This makes it possible to post a symbolic page flip and frame callback,
meant to be used by immediate symbolic page flip reply when emulating
cursor plane changes using legacy drmMode* functions.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
We will soon need to use CoglOnscreen frame events communicate cursor
plane changes; this means we need to have a way to queue them without
going through any of the current APIs that can do so, i.e. the swap
buffer functions and direct scanout.
Add a function that just adds a frame info to the queue. The one who
adds it is responsible for emitting it too.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Don't mode set each CRTC in separate KMS updates, as reconfiguring one
CRTC might cause other CRTCs to be implicitly reset thus as well,
causing KMS return EBUSY if using atomic modesetting.
Prepare for this by compositing each CRTC first including adding steps
to the KMS update, but wait until all views has rendered at least once
before posting the initial update. After this each CRTC is posted
separately.
Using EGLStreams instead of normal page flipping seems to fail when
doing this though, so handle that the old way for the EGLStream case,
i.e. eglSwapBuffers() -> mode set with dumb buffer -> eglStream
"acquire" (resulting in page flip under the hood).
For this we also introduce a new error code so that we don't use client
buffers when doing mode sets, which could accidentally configure the
CRTC in a way that is incompatible with the primary plane buffers.
Do the same also when we're in power save mode, to only have one special
case path for this scenario in the regular swap-buffer path.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
This argument is intended to be used by clutter to be able to
communicate with the onscreen backend, that happens to be the native
backend. It will be used to pass a ClutterFrame pointer, where the
result of page flips, mode sets etc can be communicated whenever it is
available.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Because the framebuffer itself might be backed by a texture, which might
have mipmapping enabled. If so then rendering to the framebuffer will make
those mipmaps out of date.
Technically we are flagging the framebuffer's mipmaps as dirty *before*
they are, because the journal hasn't been flushed yet. But we need to do
it early because ideally the next flush will both write the offscreen
framebuffer contents and then read them for use in rendering to an onscreen
framebuffer. And the `mipmaps_dirty` flag needs to be set before the read,
so therefore we need to do it before the next journal flush.
Fixes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/3146
where the offscreen framebuffer in question is meta-background's
`monitor->fbo`.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1664>
If texture allocation failed for a sliced 2D texture, the alloc()
function would free the slices immediately, but not clear the pointer to
the slices array. When the code attempting to allocate the texture then
freed the texture object, the cleanup functions tried to free the slices
array again, since it wasn't NULL.
Fix this by clearing the slices array after freeing it.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1580
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1648>
This allows profilers to trace the callers of whatever is spending the
most time on the GPU, and to measure render times more accurately.
Previously such information was hidden as it completed in the
background (asynchronously) after we call swap buffers.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1327>
The "paint" signal of ClutterActor is deprecated and will be removed. We
have a good replacement to get notified about stage paints nowadays,
that is "after-paint" on ClutterStage, so switch to that signal where it
makes sense.
I didn't bother to update the few tests (namely Clutters
conform/texture-fbo.c, conform/text-cache.c,
interactive/test-cogl-multitexture.c and Cogls
conform/test-multitexture.c, conform/test-texture-mipmaps.c) where it's
harder to replace the signal since we don't build those anyway.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1522
Instead of our own implementation that upscales, then downscales back,
use graphene_matrix_inverse() directly. This is possible after switching
to a z-near value that doesn't have problems with float precision.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
A first step towards abandoning the CoglObject type system: convert
CoglFramebuffer, CoglOffscreen and CoglOnscreen into GObjects.
CoglFramebuffer is turned into an abstract GObject, while the two others
are currently final. The "winsys" and "platform" are still sprinkled
'void *' in the the non-abstract type instances however.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1496
The first argument is the framebuffer operated on, so in order to stay
consistest, rename 'src' to 'framebuffer'. The second is the
destination. The destination is commonly referred to as 'dst' elsewhere,
so rename 'dest' to 'dst'.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1496
This one is a bit tricky. The tl;dr; is that switching from right-hand
multiplication to left-hand multiplication required applying the stack
from left to root. This actually allowed simplifying the code a bit,
since CoglMatrixEntry only stores a pointer to its parent, and that's
all we need to know for left-hand multiplication.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
CoglMatrix already is a typedef to graphene_matrix_t. This commit
simply drops the CoglMatrix type, and align parameters. There is
no functional change here, it's simply a find-and-replace commit.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
Ideally, we would use Graphene to do that, however as of now Graphene
lacks these APIs so we still need these helpers. Since we're preparing
to get rid of CoglMatrix, move them to a separate file, and rename them
with the 'cogl_graphene' prefix.
Since I'm already touching the world with this change, I'm also renaming
cogl_matrix_transform_point() to cogl_graphene_matrix_project_point(),
as per XXX comment, to make it consistent with the transform/projection
semantics in place.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
Given that CoglMatrix is simply a typedef to graphene_matrix_t, we can
remove all the GType machinery and reuse Graphene's.
Also remove the clutter-cogl helper, and cogl_matrix_to_graphene_matrix()
which is now unused.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
After the previous commit, the only field in the CoglMatrix structure is
a graphene_matrix_t. That means that CoglMatrix is effectively a graphene
matrix now, and the CoglMatrix struct isn't that much useful anymore.
Remove the CoglMatrix structure and make the CoglMatrix type a typedef to
graphene_matrix_t.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
Remove the cached inverse, and dirty flags, and typedef CoglMatrix to
graphene_matrix_t itself. I preverved the type for this commit to help
reducing the commit size, next commits will remove the CoglMatrix type.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
CoglMatrix doesn't have a 1:1 mapping of graphene functions, and
sometimes it's just not worth adding wrappers over it. It is easier
to expose the internal graphene_matrix_t and let callers use it
directly.
Add new cogl_matrix_get_graphene_matrix() helper function, and
simplify Clutter's matrix progress function.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
Instead of listing all matrix cells as floats, and the inverse
as a 16-length float array, use graphene_matrix_t in the structure
itself.
With this commit, all from/to CoglMatrix conversions are gone. It
is also not possible to initialize a CoglMatrix using the macro
anymore.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
Rename cogl_matrix_get_array() to cogl_matrix_to_float(), and
make it copy the floats to an out argument instead of returning
a pointer to the casted CoglMatrix struct.
The naming change is specifically made to match graphene's,
and ease the transition.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
Internally, a graphene_matrix_t representing the same transform that
of a CoglMatrix is the same matrix but transposed, so in order to get
the same element given a column and row for a matrix as if it would
be located in Cogl, it is necessary to swap the row and column when
retrieving it from the graphene matrix.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439