As part of an incremental process to have Cogl be a standalone project we
want to re-consider how we organise the Cogl source code.
Currently this is the structure I'm aiming for:
cogl/
cogl/
<put common source here>
winsys/
cogl-glx.c
cogl-wgl.c
driver/
gl/
gles/
os/ ?
utils/
cogl-fixed
cogl-matrix-stack?
cogl-journal?
cogl-primitives?
pango/
The new winsys component is a starting point for migrating window system
code (i.e. x11,glx,wgl,osx,egl etc) from Clutter to Cogl.
The utils/ and pango/ directories aren't added by this commit, but they are
noted because I plan to add them soon.
Overview of the planned structure:
* The winsys/ API is the API that binds OpenGL to a specific window system,
be that X11 or win32 etc. Example are glx, wgl and egl. Much of the logic
under clutter/{glx,osx,win32 etc} should migrate here.
* Note there is also the idea of a winsys-base that may represent a window
system for which there are multiple winsys APIs. An example of this is
x11, since glx and egl may both be used with x11. (currently only Clutter
has the idea of a winsys-base)
* The driver/ represents a specific varient of OpenGL. Currently we have "gl"
representing OpenGL 1.4-2.1 (mostly fixed function) and "gles" representing
GLES 1.1 (fixed funciton) and 2.0 (fully shader based)
* Everything under cogl/ should fundamentally be supporting access to the
GPU. Essentially Cogl's most basic requirement is to provide a nice GPU
Graphics API and drawing a line between this and the utility functionality
we add to support Clutter should help keep this lean and maintainable.
* Code under utils/ as suggested builds on cogl/ adding more convenient
APIs or mechanism to optimize special cases. Broadly speaking you can
compare cogl/ to OpenGL and utils/ to GLU.
* clutter/pango will be moved to clutter/cogl/pango
How some of the internal configure.ac/pkg-config terminology has changed:
backendextra -> CLUTTER_WINSYS_BASE # e.g. "x11"
backendextralib -> CLUTTER_WINSYS_BASE_LIB # e.g. "x11/libclutter-x11.la"
clutterbackend -> {CLUTTER,COGL}_WINSYS # e.g. "glx"
CLUTTER_FLAVOUR -> {CLUTTER,COGL}_WINSYS
clutterbackendlib -> CLUTTER_WINSYS_LIB
CLUTTER_COGL -> COGL_DRIVER # e.g. "gl"
Note: The CLUTTER_FLAVOUR and CLUTTER_COGL defines are kept for apps
As the first thing to take advantage of the new winsys component in Cogl;
cogl_get_proc_address() has been moved from cogl/{gl,gles}/cogl.c into
cogl/common/cogl.c and this common implementation first trys
_cogl_winsys_get_proc_address() but if that fails then it falls back to
gmodule.
Input Methods require to be able to set a "pre-edit string", that is
a string that it's just displayed into the Text actor without being
committed to the actor's buffer. The string might require custom Pango
attributes, and an update of the cursor position.
The user-initiated resize is conflicting with the allocated size. This
happens because we change the size of the stage's X Window behind the
back of the size allocation machinery.
Instead, we should change the size of the actor whenever we receive a
ConfigureNotify event to reflect the new size of the actor.
I just wasted a silly amount time trying to bisect an apparently broken
cogl-test-multitexture until I realized it was just silently failing to load
any textures.
in tests/interactive/Makefile.am add wrapper.sh to EXTRA_DIST otherwise
interactive unit tests wont be runnable when building from distributed
tarballs.
AM_LDFLAGS is ignored by the LDFLAGS target, and it's also not the right
place to put the libraries used by the linker.
Thanks to Vincent Untz for spotting this.
The perspective test was used essentially to determine whether the
perspective set up in COGL worked correctly. The perspective code
has been changed a lot since Clutter 0.3: we rely on client-side
matrices and we use floating point; so, all the conditions the test
was supposed to verify do not exist anymore.
test-cogl-tex-getset was assuming it was dealing with
COGL_PIXEL_FORMAT_RGBA_8888 but since merging the premultiplcation branch
the pixel format is actually COGL_PIXEL_FORMAT_RGBA_8888_PRE
Texture data is now in premultiplied format and the shader should
output a premultiplied color if the default blend mode is being
used. Shaders that directly manipulate the rgb values now
unpremultiply and premultiply again afterwards.
Now that we can safely check for an uninitialized Clutter we
don't have side effects in calling one of the functions like
clutter_x11_enable_xinput(), which require to be called before
any other Clutter function.
The input device API is split halfway thorugh the backends in a very
weird way. The data structures are private, as they should, but most
of the information should be available in the main API since it's
generic enough.
The device type enumeration, for instance, should be common across
every backend; the accessors for device type and id should live in the
core API. The internal API should always use ClutterInputDevice and
not the private X11 implementation when dealing with public structures
like ClutterEvent.
By adding accessors for the device type and id, and by moving the
device type enumeration into the core API we can cut down the amount
of symbols private and/or visible only to the X11 backends; this way
when other backends start implementing multi-pointer support we can
share the same API across the code.
The test-easing interactive demo for the high-level animation API
is a bit "flat". Instead of using a Rectangle actor we should
probably be using something more "interesting" -- like a CairoTexture
with a gradient.
In order to chain up animations using clutter_actor_animate() and
friends you have to use an idle handler that guarantees that the
main loop spins at least once after the animation pointer has been
detached from the actor.
This has several drawbacks, first and foremost the fact that the
slice of the main loop for the idle handler might be starved by
other operations, like redrawing. This inevitably leads to tricks
with priorities and the like, contributing to the overall complexity.
Instead, we should guarantee that the animation instance created by
clutter_actor_animate() is valid for the ::completed signal until
it reaches its default handler; after that, the animation is detached
from the actor and destroyed. This means that it's possible to
create a new animation after the first is complete by simply using
g_signal_connect_after().
This unfortunately makes it impossible to keep a reference to the
animation pointer attached to the actor by using g_object_ref(); a
way to "fix" this would be to have a clutter_animation_attach()
and a clutter_animation_detach() pair of methods that allow attaching
any animation to an actor. This might overcomplicate what it is
the simple animation API, though, so it's currently not implemented
and left for future versions.
The test-easing interactive demo has been modified to show how
the animation queuing works by adding a command line switch that
recenters the animated actor once the first animation has ended.
In order to be ready for the next major version of GLib we need to
disable single header inclusion by using the G_DISABLE_SINGLE_INCLUDES
define in the build process.
The test has been broken since the change to use floats instead of
fixed point because it was passing degrees to sin and cos but they
expect radians.
It was further broken since the timeline changes because it was
directly using the parameter of the new-frame signal as a frame number
but it now represents the elapsed time.
We need to fix the VBO premultiplication; we also do not need to
forcibly queue a redraw in an idle handler: the timeline and the
master clock will do that for us.
The test-actors test (and its clones, test-actor-clone and
test-paint-wrapper) was written a long time ago for a different API
and has been tweaked to bits. We should probably have something a
little bit more complicated, but at least we should not use semantics
and coding patterns from Clutter 0.2, otherwise we won't be testing
anything except that Clutter 0.2 worked.
Merge branch 'premultiplication'
[cogl-texture docs] Improves the documentation of the internal_format args
[test-premult] Adds a unit test for texture upload premultiplication semantics
[fog] Document that fogging only works with opaque or unmultipled colors
[test-blend-strings] Explicitly request RGBA_888 tex format for test textures
[premultiplication] Be more conservative with what data gets premultiplied
[bitmap] Fixes _cogl_bitmap_fallback_unpremult
[cogl-bitmap] Fix minor copy and paste error in _cogl_bitmap_fallback_premult
Avoid unnecesary unpremultiplication when saving to local data
Don't unpremultiply Cairo data
Default to a blend function that expects premultiplied colors
Implement premultiplication for CoglBitmap
Use correct texture format for pixmap textures and FBO's
Add cogl_color_premultiply()
The fixed function fogging provided by OpenGL only works with unmultiplied
colors (or if the color has an alpha of 1.0) so since we now premultiply
textures and colors by default a note to this affect has been added to
clutter_stage_set_fog and cogl_set_fog.
test-depth.c no longer uses clutter_stage_set_fog for this reason.
In the future when we can depend on fragment shaders we should also be
able to support fogging of premultiplied primitives.
Many operations, like mixing two textures together or alpha-blending
onto a destination with alpha, are done most logically if texture data
is in premultiplied form. We also have many sources of premultiplied
texture data, like X pixmaps, FBOs, cairo surfaces. Rather than trying
to work with two different types of texture data, simplify things by
always premultiplying texture data before uploading to GL.
Because the default blend function is changed to accommodate this,
uses of pure-color CoglMaterial need to be adapted to add
premultiplication.
gl/cogl-texture.c gles/cogl-texture.c: Always premultiply
non-premultiplied texture data before uploading to GL.
cogl-material.c cogl-material.h: Switch the default blend functions
to ONE, ONE_MINUS_SRC_ALPHA so they work correctly with premultiplied
data.
cogl.c: Make cogl_set_source_color() premultiply the color.
cogl.h.in color-material.h: Add some documentation about
premultiplication and its interaction with color values.
cogl-pango-render.c clutter-texture.c tests/interactive/test-cogl-offscreen.c:
Use premultiplied colors.
http://bugzilla.openedhand.com/show_bug.cgi?id=1406
Signed-off-by: Robert Bragg <robert@linux.intel.com>
The clutter_stage_fullscreen() and clutter_stage_unfullscreen() are
a GDK-ism. The underlying implementation is already using an accessor
with a boolean parameter.
This should take the amount of collisions between properties, methods
and signals to zero.
The :fullscreen property is very much confusing as it is implemented.
It can be written to a value, but the whole process might fail. If we
set:
g_object_set (stage, "fullscreen", TRUE, NULL);
and the fullscreen process fails or it is not implemented, the value
will be reset to FALSE (if we're lucky) or left TRUE (most of the
times).
The writability is just a shorthand for invoking clutter_stage_fullscreen()
or clutter_stage_unfullscreen() depending on a boolean value without
using an if.
The :fullscreen property also greatly confuses high level languages,
since the same symbol is used:
- for a method name (Clutter.Stage.fullscreen())
- for a property name (Clutter.Stage.fullscreen)
- for a signal (Clutter.Stage::fullscreen)
For these reasons, the :fullscreen should be renamed to :fullscreen-set
and be read-only. Implementations of the Stage should only emit the
StageState event to change from normal to fullscreen, and the Stage
will automatically update the value of the property and emit a notify
signal for it.
ClutterEvent is not really gobject-introspection friendly because
of the whole discriminated union thing. In particular, if you get
a ClutterEvent in a signal handler, you probably can't access the
event-type-specific fields, and you probably can't call methods
like clutter_key_event_symbol() either, because you can't cast the
ClutterEvent to a ClutterKeyEvent.
The cleanest solution is to turn every accessor into ClutterEvent
methods, accepting a ClutterEvent* and internally checking the event
type.
Fixes bug:
http://bugzilla.openedhand.com/show_bug.cgi?id=1585
The load-finished signal has a GError* argument which is meant to
signify whether the loading was successful. However many of the
places in ClutterTexture that emit this signal directly pass their
'error' variable which is a GError** and will be NULL or not
completely independently of whether there was an error. If the
argument was dereferenced it would probably crash.
The test-texture-async interactive test case should also verify
that the ::load-finished signal is correctly emitted.
Fixes bug:
http://bugzilla.openedhand.com/show_bug.cgi?id=1622
The texture filters are now a property of the material layer rather
than the texture object. Whenever a texture is painted with a material
it sets the filters on all of the GL textures in the Cogl texture. The
filter is cached so that it won't be changed unnecessarily.
The automatic mipmap generation has changed so that the mipmaps are
only generated when the texture is painted instead of every time the
data changes. Changing the texture sets a flag to mark that the
mipmaps are dirty. This works better if the FBO extension is available
because we can use glGenerateMipmap. If the extension is not available
it will temporarily enable automatic mipmap generation and reupload
the first pixel of each slice. This requires tracking the data for the
first pixel.
The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with
COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to
auto-mipmapping. The mipmap generation is now effectively free if you
are not using a mipmap filter mode so you would only want to disable
it if you had some special reason to generate your own mipmaps.
ClutterTexture no longer has to store its own copy of the filter
mode. Instead it stores it in the material and the property is
directly set and read from that. This fixes problems with the filters
getting out of sync when a cogl handle is set on the texture
directly. It also avoids the mess of having to rerealize the texture
if the filter quality changes to HIGH because Cogl will take of
generating the mipmaps if needed.
Instead of passing a boolean value, the ::allocate virtual function
should use a bitmask and flags. This gives us room for expansion
without breaking API/ABI, and allows to encode more information to
the allocation process instead of just changes of absolute origin.
Units as they have been implemented since Clutter 0.4 have always been
misdefined as "logical distance unit", while they were just pixels with
fractionary bits.
Units should be reworked to be opaque structures to hold a value and
its unit type, that can be then converted into pixels when Clutter needs
to paint or compute size requisitions and perform allocations.
The previous API should be completely removed to avoid collisions, and
a new type:
ClutterUnits
should be added; the ability to install GObject properties using
ClutterUnits should be maintained.
Timelines no longer work in terms of a frame rate and a number of
frames but instead just have a duration in milliseconds. This better
matches the working of the master clock where if any timelines are
running it will redraw as fast as possible rather than limiting to the
lowest rated timeline.
Most applications will just create animations and expect them to
finish in a certain amount of time without caring about how many
frames are drawn. If a frame is going to be drawn it might as well
update all of the animations to some fraction of the total animation
rather than rounding to the nearest whole frame.
The 'frame_num' parameter of the new-frame signal is now 'msecs' which
is a number of milliseconds progressed along the
timeline. Applications should use clutter_timeline_get_progress
instead of the frame number.
Markers can now only be attached at a time value. The position is
stored in milliseconds rather than at a frame number.
test-timeline-smoothness and test-timeline-dup-frames have been
removed because they no longer make sense.
All the underlying implementation and the public entry points have
been switched to floats; the only missing bits are the Actor properties
that deal with positioning and sizing.
This usually means a major pain when dealing with GValues and varargs
functions. While GValue will warn you when dealing with the wrong
conversions, varags will simply die an horrible (and hard to debug)
death via segfault. Nothing much to do here, except warn people in the
release notes and hope for the best.
Previously indices were tightly bound to a particular Cogl vertex buffer
but we would like to be able to share indices so now we have
cogl_vertex_buffer_indices_new () which returns a CoglHandle.
In particular we could like to have a shared set of indices for drawing
lists of quads that can be shared between the pango renderer and the
Cogl journal.
Originally cogl_vertex_buffer_add_indices let the user pass in their own unique
ID for the indices; now the Id is generated internally and returned to the
caller.
It's now possible to add arrays of indices to a Cogl vertex buffer and
they will be put into an OpenGL vertex buffer object. Since it's quite
common for index arrays to be static it saves the OpenGL driver from
having to validate them repeatedly.
This changes the cogl_vertex_buffer_draw_elements API: It's no longer
possible to provide a pointer to an index array at draw time. So
cogl_vertex_buffer_draw_elements now takes an indices identifier that
should correspond to an idendifier returned when calling
cogl_vertex_buffer_add_indices ()
The CoglTexture constructors expose the "max-waste" argument for
controlling the maximum amount of wasted areas for slicing or,
if set to -1, disables slicing.
Slicing is really relevant only for large images that are never
repeated, so it's a useful feature only in controlled use cases.
Specifying the amount of wasted area is, on the other hand, just
a way to mess up this feature; 99% the times, you either pull this
number out of thin air, hoping it's right, or you try to do the
right thing and you choose the wrong number anyway.
Instead, we can use the CoglTextureFlags to control whether the
texture should not be sliced (useful for Clutter-GST and for the
texture-from-pixmap actors) and provide a reasonable value for
enabling the slicing ourself. At some point, we might even
provide a way to change the default at compile time or at run time,
for particular platforms.
Since max_waste is gone, the :tile-waste property of ClutterTexture
becomes read-only, and it proxies the cogl_texture_get_max_waste()
function.
Inside Clutter, the only cases where the max_waste argument was
not set to -1 are in the Pango glyph cache (which is a POT texture
anyway) and inside the test cases where we want to force slicing;
for the latter we can create larger textures that will be bigger than
the threshold we set.
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Signed-off-by: Robert Bragg <robert@linux.intel.com>
Signed-off-by: Neil Roberts <neil@linux.intel.com>