Just like the existing in_cloned_branch counter, add a property which
tracks whether the actor is part of a subtree that's being painted while
unmapped. This is going to be useful for a few things, for example
changing the clutter_actor_is_in_clone_paint() API to use
enable_paint_unmapped instead of in_clone_paint.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1366
clutter_actor_queue_relayout() detects whether a parent has the
NO_LAYOUT flag set by itself and then queues a shallow relayout for us.
There's no need to duplicate that logic when showing actors, so simply
call clutter_actor_queue_relayout() and let that handle it.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1366
Apparently clutter_paint_volume_union() has problems building the union
of two paint volumes in eye coordinates, that's probably because of the
negative coordinates that come into play there.
Circumvent that by making even more use of Graphene and letting it take
care of computing the union. We do that by creating two graphene_box_t's
from the axis-aligned paint volumes and intersecting those boxes, then
setting our vertices to the new min and max points of the resulting box.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1507
Add a helper function to determine if a seat has a (physical)
touchscreen associated with it.
Currently src/backends/meta-backend.c has a private version of this
(check_has_physical_touchscreen) and further patches in this patch-set
need the same functionality. So add a generic helper for this to
avoid code duplication.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1506
_cogl_util_get_eye_planes_for_screen_poly() is quite a complicated beast. Ever
since Clutter became a compositor toolkit, and specially after we switched to
graphene_frustum_t on paint volumes, we can brutally simplify this function.
The new code assumes camera is at (0, 0, 0) at world coordinates (i.e. before
applying the projection). We also consider that the redraw clip are at stage
coordinates. That means that converting the clip rectangle to world rectangle
is simply a matter of projecting the corresponding vertices using the "view"
matrix. Furthermore, we only need to project the top-left, and bottom-right
vertices, since top-right and bottom-left can be derived from those two.
The frustum setup still uses triplets of vertices to setup the planes, except
now the first vertex is always the camera (hardcoded to 0, 0, 0), and the other
two vertices are the projected clip rectangle vertices.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
The redraw clip region may contain multiple clip rectangles. We currently
only use the extents of this region, but having multiple frusta for each
rectangle is a better alternative, and will allow us to remove the extra
projection we currently do.
Make the clip frustum an array, with multiple frusta.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
The clip planes / frustum are contextual to painting. In the past, for
the lack of a better place, it was added to ClutterStage, but now we
have an appropriate home for such data: ClutterPaintContext.
Move the frustum to the paint context.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
While refactoring the clipping planes / frustum code, it became more and
more evident that we do not need to update them while picking. Picking
nowadays goes through a completely different code path, that does not
rely on paint volume culling.
While it might be interesting to eventually also cull out based on paint
volumes, it certainly won't go through the painting code anymore.
Remove setting up the view when picking, and rename functions appropriatedly.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
Culling paint volumes don't give this level of detail anymore, and in
fact knowing whether it was partially or fully in was only being used
in a debug path. For the purposes of culling, it doesn't matter if a
given actor is partially or completely inside the frustum; either way,
it must be painted.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
Instead of 4 planes, use a graphene_frustum_t to store the clipping
planes.
The cautious reviewer might noticed that we are now setting up 6
planes: the 4 planes we were doing before, plus 2 extra planes in
the Z axis. These extra planes simulate an "infinite" Z far, and
an "on-camera" Z near.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
ClutterStage defines the 8 vertices of a frustum:
4 ----------------------------- 5
| \ / |
| \ / |
| 0 --------------------- 1 |
| | | |
| | | |
| 3 --------------------- 2 |
| / \ |
| / \ |
7 ----------------------------- 6
Then, it uses triplets of vertices to create each clipping plane.
It only sets up 4 planes (it doesn't clip based on depth), defined
by the following vertices:
* 0 - 4 - 5
* 1 - 5 - 6
* 2 - 6 - 7
* 0 - 7 - 4
The first 3 triplets are selected using the for-loop. However, the
last triplet is different, and is done out of the loop. It could
have been made simpler by using the "3 - 7 - 4" triplet.
Simplify the current code by using the suggested triplet, calculated
inside the for-loop.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
Instead of our own implementation that upscales, then downscales back,
use graphene_matrix_inverse() directly. This is possible after switching
to a z-near value that doesn't have problems with float precision.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
Picking is specially sensitive for float precision, and tests can
easily fail when something changes, even if ever so slightly. A
simple way to workaround this is by adjusting the projected points
using the same procedure described at 67cc60cbda.
Round projected points for picking to 256ths.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
A first step towards abandoning the CoglObject type system: convert
CoglFramebuffer, CoglOffscreen and CoglOnscreen into GObjects.
CoglFramebuffer is turned into an abstract GObject, while the two others
are currently final. The "winsys" and "platform" are still sprinkled
'void *' in the the non-abstract type instances however.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1496
The timestamp sent with _NET_WM_FRAME_DRAWN should be in "high
resolution X server timestamps", meaning they should have the same scope
as the built in X11 32 bit unsigned integer timestamps, i.e. overflow at
the same time.
This was not done correctly when mutter had determined the X server used
the monotonic clock, where it'd just forward the monotonic clock,
confusing any client using _NET_WM_FRAME_DRAWN and friends.
Fix this by 1) splitting the timestamp conversiot into an X11 case and a
display server case, where the display server case simply clamps the
monotonic clock, as it is assumed Xwayland is always usign the monotonic
clock, and 2) if we're a X11 compositing manager, if the X server is
using the monotonic clock, apply the same semantics as the display
server case and always just clamp, or if not, calculate the offset every
10 seconds, and offset the monotonic clock timestamp with the calculated
X server timestamp offset.
This fixes an issue that would occur if mutter (or rather GNOME Shell)
would have been started before a X11 timestamp overflow, after the
overflow happened. In this case, GTK3 clients would get unclamped
timestamps, and get very confused, resulting in frames queued several
weeks into the future.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1494
Keeping track of the projected position is costly, and adds quite some complexity
to ClutterOffscreenEffect.pre_paint(). As far as research goes, there's not a
single consumer of this function that uses the position for anything - only size
is used.
Remove clutter_offscreen_effect_get_target_rect(), and drop the annoying position
field from ClutterOffscreenEffect as well. This allows us to stop projecting the
position on pre-paint, and simplify things.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1474
ClutterPipelineNode will be used by GNOME Shell in the future.
Fortunately for us, CoglPipeline is already usable from GJS,
so we don't need to skip the constructor for the pipeline node.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1474
Move unreffing the framebuffer to ClutterOffscreenEffect.pre_paint().
This will allow us to properly chain up ClutterOffscreenEffect.paint()
and not reimplement exactly what ClutterEffect does by default.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1474
In this case, since we are building the entire matrix by ourselves,
reverse the order of operations (translate + scale → scale + translate)
and build it using graphene-specific APIs.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
This is another instance of graphene reversing the order of operations (see
the commit notes of how ClutterActor was ported.) The tl;dr; here is that,
in the CoglMatrix past, we used to do:
(actor transforms) → scale
and now, it's the other way round:
scale → (actor transforms)
due to changing from right-handed multiplications (CoglMatrix) to left-handed
ones (graphene_matrix_t).
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
ClutterActor is a particularly heavy user of matrices, and
switching to graphene_matrix_* APIs means we had to change
the order of operations due to left-hand vs right-hand
differences.
When applying the actor transform, there are 2 main branches
that can be followed: the default transforms, and when a
custom transform is set.
To facilitate review, here's the table that I've made to
guide myself:
+--------------- Case 1: Default Transforms --------------+
| CoglMatrix | graphene_matrix_t |
+----------------------------+----------------------------+
| multiply (child transform) | translate (-pivot) |
| translate (allocation)¹ | rotate_x (angle) |
| translate (pivot)¹ | rotate_y (angle) |
| translate (translation)¹ | rotate_z (angle) |
| scale (sx, sy, sz) | scale (sx, sy, sz) |
| rotate_z (angle) | translate (translation)¹ |
| rotate_y (angle) | translate (pivot)¹ |
| rotate_x (angle) | translate (allocation)¹ |
| translate (-pivot) | multiply (child transform) |
+----------------------------+----------------------------+
¹ - these 3 translations are simplified as a single call
to translate(allocation + pivot + translation)
+---------------- Case 2: Custom Transform ---------------+
| CoglMatrix | graphene_matrix_t |
+----------------------------+----------------------------+
| multiply (child transform) | translate (-pivot) |
| translate (allocation)² | multiply (transform) |
| translate (pivot)² | translate (pivot)² |
| multiply (transform) | translate (allocation)² |
| translate (-pivot) | multiply (child transform) |
+----------------------------+----------------------------+
² - likewise, these 2 translations are simplified as a
single call to translate(allocation + pivot)
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
CoglMatrix already is a typedef to graphene_matrix_t. This commit
simply drops the CoglMatrix type, and align parameters. There is
no functional change here, it's simply a find-and-replace commit.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
Ideally, we would use Graphene to do that, however as of now Graphene
lacks these APIs so we still need these helpers. Since we're preparing
to get rid of CoglMatrix, move them to a separate file, and rename them
with the 'cogl_graphene' prefix.
Since I'm already touching the world with this change, I'm also renaming
cogl_matrix_transform_point() to cogl_graphene_matrix_project_point(),
as per XXX comment, to make it consistent with the transform/projection
semantics in place.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
Given that CoglMatrix is simply a typedef to graphene_matrix_t, we can
remove all the GType machinery and reuse Graphene's.
Also remove the clutter-cogl helper, and cogl_matrix_to_graphene_matrix()
which is now unused.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
It turns it to be quite easy to inverse the transform, and doing that
on ClutterActor level means we can actually think about removing
CoglMatrix entirely and using graphene_matrix_t everywhere.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
CoglMatrix doesn't have a 1:1 mapping of graphene functions, and
sometimes it's just not worth adding wrappers over it. It is easier
to expose the internal graphene_matrix_t and let callers use it
directly.
Add new cogl_matrix_get_graphene_matrix() helper function, and
simplify Clutter's matrix progress function.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
Rename cogl_matrix_get_array() to cogl_matrix_to_float(), and
make it copy the floats to an out argument instead of returning
a pointer to the casted CoglMatrix struct.
The naming change is specifically made to match graphene's,
and ease the transition.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
Graphene provides skewing as part of graphene_matrix_t API, and it'll
be easier for the transition to just expose similar API surfaces.
Move the matrix skew methods to CoglMatrix.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
Even when a direct client buffer has a compatible format, stride and
modifier for direct scanout, drmModePageFlip() may still fail sometimes.
From testing, it has been observed that it may seemingly randomly fail
with ENOSPC, where all subsequent attempts later on the same CRTC
failing with EBUSY.
Handle this by falling back to flipping after having composited a full
frame again.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1410
We already correctly set the font-dpi based on user settings in
MetaSettings at each user change and as part of backend initialization,
so there's no point to set it also during x11 backend post-parsing and
using X11 values, as this may happen at later point and lead to a wrong
clutter font DPI value.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1444
It'll allow subclasses to get notified of the before-paint
signal without having to connect to it. This will allow
MetaStage to have proper watches being fired there without
the cost of the signal handling machinery.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1421
Just because X11/XI uses a particular terminology doesn't mean we
have to use the same terms in our own API. The replacement terms
are in line with gtk@1c856a208, which seems a better precedent
for consistency.
Follow-up to commit 17417a82a5.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1425
These are not given directly to the input focus anymore, instead
queued up as events. This way, all actions triggered by the input
method (commit and preedit buffer ones, but also synthesized key
events) queue up the same way, and are thus processed in the exact
same order than they are given to us.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1286
The clutter_input_focus_filter_key_event() function has been made
a more generic filter_event(). Besides its old role about letting
key events go through the IM, it will also process the IM events
that are possibly injected as a result.
Users have been updated to these changes.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1286
Previously we only culled actors that didn't intersect the bounding box
of the redraw clip. Now we also cull those whose paint volume bounds don't
intersect the arbitrary shape of the redraw clip.
This was inspired by the activities overview where idle windows and
workspace previews were being needlessly repainted. In that particular
case this yields more than 10% reduction in render time. But it probably
helps in other situations too.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1359
Clutter device events are special events coming from the backend when an
input device is added or removed.
When such events are processed, we should make the seat to handle them by
calling vfunc that can be implemented by each backend and eventually
emitting the appropriate signal.
If a device is removed, we can also safely dispose it, as it can be
considered stale at this point.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1371
Add clutter device added and removed events to allow processing of them as
it happens in the backends, queuing them and performing actions in order.
This allows not to loose any event that is performed just before removing or
disabling a device, and still process the events in order in the event
queue.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1371
This was from the old clutter-as-application-library days, where it had
to try find a suitable backend. Now we already have a backend selected
(MetaBackend), and the clutter backend is already predecided depending
on that, so we don't need the code that auto detects an appropriate one
anymore.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1364
There is no reason to use Xsettings for the X11 backend, as it comes
from the GSetting store anyway, so move the font setting reading to
ClutterSettings and read directly from GSettings.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1364