation means it is prone to some errors when modifying
code. This just means that when you question strange results don't rule out
a mistake in the instrumentation. Obviously though we hope the benfits out
weigh e.g. by focusing on very key stats and by having automatic reporting.
Since asking for ARGB by default is still somewhat experimental on X11
and not every toolkit or complex widgets (like WebKit) still do not like
dealing with ARGB visuals, we should switch back to RGB by default - now
that at least we know it works.
For applications (and toolkit integration libraries) that want to enable
the ClutterStage:use-alpha property there is a new function:
void clutter_x11_set_use_argb_visual (gboolean use_argb);
which needs to be called before clutter_init().
The CLUTTER_DISABLE_ARGB_VISUAL environment variable can still be used
to force this value off at run-time.
When Clutter tries to pick an ARGB visual it tried to set the
GLX_TRANSPARENT_TYPE attribute of the FBConfig to
GLX_TRANSPARENT_RGB. However the code to do this was broken so that it
was actually trying to set the non-existant attribute number 0x8008
instead. Mesa silently ignored this so it appeared as if it was
working but the Nvidia drivers do not like it.
It appears that the TRANSPARENT_TYPE attribute is not neccessary for
getting an ARGB visual anyway and instead it is intended to support
color-key transparency. Therefore we can just remove it and get all of
the FBConfigs. Then if we need an ARGB visual we can just walk the
list to look for one with depth == 32.
The fbconfig is now stored in a single variable instead of having a
separate variable for the rgb and rgba configs because the old code
only ever retrieved one of them anyway.
When requesting the GLXFBConfig for creating the GLX context, we should
always request one that links to an ARGB visual instead of a plain RGB
one.
By using an ARGB visual we allow the ClutterStage:use-alpha property to
work as intended when running Clutter under a compositing manager.
The default behaviour of requesting an ARGB visual can be disabled by
using the:
CLUTTER_DISABLE_ARGB_VISUAL
Environment variable.
As part of an incremental process to have Cogl be a standalone project we
want to re-consider how we organise the Cogl source code.
Currently this is the structure I'm aiming for:
cogl/
cogl/
<put common source here>
winsys/
cogl-glx.c
cogl-wgl.c
driver/
gl/
gles/
os/ ?
utils/
cogl-fixed
cogl-matrix-stack?
cogl-journal?
cogl-primitives?
pango/
The new winsys component is a starting point for migrating window system
code (i.e. x11,glx,wgl,osx,egl etc) from Clutter to Cogl.
The utils/ and pango/ directories aren't added by this commit, but they are
noted because I plan to add them soon.
Overview of the planned structure:
* The winsys/ API is the API that binds OpenGL to a specific window system,
be that X11 or win32 etc. Example are glx, wgl and egl. Much of the logic
under clutter/{glx,osx,win32 etc} should migrate here.
* Note there is also the idea of a winsys-base that may represent a window
system for which there are multiple winsys APIs. An example of this is
x11, since glx and egl may both be used with x11. (currently only Clutter
has the idea of a winsys-base)
* The driver/ represents a specific varient of OpenGL. Currently we have "gl"
representing OpenGL 1.4-2.1 (mostly fixed function) and "gles" representing
GLES 1.1 (fixed funciton) and 2.0 (fully shader based)
* Everything under cogl/ should fundamentally be supporting access to the
GPU. Essentially Cogl's most basic requirement is to provide a nice GPU
Graphics API and drawing a line between this and the utility functionality
we add to support Clutter should help keep this lean and maintainable.
* Code under utils/ as suggested builds on cogl/ adding more convenient
APIs or mechanism to optimize special cases. Broadly speaking you can
compare cogl/ to OpenGL and utils/ to GLU.
* clutter/pango will be moved to clutter/cogl/pango
How some of the internal configure.ac/pkg-config terminology has changed:
backendextra -> CLUTTER_WINSYS_BASE # e.g. "x11"
backendextralib -> CLUTTER_WINSYS_BASE_LIB # e.g. "x11/libclutter-x11.la"
clutterbackend -> {CLUTTER,COGL}_WINSYS # e.g. "glx"
CLUTTER_FLAVOUR -> {CLUTTER,COGL}_WINSYS
clutterbackendlib -> CLUTTER_WINSYS_LIB
CLUTTER_COGL -> COGL_DRIVER # e.g. "gl"
Note: The CLUTTER_FLAVOUR and CLUTTER_COGL defines are kept for apps
As the first thing to take advantage of the new winsys component in Cogl;
cogl_get_proc_address() has been moved from cogl/{gl,gles}/cogl.c into
cogl/common/cogl.c and this common implementation first trys
_cogl_winsys_get_proc_address() but if that fails then it falls back to
gmodule.
This replaces calls to the old (glx 1.2) functions glXChooseVisual,
glXCreateContext, glXMakeCurrent with the 1.3+ fbconfig varients
glXChooseFBConfig, glXCreateNewContext, glXMakeContextCurrent.
The only backend that tried to implement offscreen stages was the GLX backend
and even this has apparently be broken for some time without anyone noticing.
The property still remains and since the property already clearly states that
it may not work I don't expect anyone to notice.
This simplifies quite a bit of the GLX code which is very desireable from the
POV that we want to start migrating window system code down to Cogl and the
simpler the code is the more straight forward this work will be.
In the future when Cogl has a nicely designed API for framebuffer objects then
re-implementing offscreen stages cleanly for *all* backends should be quite
straightforward.