Fullscreen Wayland toplevel surfaces don't need to respect the
configured size in which case it should be shown centered on the monitor
with a black background. The black background becomes part of the window
geometry.
The surface container is responsible for correctly culling the surfaces
and making sure the surface actors are removed from the actor tree to
avoid destroying them.
The window actor culling implementation assumes all surfaces to be direct
children of said actor. The introduction of the surface_container actor
broke that assumption. This implements the culling interface in
MetaWindowActorWayland which is aware of the actor surface_container and
fullscreen state.
v2: Fix forwarding culling to surface even if there is a background.
v2: Don't alter passed geometry.
v2: Update window geometry code documentation to reflect these changes.
v2: Only use constrained rect if we're acked fullscreen.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2338>
Prepare for adding Wayland specific culling logic to the
MetaWindowActorWayland class by moving all the logic to the non-abstract
classes, since there will be no reason to keep the logic in
MetaWindowActor around.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2338>
A "window rect" in most places refers to the rectangle the window
corresponds to when it comes to window management. MetaWindow::rect also
refers to this window management related rectangle. However in the
geometry sync functions, it instead called what was to be the rectangle
the actor should have as "window rect", which is arguably a bit
confusing. Fix this by renaming it "actor_rect" so that it becomes clear
that it's the rectangle the actor should get on the stage.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2338>
MetaWindowActor previously peeked at the number of child Actors to
determine the number of surfaces. The following commit rearranged the
tree such that MetaWindowActorWayland always has two Actors. This change
lets the subclass determine if the main surface describes the whole
window.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2338>
First, add logic in MetaCompositorView to find topmost visible
MetaWindowActor on its view, and expose it through a new API.
Then, queue an update to find the top MetaWindowActor of each
MetaCompositorView in the following cases:
1. The MetaCompositor is in its initial state.
2. The window stack order has changed.
3. A window has changed its visibility.
4. A "stage-views-changed" signal was emitted for a MetaWindowActor.
Finally, perform the queued update in meta_compositor_before_paint (),
and assert that an update isn't queued during painting. This ensures
that the top window actor in the MetaCompositorView remains up-to-date
and available to child classes of MetaCompositor throughout the entire
paint stage.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2526>
This replaces the API to get the topmost surface actor with an API to
get the surface actor that could be a candidate for direct scanout. The
advantage of this is that it allows X11 and Wayland specific
restrictions for these actors.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2409>
On Wayland a window actor may have more than one surface actor,
most importantly when subsurfaces are used.
Add a new function to request the one which is at the top -
it will be used in the next commit.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2211>
Analogous to `get_image()` this returns a `ClutterContent` for a
given `MetaWindowActor`. This can be used to implement window
effects without a roundtrip from GPU to CPU memory.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1893>
Mutter freezes Xwayland commits when resizing windows, and thaw them in
the window actors' after_paint() for X11.
Yet, after_paint() could be never called, as when a new window is mapped
while the overview is active in gnome-shell.
As a result, the content of the X11 window will remain invisible to the
overview.
Add a new window actor API to tell whether commits can be frozen. For
Wayland window actors, this always return FALSE, whereas for X11 window
actors, it checks whether the Clutter actor is mapped.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1678>
Just because of implementation details, this is only relevant to Wayland,
and is done via ::effects-completed handlers there. Ideally, Clutter should
notice by itself about effects starting, finishing, and affecting picking.
Doing this in generic code seems slightly cleaner in the interim.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1654>
A first step towards abandoning the CoglObject type system: convert
CoglFramebuffer, CoglOffscreen and CoglOnscreen into GObjects.
CoglFramebuffer is turned into an abstract GObject, while the two others
are currently final. The "winsys" and "platform" are still sprinkled
'void *' in the the non-abstract type instances however.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1496
CoglMatrix already is a typedef to graphene_matrix_t. This commit
simply drops the CoglMatrix type, and align parameters. There is
no functional change here, it's simply a find-and-replace commit.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
Replace the default master clock with multiple frame clocks, each
driving its own stage view. As each stage view represents one CRTC, this
means we draw each CRTC with its own designated frame clock,
disconnected from all the others.
For example this means we when using the native backend will never need
to wait for one monitor to vsync before painting another, so e.g. having
a 144 Hz monitor next to a 60 Hz monitor, things including both Wayland
and X11 applications and shell UI will be able to render at the
corresponding monitor refresh rate.
This also changes a warning about missed frames when sending
_NETWM_FRAME_TIMINGS messages to a debug log entry, as it's expected
that we'll start missing frames e.g. when a X11 window (via Xwayland) is
exclusively within a stage view that was not painted, while another one
was, still increasing the global frame clock.
Addititonally, this also requires the X11 window actor to schedule
timeouts for _NET_WM_FRAME_DRAWN/_NET_WM_FRAME_TIMINGS event emitting,
if the actor wasn't on any stage views, as now we'll only get the frame
callbacks on actors when they actually were painted, while in the past,
we'd invoke that vfunc when anything was painted.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/903
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/3https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
The repaint callbacks are not tied to repaint, thus a bit misleading.
What the functionality in the pre/post-paint callbacks here cares about
is when actually painting; the non-painting related parts has already
moved out to a *-update signal.
This also renames the related MetaWindowActorClass vfuncs, to align with
naming convention of the signals that it listens to.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
Since we now always return a resource scale, we can remove the boolean
return value from clutter_actor_get_resource_scale() and
_clutter_actor_get_real_resource_scale(), and instead simply return the
scale.
While at it, also remove the underscore from the
_clutter_actor_get_real_resource_scale() private API.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1276
As explained in the last commits, we'll let gnome-shell take care of
this since freezing and thawing needs to be decoupled from the effect
starting and ending.
So stop freezing the MetaWindowActor when starting the effect and
thawing the actor when ending the effect.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1250
As explained in the last commit, gnome-shell needs to be able to thaw
window actor updates during its size-change effect is active.
So make meta_window_actor_freeze() and meta_window_actor_thaw() public
API, which will allow the shell to freeze and thaw actor updates itself.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1250
The size-change animation in gnome-shell needs to sync the window actors
geometry during the animation, it currently does this by notifying the
compositor that the animation was finished before it actually is.
This causes a few bugs in Mutter though, since it will now emit the
"effects-completed" signal on the window actor even though they aren't
completed.
To fix that, we need to decouple freezing and thawing of actor updates
from window effects and allow gnome-shell to thaw actor updates before
it notifies Mutter that the effect is completed.
The first step for this is allowing to sync the actor geometry while an
effect is active, this should be redundant since effects which actually
need to inhibit those updates will freeze the actor anyway. Also a
geometry change happening while another effect is active will kill the
old effect anyway because MetaPluginManager kills all the active window
effects before starting a new one; so the new size-change effect for any
geometry change is going to kill the current effect.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1250
A paint flag affects a paint operation in ways defined by the flags.
Currently no flags are defined, so no semantical changes are defined
yet. Eventually a flag aiming to avoid painting of cursors is going to
be added, so that screen cast streams can decide whether to include a
cursor or not.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1207
This fixes an issue where a non-maximized screen casted window would be
stretched to fill the whole screen cast stream, instead of just the crop
that corresponds to the current window size.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1174
Normally we bail out in `sync_actor_geometry()`. The comment there
states:
```
Normally we want freezing a window to also freeze its position; this allows
windows to atomically move and resize together, either under app control,
or because the user is resizing from the left/top. But on initial placement
we need to assign a position, since immediately after the window
is shown, the map effect will go into effect and prevent further geometry
updates.
```
The signal for the initial sync originates in `MetaWindow` though and predates
`xdg_toplevel_set_maximized`, which again calls `meta_window_force_placement`,
triggering the signal too early. As a result, Wayland clients that start up
maximized have a wrong map animation, starting in the top-left corner.
In order to fix this without changing big parts of the geometry logic and risking
regressions, force the initial sync again before mapping.
Solution suggested by Jonas Ådahl.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1164
This allows us to screencast any window continuously, even
without it being visible. Because it's still being painted,
clients continue to receive frame callbacks, and people
are happy again.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1129
cogl_framebuffer_push_rectangle_clip() acts on the current modelview
matrix. That means the result of clipping then translating will be
different of the result of translating then clipping.
What we want for window screencasting is the former, not the latter.
Move the translation code (and associated) to after clipping.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/1097https://gitlab.gnome.org/GNOME/mutter/merge_requests/1129
For X11 clients running on Xwayland, the opaque, input and shape regions
are processed from different properties and may occur at a different
time, before the actual buffer is eventually committed by Xwayland.
Add a new API `update_regions` to window actor to trigger the update of
those regions when needed.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1091
Much like monitor streaming, implement window streaming by
making the window actor draw itself with a paint context
that used the passed framebuffer.
Now that all MetaScreenCastStreamSrc subclasses implement
blit_to_framebuffer, remove the conditional check from
meta_screen_cast_stream_src_blit_to_framebuffer().
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1086
It is only useful for clients that do not set an opaque region but
still can be detected as being opaque. This is helpful for X11 clients
as opaque regions only got introduced around 2012 and only as part of EWMH
and are thus not used in many cases.
On Wayland however opaque regions have been part of the core protocol from the
beginnig and we can assume they are used more commonly.
As the current implementation in `MetaWindowActor` does not handle Wayland
subsurfaces well, instead of adding more complexity just move it to
`MetaWindowActorX11`.
While on it, take the shape region into account that is set when clients
use the X Nonrectangular Window Shape Extension Protocol, so we have exact
culling with those clients.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1058
The frame bounds as returned by `meta_window_actor_get_frame_bounds()`
would be used as cropping values when streaming a window content.
But, as its name implies, it returns the actual frame bounds, whereas we
may want to include the whole buffer, to include client side shadows for
example.
Rename the `get_frame_bounds()` API to `get_buffer_bounds()` (which was
previously partly removed with commit 11bd84789) and return the actual
buffer bounds to use as the cropping area when streaming a window.
Fixes: 931934511 - "Implement MetaScreenCastWindow interface"
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1022
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/1018
The clip bounds passed in `meta_window_actor_capture_into()` represent
the actual allocated buffer size where the window actor image will be
eventually copied.
As such, it is completely agnostic to the scaling factors that might
affect the different surface actors which compose the window actor.
So instead of trying to compute the scale factor by which the given
clipping bounds need to be adjusted, simply clip the resulting image
based on the given bounds to make sure we never overflow the destination
buffer.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1022
Currently, the window actor freeze/thaw implementation sets the frozen
state of the surface actor using `meta_surface_actor_set_frozen()`.
If we want to expand that behavior to also freeze/thaw commits for X11
windows running on Xwayland, we need to have a specific vfunc to abstract
that in the window actor specific implementation.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/942
From `meta_cullable_cull_out`:
```
Actors that may have fully opaque parts should also subtract out a region
that is fully opaque from @unobscured_region and @clip_region.
```
As we do no check for the intersection of these two elsewhere in the code,
let's substract from the clip region, too.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/985
When painting, actors rely on semi global state tracked by the state to
get various things needed for painting, such as the current draw
framebuffer. Having state hidden in such ways can be very deceiving as
it's hard to follow changes spread out, and adding more and more state
that should be tracked during a paint gets annoying as they will not
change in isolation but one by one in their own places. To do this
better, introduce a paint context that is passed along in paint calls
that contains the necessary state needed during painting.
The paint context implements a framebuffer stack just as Cogl works,
which is currently needed for offscreen rendering used by clutter.
The same context is passed around for paint nodes, contents and effects
as well.
In this commit, the context is only introduced, but not used. It aims to
replace the Cogl framebuffer stack, and will allow actors to know what
view it is currently painted on.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/935
Move out updating of various shapes (input, opaque, shape) indirectly
from X11 to the corresponding X11 sub types of MetaWindowActor and
MetaSurfaceActor.
Also move fullscreen window unredirection code with it. We want to
effectively do something similar for MetaCompositorServer, but it will
work differently enough not to share too much logic.
While it would have been nice to move things piece by piece, things were
too intertwined to make it feasible.
This has the side effect fixing accidentally and arbitrarily adding
server side shadow to Wayland surfaces.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/727https://gitlab.gnome.org/GNOME/mutter/merge_requests/734
The commit f2f4af0d50 missed one situation
where mutter does things differently, i.e. changes what surface actor is
associated with a given window actor: reparenting a Xwayland window when
changing whether it is decorated.
To summarize, there are three types of window actors:
X11 window actors - directly tied to the backing X11 window. The
corresponding surface actor is directly owned by the window actor and
will never change.
Wayland window actors - gets its surface actor from MetaWaylandSurface
at construction. A single MetaWaylandSurface may create and destroy
multiple window actors over time, but a single window actor will never
change surface actor.
Xwayland window actors - a mix between the above two types; the window
corresponds to the X11 window, and so does the window actor, but the
surface itself comes from the MetaWaylandSurface.
Normally when a X11 window is unmapped, the corresponding MetaWindow is
unmanaged. With Xwayland, this happens indirectly via the destruction of
the wl_surface. The exception to this is windows that are reparented
during changing their decoration state - in this case on plain X11, the
MetaWindow stays alive. With Xwayland however, there is a race
condition; since the MetaWindow is tied to the wl_surface, if we receive
the new surface ID atom before the destruction of the old wl_surface,
we'll try to associate the existing MetaWindow and MetaWindowActor with
the new wl_surface, hitting the assert. If the surface destruction
arrives first, the MetaWindow and MetaWindowActor will be disposed, and
the we wouldn't hit the assert.
To handle this race gracefully, reinstate handling of replacing the
surface actor of an existing window actor, to handle this race, as it
was handled before.
Eventually, it should be reconsidered whether the MetaWindow lifetime is
tied to the wl_surface or if it should be changed to be consistent with
plain X11, as this re-exposes another bug where the X11 client and
mutter will enter a feedback loop where the window is repeatedly
remapped. See https://gitlab.freedesktop.org/xorg/xserver/issues/740.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/709https://gitlab.gnome.org/GNOME/mutter/merge_requests/773
This currently uses a hack where it pushes a CoglFramebuffer backed by a
texture to the framebuffer stack, then calls clutter_actor_paint() on
the window actor causing it to render into the framebuffer. This has the
effect that all subsurfaces of a window will be drawn as part of the
window.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/752