The meta_prop_get_motif_hints() function was only used in the
old MetaUI frames code. The remaining code in mutter accesses
directly the MetaPropValue when loading properties for a window,
and does not use this API call.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2741>
Since we use XCB in the Mutter side, but Xlib in the frames client,
we cannot share the same struct definition since both libraries
will expect different type lengths (respectively, 32-bit ints vs.
longs).
Revert the changes that made both executables share the same
struct, since not both of them can get it right (and retrieve
correctly the struct with the contained flags) in reading the
Motif WM hints.
This reverts commit 2fb3c5a4f5.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2741>
Adding the 'default-decoration' CSS class to MetaFrameHeader after
it is set as the headerbar makes it not account for the minimum size
correctly sometimes. This is a bit racy though - if the window opens
very quickly, it works as expected.
Adding the CSS class before the widget is used guarantees it'll
always report the correct size though, so do that.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2753>
Add this CSS class both to the header bar itself, since it is what
actually contains the window controls, and to MetaFrameHeader too,
since it's what's directly attached to the window.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2740>
Previous commit added support for setting the GTK4 theme setting
according to the color scheme setting. That's cool. What it didn't
add, though, was initializing the GTK4 theme setting to the proper
value. That means if the desktop starts at dark style, you'd still
get a light titlebar.
Fix that by updating the GTK4 theme setting on init as well.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2740>
These are now referenced on the frames client side (in order to
track deletable state from the client window) and the mutter side
(pretty much everything else, like figuring out if a window wants
WM decorations).
It makes sense to make this a separate header, so that we don't
need to doubly define these flags/structs.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2735>
We use this for tracking the deletable state of the client window,
but forgot to check that the MWM_HINT_FUNCTIONS hint is set in
hints.flags before checking hints.functions.
This resulted in windows that do not specify this flag (and thus
should go with the defaults) in being mistakenly removed the close
button, as the functions flags would be typically 0 in that case.
Fixes issues with Chromium and Electron applications missing the
close button, since Chromium does this on X11.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2735>
Recalculating window features is a busy thing on the Mutter side, the
different properties being (re)set will overwrite the current state
and cause some side work. Between that is the rewriting of the
_MUTTER_NEEDS_FRAME property on the window being recalculated, which
throws the frames client off, by thinking the window does actually
require a new frame.
It is not sufficient to trust that PropertyNewValue means the property
or the value are new, also double check that the window did not have
in fact a frame, and avoid the busy work if it did.
Besides the busywork that can be easily avoided, this also fixes the
window close button state being stuck if the window changed its
deletable state, since the frame being respawn managed to miss the
property change.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2735>
meta_screen_cast_window_stream_src_set_cursor_metadata() relies
entirely on meta_screen_cast_window_transform_cursor_position()
to return the correct relative cursor position.
However, this function actually does not return the expected
values, since it does not apply the resource scale to the
transformed position.
Actually apply the cursor scale when calculating the cursor
position.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2737>
meta_screen_cast_stream_src_set_cursor_sprite_metadata() receives
the cursor sprite, position, and scale, and with that it downloads
the cursor sprite by drawing it into a separate framebuffer, then
calls cogl_framebuffer_read_pixels() in it - this is the offscren
path that is very common when using screen capturing applications
such as OBS Studio.
There's a sneaky issue in this code path though: the 'scale' value
is a float. The cursor size is then determined by multiplying the
sprite width and height - two integer variables - by scale, and
this relies on standard float-to-int conversions. This is problematic
as sometimes the rounded values disagree with what is expected by
cogl_framebuffer_read_pixels(). If the packing of either the cursor
width or height is off by one, glReadPixels() will try to write into
off bounds, which crashes.
This can be reproduced by enabling fractional scaling, setting a 150%
zoom level, on a 4K screen, and opening any commit with an image diff
in gitlab.gnome.org, all while screencasting. When hovering the new
image, the cursor sprite will be such that it triggers this code path,
and reproduces this issue.
Fix this by always ceiling the cursor sprite sizes.
Closes https://gitlab.gnome.org/GNOME/mutter/-/issues/2542
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2736>
The uninitialized fields in this event causes use of uninitialised
data as seen in valgrind:
==71864== Syscall param writev(vector[0]) points to uninitialised byte(s)
==71864== at 0x5026EBD: __writev (writev.c:26)
==71864== by 0x5026EBD: writev (writev.c:24)
==71864== by 0x6482A3B: UnknownInlinedFun (xcb_conn.c:296)
==71864== by 0x6482A3B: _xcb_conn_wait.part.0 (xcb_conn.c:551)
==71864== by 0x6482BAF: UnknownInlinedFun (xcb_out.c:469)
==71864== by 0x6482BAF: _xcb_out_send (xcb_out.c:470)
==71864== by 0x6483DD7: UnknownInlinedFun (xcb_out.c:416)
==71864== by 0x6483DD7: xcb_writev (xcb_out.c:409)
==71864== by 0x53B79B4: _XSend (xcb_io.c:587)
==71864== by 0x53BBF38: _XReply (xcb_io.c:679)
==71864== by 0x53AFFC9: XQueryTree (QuTree.c:47)
==71864== by 0x4982A5F: query_xserver_stack (stack-tracker.c:508)
==71864== by 0x4EA1F5F: g_closure_invoke (gclosure.c:832)
==71864== by 0x4ECFD45: signal_emit_unlocked_R.isra.0 (gsignal.c:3796)
==71864== by 0x4EC0129: g_signal_emit_valist (gsignal.c:3549)
==71864== by 0x4EC03B2: g_signal_emit (gsignal.c:3606)
==71864== Address 0x287d5900 is 32 bytes inside a block of size 16,384 alloc'd
==71864== at 0x4849444: calloc (vg_replace_malloc.c:1340)
==71864== by 0x53A5FE8: XOpenDisplay (OpenDis.c:240)
==71864== by 0x6100E3C: _gdk_x11_display_open (gdkdisplay-x11.c:1565)
==71864== by 0x60CF675: gdk_display_manager_open_display (gdkdisplaymanager.c:462)
==71864== by 0x49D59F1: open_gdk_display (meta-x11-display.c:1041)
==71864== by 0x49D5D64: meta_x11_display_new (meta-x11-display.c:1156)
==71864== by 0x49564AD: meta_display_init_x11_finish (display.c:743)
==71864== by 0x495679D: on_x11_initialized (display.c:818)
==71864== by 0x4D67558: g_task_return_now (gtask.c:1232)
==71864== by 0x4D67782: UnknownInlinedFun (gtask.c:1301)
==71864== by 0x4D67782: g_task_return (gtask.c:1258)
==71864== by 0x495663C: on_xserver_started (display.c:788)
==71864== by 0x4D67558: g_task_return_now (gtask.c:1232)
==71864== Uninitialised value was created by a stack allocation
==71864== at 0x49D4A59: take_manager_selection (meta-x11-display.c:640)
==71864==
To fix this, fully initialize the event struct before sending it.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2535
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2724>
Since the frames are now rendered by a separate process, we no longer
can guarantee at this point that all updates were handled. Engaging
in a new synchronous resize operation will again freeze the actor,
so sometimes we are left with a not-quite-current buffer for the
frame+window surface.
In order to ensure that the right changes made it onscreen, delay
this next synchronous resize step until the moment the surface was
repainted. This avoids those glitches, while still ensuing the
resize operation ends up in sync with the pointer.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2175>
Let the frames client render its own shadow. In order to do that,
avoid double painting a shadow on the compositor side, and extend
the mask area of the frame, so it does unveil the (so far)
hidden frames-client-side shadows.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2175>
There's two meanings of "frame" there! Since SSD frames are now
rendered by an external client, and there are no actual mechanism
that ensures the frame did already get painted when the client did
respond to its NET_WM_FRAME_SYNC_REQUEST request, there may be
artifacts when resizing windows.
In order to get always the best visual result, we should actually
synchronize rendering with both the client window and the window
frame window.
This commit adds these mechanisms, so a sync alarm update is
expected on both windows until further resizes are allowed, this
ensures window and frame stay in sync, even after moving rendering
elsewhere.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2175>
It will become necessary to track properties and changes from frame windows,
and it will be more convenient to have this managed by the common property
tracking mechanisms.
Add this source_xwindow parameter so property handler functions can check
whether the property belonged to the client Window or the frame Window.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2175>
Store the alarms in a different hashtable, and look up the MetaSyncCounter
right away. It so far avoids the MetaWindow middle man, but will also be
simpler when each window can possibly have more than one active alarms.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2175>
Replace the in-process implementation of frames with the external
frames client.
When a client window is created and managed by Mutter, Mutter will
determine whether it is a window that requires decorations and
hint the creation of a frame for it by setting the _MUTTER_NEEDS_FRAME
property on the client window.
After the frames client created a window that has the _MUTTER_FRAME_FOR
property, Mutter will proceed to reparent the client window on the
frame window, and show them as a single unit.
Rendering and event handling on the frame window will be performed by
the external client, Mutter is still responsible for everything else,
namely resizing client and frame window in synchronization, and
managing updates on the MetaWindowActor.
In order to let the frame be managed by the external client, Mutter
needs to change the way some properties are forwarded to the client
and/or frame windows. Some properties are necessary to keep propagating
to the client window only, some others need to happen on the frame
window now, and some others needs to be propagated on both so they
are synchronized about the behavior.
Also, some events that were previously totally unexpected in frame
windows are now susceptible to happen, so must be allowed now.
MetaFrame in src/core/frame.c now acts as the wrapper of foreign
windows created by the frames client, from the Mutter side. Location,
size, and lifetime are still largely in control of Mutter, some
details like visible/invisible borders are obtained from the client
instead (through the _MUTTER_FRAME_EXTENTS and _GTK_FRAME_EXTENTS
properties, respectively).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2175>
This small X11 client takes care of creating frames for client
windows, Mutter will use this client to delegate window frame
rendering and event handling.
The MetaWindowTracker object will keep track of windows created
from other clients, and will await for _MUTTER_NEEDS_FRAME property
updates on those (coming from Mutter), indicating the need for a
frame window.
This process is resilient to restarts of the frames client, existing
windows will be queried during start, and the existence of relevant
properties checked. Mutter will be able to just hide/show
SSD-decorated windows while the frames client restarts.
The frames are created through GTK4 widgets, the MetaWindowContent
widget acts as a replacement prop for the actual client window,
and the MetaFrameHeader wraps GtkHeaderBar so that windows can be
overshrunk, but otherwise a MetaFrame is a 100% true GTK4 GtkWindow.
After a frame window is created for a client window, the
_MUTTER_FRAME_FOR property will be set on the frame window,
indicating to mutter the correspondence between both Windows.
Additionally, the pixel sizes of the visible left/right/top/bottom
borders of the frame will be set through the _MUTTER_FRAME_EXTENTS
property, set on the frame window.
In order to make the frame window behave as the frame for the
client window, a number of properties will be tracked from the
client window to update the relevant frame behavior (window title,
resizability, availability of actions...), and also some forwarding
of events happening in the frame will be forwarded to the client
window (mainly, WM_DELETE_WINDOW when the close button is clicked).
Other than that, the frames are pretty much CSD GTK4 windows, so
window drags and resizes, and window context menus are forwarded for
the WM to handle.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2175>
This check dates all the way back to commit ac2aa5337d. At the time, the
window switcher was an actual X window, that could generate crossing events
if popped up under the pointer. Checking for this kind of crossing events
made sense back at the time in order not to break focus-follows-mouse as
it's been behaving for long.
But now, this UI is all Clutter widgetry, which in the worst case (X11
sessions, of course) it will update the stage window shape to make these
parts clickable. This happens in other places of code that do already
check for ignoring crossing events.
Underneath, this looked up for a Mutter-local GdkWindow of type
GDK_WINDOW_TEMP, only the main MetaFrames window matches those characteristics
nowadays, notably no window switcher popups. Since the remaining window is
never unmapped (until perhaps shutdown), the paths were functionally dead.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2175>
If the window is not managed, it's weird that it asks for _NET_FRAME_EXTENTS,
it's even weirder that mutter replies with a frame border that would only
apply if the window were managed. Stop doing the latter, and drop the
MetaUI call that calculates borders from the theme settings.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2175>
Put the helper to use, in order to lift MetaWindow itself from this
accounting. As a bonus, the data itself now moved to the MetaWindowX11
private struct, since this may only happen with X11 windows (or its
Xwayland subclass).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2175>
This helper struct takes care of the handling of requests and alarms
in order to satisfy NET_WM_SYNC_REQUEST. It will be necessary to
decouple rendering of windows and frames in future commits, so each
window may need its own synchronization and accounting.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2175>
This may result in a view of the stack in MetaStackManager that does not correspond
to reality, since the window is already being unmanaged, there is no point either in
notifying the stack manager about it.
This slight divergence with reality in the MetaStackManager may produce a non-accurate
view if querying its state has to go through the predicted branches. Later synchronization
with the X11 stack may even this out, but the result really depends on when it is asked.
Fixes some intermittent failures in the stacking/closed-transient-only-take-focus-parents
unit test.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2175>
The meta_window_show() method internally relies on window->mapped being
up-to-date, or attempting to focus it may fail since the window is not
mapped yet, resulting on the window being mapped, but not focused as
it would be expected.
This is moot so far, since windows with frames are created sort-of
synchronously and showing them will result in the focus attempt happening
when the window is already mapped, but things will break when this
becomes an asynchronous step.
Ensure to synchronize client state before showing, so any attempts to
focus the window are able to succeed despite the initial state when
calling meta_window_update_visibility().
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2175>
The test does simply "wait" which apparently is not enough to ensure the
client window did resize to the expected dimensions. Use "wait_reconfigure"
and assert that the size after resize is the expected, before going further
at testing its behavior after maximize/unmaximize; it might end up with the
unexpected size after the whole operation.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2175>
Move the use count from a separate MetaWaylandBufferRef struct to the
MetaWaylandBuffer class, and remove the former.
The buffer use count is now incremented already in
meta_wayland_surface_commit, since the Wayland protocol defines the
buffer to be in use by the compositor at that point. If the buffer
attachment ends up being dropped again before it is applied to the
surface state (e.g. because another buffer is committed to a
synchronized sub-surface before the parent surface is committed),
the use count is now decremented, and a buffer release event is sent if
the use count drops to 0.
Buffer release events were previously incorrectly not sent under these
circumstances. Test case: Run the weston-subsurfaces demo with the -r1
and/or -t1 command line parameter. Resize the window. Before this
change, weston-subsurfaces would freeze or abort after a few resize
operations, because mutter failed to send release events and the
client ran out of usable buffers.
v2:
* Handle NULL priv->buffer_ref in
meta_wayland_cursor_surface_apply_state.
v3:
* Remove MetaWaylandBufferRef altogether, move the use count tracking
to MetaWaylandBuffer itself. Much simpler, and doesn't run into
lifetime issues when mutter shuts down.
v4:
* Warn if use count isn't 0 in meta_wayland_buffer_finalize.
* Keep pending_buffer_resource_destroyed for attached but not yet
committed buffers. If the client attaches a buffer and then destroys
it before commit, we ignore the buffer attachement, same as before
this MR.
v5:
* Rebase on top of new commit which splits up surface->texture.
* MetaWaylandSurfaceState::buffer can only be non-NULL if
::newly_attached is TRUE, simplify accordingly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1880>
Until all dma-buf file descriptors for all buffers in the transaction
are readable, which corresponds to when the client drawing to the
buffers has finished.
This fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1162 if the
GPU & drivers support high priority contexts which can preempt lower
priority contexts.
v2:
* Also remove dma-buf fds from transaction and try applying it from
pending_buffer_resource_destroyed. Avoids freeze due to leaving a
GSource based on a closed fd attached if a client destroys a wl_buffer
which is part of a transaction which was committed but not applied
yet. (Robert Mader)
* Tweak transaction cleanup logic in wl_surface_destructor.
v3:
* Adapt to meta_wayland_dma_buf_get_source.
v4:
* Adapt to new commits using transactions for (sub-)surface destruction,
drop code to remove destroyed surfaces from pending transactions.
v5:
* Use g_clear_pointer in meta_wayland_transaction_destroy.
(Georges Basile Stavracas Neto)
* Add spaces between type casts and values. (Carlos Garnacho)
* Use (gpointer *) instead of (void**). (Carlos Garnacho)
* Use gpointer instead of void * in
meta_wayland_transaction_dma_buf_dispatch.
v6:
* Use g_hash_table_remove in meta_wayland_transaction_dma_buf_dispatch.
(Carlos Garnacho)
v7: (Jonas Ådahl)
* Move include of glib-unix.h below that of meta-wayland-transaction.h.
* Split up g_hash_table_iter_next call to multiple lines in
meta_wayland_transaction_commit.
* Call g_source_destroy as well as g_source_unref when freeing a
committed but not yet applied transaction (during mutter shutdown).
v8:
* Drop dma_buf_source_destroy, can use g_source_destroy directly.
(Jonas Ådahl)
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1880>
From xdg_surface_constructor_get_popup / xdg_popup_reposition (called
during Wayland protocol processing) to finish_popup_setup /
meta_wayland_xdg_popup_apply_state (called when the popup state is
applied).
This makes sure that the parent window frame rectangle is up to date in
meta_wayland_xdg_positioner_to_placement.
v2:
* Use meta_wayland_surface_state_new () in
meta_wayland_transaction_add_xdg_popup_reposition.
v3:
* Move xdg_popup_repositioned handling to
meta_wayland_xdg_popup_apply_state.
v4:
* Do not steal pending->xdg_positioner in
meta_wayland_xdg_popup_apply_state, fixes leaking the corresponding
memory.
* Drop MetaWaylandSurfaceState::xdg_popup_repositioned, just use
::xdg_positioner.
v5:
* Reformat meta_wayland_xdg_positioner_to_placement calls to stay within
80 columns. (Jonas Ådahl)
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1880>
This makes sure that finish_popup_setup is called after any previous
transactions for the parent surface have been applied, so the parent
window geometry is up to date.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1880>
Preparation for potentially calling meta_wayland_transaction_apply some
time after surface commit, in which case doing it in the former would be
too late: The client may legally destroy the attached wl_buffer
immediately after commit, in which case meta_wayland_buffer_attach would
spuriously fail and disconnect the client (or possibly even crash mutter
due to NULL error).
Requires splitting up the surface texture between protocol and output
state, and propagating from the former to the latter via
MetaWaylandSurfaceState.
v2: (Jonas Ådahl)
* Move meta_wayland_surface_get_texture call to separate line.
* Use g_autoptr for GError.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1880>
And keep track of the hierarchy separately for the Wayland protocol and
for output. Protocol state is updated immediately as protocol requests
are processed, output state only when the corresponding transaction is
applied (which may be deferred until the next commit of the parent
surface).
v2:
* Directly add placement ops to a transaction, instead of going via
pending_state.
* Use transaction entry for the sub-surface instead of that for its
parent surface.
v3:
* Use transaction entry for the parent surface again, to ensure proper
ordering of placement ops, and call
meta_wayland_surface_notify_subsurface_state_changed only once per
parent surface.
* Drop all use of wl_resource_add_destroy_listener, transactions are
keeping surfaces alive as long as needed.
v4:
* Rebase on https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2501
* Drop ClutterActor code from meta_wayland_surface_apply_placement_ops.
(Robert Mader)
v5:
* Rename MetaWaylandSubSurfaceState to MetaWaylandSurfaceSubState, since
the next commit adds not sub-surface specific state to it.
v6:
* Move include of meta-wayland-subsurface.h from
meta-wayland-transaction.c to .h, since the latter references
MetaWaylandSubsurfacePlacementOp.
v7:
* Drop superfluous !entry check from meta_wayland_transaction_apply.
v8:
* Rename output/protocol fields to output/protocol_state. (Jonas Ådahl)
v9:
* Use meta_wayland_surface_state_new in
meta_wayland_transaction_add_placement_op.
v10:
* Fix a few style issues per check-style.py.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1880>
Destroy Wayland protocol related state immediately when the Wayland
resource is destroyed, but keep the rest alive by any transaction which
references the surface.
This makes it easier and cleaner to deal with a surface getting
destroyed while it's still referenced by transactions.
v2:
* No more need to keep references for surfaces in the entries hash
table.
v3:
* Do not use surface->sub.transaction in wl_surface_destructor, just
destroy it.
v4:
* No need for wl_surface_destructor to use its own transaction.
v5:
* Use g_steal_pointer & (more) g_clear_pointer in wl_surface_destructor.
v6:
* Leave SURFACE_DESTROY signal emission in wl_surface_destructor.
v7:
* Use finalize instead of dispose callback.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1880>
This keeps all surfaces referenced by a transaction alive until the
transaction is destroyed, and makes sure transactions are applied in
the same order as they were committed with respect to all surfaces
they reference.
v2:
* Guard against NULL entry in meta_wayland_transaction_apply.
v3:
* Keep single entries hash table.
v4:
* Unref the surface in the meta_wayland_transaction_merge_into while
loop only if the "to" transaction didn't already have an entry for it,
to prevent premature finalization of the surface (likely followed by a
crash).
v5:
* Unref the surface (implicitly via g_hash_table_iter_remove) in the
meta_wayland_transaction_merge_into while loop even if the "to"
transaction already had an entry for it, or we leak a reference.
* Use g_clear_object & g_steal_pointer to not leave behind a dangling
from->state pointer in meta_wayland_transaction_entry_merge_into.
v6:
* Add curly braces around
meta_wayland_transaction_add_placement_surfaces calls. (Jonas Ådahl)
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1880>
Instead of cached_state.
surface_commit for a synchronized sub-surface either commits the
transaction or merges it into the parent surface's transaction (if
the parent is a synchronized sub-surface itself).
This should fix or at least improve the behaviour of nested synchronized
sub-surfaces.
Also change wl_subsurface_set_desync:
* Commit sub-surface transactions separately. This may allow some of
them to be applied earlier in some cases.
* Commit transaction only for descendant sub-surfaces which become
newly de-synchronized themselves.
v2:
* Drop unused function prototypes
v3:
* Use g_clear_pointer for surface->sub.transaction.
v4:
* Use g_steal_pointer instead of g_clear_pointer. (Sebastian Wick, Jonas
Ådahl)
v5: (Carlos Garnacho)
* Add spaces between type casts and values.
* Use (gpointer *) instead of (void**).
v6: (Jonas Ådahl)
* Use g_clear_object in meta_wayland_transaction_entry_merge_into.
* Use meta_wayland_transaction_entry_free in
meta_wayland_transaction_merge_into.
* Fix alignment of meta_wayland_transaction_merge_pending_state
parameters.
* Remove unused meta_wayland_transaction_add_state declaration.
v7:
* Use meta_wayland_surface_state_new in
meta_wayland_transaction_merge_pending_state.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1880>
A transaction contains the committed state for a surface, plus any
cached state for synchronized subsurfaces.
v2:
* Handle sub-surface positions separately from surface states.
v3:
* Sync child states only for surfaces with state in the transaction.
v4: (Jonas Ådahl)
* Drop unnecessary g_object_new call from wl_subsurface_set_desync. (me)
* Fix indentation & formatting in meta_wayland_surface_commit.
* Add meta_wayland_surface_state_new helper function.
* Fix alignment of meta_wayland_transaction_apply_subsurface_position
parameters.
* Add curly braces around meta_wayland_transaction_sync_child_states
call in meta_wayland_transaction_apply.
v5:
* Make meta_wayland_surface_state_new an inline function.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1880>
If multiple transactions have entries for the same surface, they are
applied in the same order as they were committed. Otherwise, they can
be applied in any order.
This is preparation for following changes, transactions are still
applied as soon as they're committed.
v2:
* Move GQueue for transactions to MetaWaylandCompositor (Jonas Ådahl)
v3
* Say "entry for" instead of "state for", since there can be transaction
entries with no state (for surfaces which are getting destroyed).
v4:
* Use a hash table to keep track of all candidate transactions which
might be newly ready to be applied.
* Use clearer function / variable names.
v5:
* Use custom single-linked list instead of hash table for candidate
transactions, ordered by the transaction commit sequence number, so
that they're attempted to be applied in the same order as they were
committed.
* Rename transaction->queue to transaction->committed_queue, and
simplify its handling.
v6: (Carlos Garnacho)
* Add spaces between type casts and values.
* Use (gpointer *) instead of (void**).
v7: (Jonas Ådahl)
* Use G_MAXSIZE instead of ULONG_MAX.
* Fix indentation of meta_wayland_transaction_apply &
meta_wayland_transaction_maybe_apply_one parameters.
* Refactor find_next_transaction_for_surface & ensure_next_candidate
helper functions out of meta_wayland_transaction_apply.
* Refactor has_unapplied_dependencies helper function out of
meta_wayland_transaction_maybe_apply_one.
* Make while (TRUE) loop in meta_wayland_transaction_maybe_apply
consistent with general usage.
* Drop unused value local from meta_wayland_transaction_commit.
* Store pointer to compositor object in transactions, instead of
pointer to the queue of committed transactions.
* Drop tautological g_assert from meta_wayland_transaction_apply. (me)
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1880>
v2:
* Use single hash table with struct which will contain all kinds of
state handled by a transaction.
v3:
* Add meta_wayland_transaction_destroy.
v4 (Georges Basile Stavracas Neto)
* Fix struct _MetaWaylandTransaction(Entry) formatting.
* Explicitly test against NULL.
* Use gpointer insteadof void * for
meta_wayland_transaction_entry_destroy.
v5: (Robert Mader)
* Use for loop in is_ancestor.
* Include meta-wayland-transaction.h first in
meta-wayland-transaction.c.
v6:
* Use g_autofree & g_clear_object.
v7: (Jonas Ådahl)
* Rename meta_wayland_transaction_entry_destroy to
meta_wayland_transaction_entry_free.
* Drop g_autofree use from meta_wayland_transaction_entry_free again.
* Make meta_wayland_transaction_entry_free take a
MetaWaylandTransactionEntry pointer.
* Rename meta_wayland_transaction_destroy to
meta_wayland_transaction_free.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1880>
Need to deal with surface->resource == NULL and
surface->pending_state == NULL in some places.
v2:
* Avoid expanding conditions to multiple lines.
(Georges Basile Stavracas Neto)
v3:
* Use a single bailout condition in meta_wayland_client_owns_window as
well.
v4:
* Remove spare empty line in meta_wayland_surface_apply_state.
(Robert Mader)
* Add wl_resource_post_error calls in xdg-shell request handlers.
(Robert Mader)
* Drop checks in functions which can only be called if there's a valid
resource.
* Drop more checks which are unnecessary due to leaving the
SURFACE_DESTROY signal emission in wl_surface_destructor later.
v5:
* Move resource = surface->resource assignments to if (!resource) tests.
(Jonas Ådahl)
v6:
* Fix style issue per check-style.py.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1880>
Creates a GSource which will call the specified dispatch callback when
all dma-buf file descriptors for the buffer have become readable.
v2:
* Hold a reference to the buffer in the source, to prevent the buffer
from getting destroyed before the source.
v3:
* Do not use check callback, handle everything in dispatch callback.
(Dor Askayo)
v4: (Georges Basile Stavracas Neto)
* Define and use MetaWaylandDmaBufSource & MetaWaylandDmaBufSourceDispatch
types.
* Fix meta_wayland_dma_buf_source_dispatch &
meta_wayland_dma_buf_source_funcs formatting.
* Use gpointer instead of void*.
* Rename meta_wayland_dma_buf_get_source to
meta_wayland_dma_buf_create_source. (Carlos Garnacho)
v5:
* Explicitly handle NULL return value. (Jonas Ådahl)
v6:
* Fix style issue per check-style.py.
v7:
* Fix code style harder. (Jonas Ådahl)
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1880>
And call it from meta_wayland_buffer_realize. This makes dma-buf fds
available for EGL image type buffers as well.
v2:
* Move buffer->dma_buf.dma_buf assignment value to next line.
(Jonas Ådahl)
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1880>
Add internal state (starting, running, stopping), and use this instead
of MetaDisplay struct fields to determine whether to start animations.
This fixes issues when we try to animate things when shutting down.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2716>
On hotplug, the events we receive from the kernel are async, and
connectors in the kernel come and go as they please. In practice, this
means that calling drmModeGetConnector() twice more or less directly
after each other, there is no guarantee that the latter call will return
anything if the former did.
When updating the connector in response to hotplugs, we'd first update
the list of existing connectors, and following that, query each and
every one again for their current state, to update our internal
representation; only the former handled drmModeGetConnector() returning
NULL, meaning if unlucky, we'd end up doing a null pointer dereference
when trying to update the state.
Handle this by querying the kernel for the current connector state only
once per connector, updating the list of connectors and their
corresponding state at the same time.
Fixes the following crash:
#0 meta_kms_connector_read_state at ../src/backends/native/meta-kms-connector.c:684
#1 meta_kms_connector_update_state at ../src/backends/native/meta-kms-connector.c:767
#2 meta_kms_impl_device_update_states at ../src/backends/native/meta-kms-impl-device.c:916
#3 meta_kms_device_update_states_in_impl at ../src/backends/native/meta-kms-device.c:267
#4 meta_kms_update_states_in_impl at ../src/backends/native/meta-kms.c:604
#5 update_states_in_impl at ../src/backends/native/meta-kms.c:620
#6 meta_kms_run_impl_task_sync at ../src/backends/native/meta-kms.c:435
#7 meta_kms_update_states_sync at ../src/backends/native/meta-kms.c:641
#8 handle_hotplug_event at ../src/backends/native/meta-kms.c:651
#9 on_udev_hotplug at ../src/backends/native/meta-kms.c:668
Related: https://bugzilla.redhat.com/show_bug.cgi?id=2131269
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2709>
There is no need to use the 'bypass-*' method of event processing in the
changed function since in all cases the 'bypass-*' variable was set, any
following event processing functions would ignore the event anyway.
Simplify things a bit by just returning TRUE if the event is consumed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2714>
We can land inside meta_window_focus() in the middle of changing the
window workspace, because some signal handler of MetaWorkspace's
"window-removed" signal triggers a focus. This can cause a crash in
`g_assert (link)` when updating the MRU list because we still think
we're on the old workspace when actually we are already removed from
this workspaces MRU list.
To avoid crashes like this, bail out of meta_window_focus() when we're
in the middle of a workspace change.
Fixes https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/5368
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2691>
It's a bad idea to have data like this in the middle of a struct, as it
will easily cause everything behind it to be badly aligned and thus
increase memory access times.
So move all those bitfield booleans to the end of the struct.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2691>
It is generally assumed here and there that the pointer at all point in
time is within some logical monitor, if there is any logical monitor to
be within.
With the input thread, this was for a short amount of time not reliable,
resulting in crashes in combination with hotplugging or suspend/resume,
where monitors come and go quickly.
What happens is that the pointer at first is within a logical monitor,
but when that logical monitor is removed, while the new monitor
viewports are handed to the input thread, the constraining happens
asynchronously, meaning there is a time between between the new
viewports are sent, and before clutter_seat_query_state() starts
reporting the constrained position.
If a new client mapped a maximized window during this short time frame,
we'd crash with
#0 meta_window_place at ../src/core/place.c:883
#1 place_window_if_needed at ../src/core/constraints.c:562
#2 meta_window_constrain at ../src/core/constraints.c:310
#3 meta_window_move_resize_internal at ../src/core/window.c:3869
#4 meta_window_force_placement at ../src/core/window.c:2120
#5 xdg_toplevel_set_maximized at ../src/wayland/meta-wayland-xdg-shell.c:429
#6 ffi_call_unix64 at ../src/x86/unix64.S:105
#7 ffi_call_int at ../src/x86/ffi64.c:672
#8 wl_closure_invoke at ../src/connection.c:1025
#9 wl_client_connection_data at ../src/wayland-server.c:437
The fix for this is to make sure that the viewports are updated and
pointers constrained synchronously, i.e. the main thread will wait until
after the input thread is done constraining before continuing.
Related: https://bugzilla.redhat.com/show_bug.cgi?id=2147502
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2711>
We put a DEVICE_ADDED or DEVICE_REMOVED event into Clutters event queue
here, so we should also wait for Clutter to process events once.
Just putting an event into the queue doesn't mean it gets processed
immediately (especially when the commit after this one is applied), so
wait for a stage update here.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2697>
Currently, we will notify the display about a new window being created
during the constructed phase of the GObject. During this time,
property-change notifications are frozen by GObject, so we'll emit a few
::notify signals only after the window-created signal, although
the actual property change happened before that.
This caused confusion in gnome-shell code where a notify::skip-taskbar =
true emission was seen when the property already was true inside a
window-created handler before.
In order to fix that that, we notify the window creation
post-construction
of the GObject on GInitable.init vfunc
Details
https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/6119#note_1598983
Fixes https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/6119
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2703>
If two X11 windows were the last two, we'd remove them from the stack
while unmanaging them. That'd hit an assert in
meta_stack_tracker_restack_managed(), resulting in the following crash
when Xwayland exited unexpectedly with two or more X11 windows being the
only windows on the stack:
#1 g_assertion_message() at ../glib/gtestutils.c:3256
#2 g_assertion_message_expr() at ../glib/gtestutils.c:3282
#3 meta_stack_tracker_restack_managed() at ../src/core/stack-tracker.c:1210
#4 on_stack_changed() at ../src/core/stack.c:142
#5 _g_closure_invoke_va() at ../gobject/gclosure.c:895
#6 g_signal_emit_valist() at ../gobject/gsignal.c:3456
#7 g_signal_emit() at ../gobject/gsignal.c:3606
#8 meta_stack_changed() at ../src/core/stack.c:265
#9 meta_stack_remove() at ../src/core/stack.c:324
#10 meta_window_unmanage() at ../src/core/window.c:1542
#11 meta_x11_display_unmanage_windows() at ../src/x11/meta-x11-display.c:111
#12 meta_x11_display_dispose() at ../src/x11/meta-x11-display.c:141
#13 g_object_run_dispose() at ../gobject/gobject.c:1448
#14 meta_display_shutdown_x11() at ../src/core/display.c:831
The added test specifically checks that this scenario is handled
gracefully.
Related: https://bugzilla.redhat.com/show_bug.cgi?id=2143637
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2704>
Instead of having users of the test client manually deal with alarm
filters, let the test client automatically add itself as filters. This
changes the MetaX11Display a bit, to handle an array of filters instead
of a single filter.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2704>
The CRTC cursor sprite scale was incorrectly assumed to be always 1.0
when using the default not-scale-monitor-framebuffer mode. This is
harmless in most cases, as most clients provide HiDPI capable cursors,
but for the ones that didn't, we'd end up drawing their cursors
unscaled, when using the cursor planes.
Fix this by using the "texture scale" which is what is intended for
this.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2477
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2698>
Cursor planes tend to be ARGB8888 and support no other format (ideally
we should not hard code this, but un-hard-coding that is for another
day), and if we put e.g. a XRGB8888 buffer in there, it'll either result
in the gbm_bo allocation failing (it doesn't allow USE_CURSOR with any
other format) or mode setting failing if using dumb buffers directly.
In the former case, we'll fall back to OpenGL indefinitely, and in the
latter, we'll have failed mode sets as long as we try to set the invalid
cursor buffer as the cursor plane.
Change things to process all buffers that are not ARGB8888 using the
scale/rotate machinery we already have, turning XRGB8888 into ARGB8888.
Related: https://gitlab.gnome.org/GNOME/mutter/-/issues/2477
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2698>
Attaching a new buffer with a different size than the old one means
that the viewport needs to be recalculated.
Not doing this caused the viewport to be incorrectly applied when
viewport_src_rect remained the same after attaching such buffer.
Pipeline reset usually happens when applying a new viewport,
but it doesn't happen when the viewport values remain the same.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2689>
A client may provide a positioner that places the window outside of its
parent. This isn't allowed, according to spec, so we hide the window and
log a warning. This, however, leads these affected clients with an
incorrect view of what is mapped or not, meaning it becomes harder to
recover.
Fix this by sending xdg_popup.done when we hide the popup due to an
invalid position. Don't error out the client, let the bug slide, as
that's a less jarring experience for existing applications that
reproduce this than being disconnected, which practically feels like a
crash.
Related: https://gitlab.gnome.org/GNOME/mutter/-/issues/2408
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2645>
In constrast to x11, Wayland has sane handling for touch events and
allows the compositor to handle a touch event while the clients are
already seeing it. This means we don't need the REJECTED state on
Wayland, since we can also grab sequences after the client has seen
them.
So disallow moving sequences to the REJECTED state on Wayland.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2508>
It's not really a backend thing, and we'll want to profile e.g. loading
the backend too, so create it very early and destroy it very late and
let MetaContextMain own it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2678>
This change fixes the issue where the cursor is always
embedded in the frames even when the client has requested
the cursor information be sent as metadata in the stream.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2629>
This reverts commit eac227a203.
Currently, Flatpak applications can bypass the X11 permission setting
and access the X server through abstract sockets because X11 authentication
is not enforced for the current user ID.
Fix this by always requiring X11 authentication for Xwayland. This also
means applications without XAUTHORITY set to the file with Mutter's
Xwayland credentials cannot connect to X, including apps launched from
VT or SSH.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2633>
When deciding if a window should be unredirected because it was causing
fullscreen damage in the past, it was not considered whether the window
is still fullscreen. This could result in a floating window being
unredirected if it was chosen for unredirection because of
_NET_WM_BYPASS_COMPOSITOR = 1 and was previously fullscreened for >= 100
frames, long enough to change does_full_damage, before getting
unfullscreened.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2434
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2651>
Back in 2014 sending pressed keys to Wayland clients caused issues,
because at least Xwayland didn't handle that gracefully, causing issues
like ghost-pressed keys. A way it was reproduced was quickly alt-tab:ing
to and from a Firefox window, which would cause the File menu bar
incorrectly appearing.
While this was reported to the Xwayland component back then, it was,
probably by mistake, assumed to be an issue in mutter, and mutter
stopped sending pressed key events on enter.
The following year, Xwayland was eventually fixed, but the work around
in mutter has been kept around until it was again noticed as an
inconsistency between compositor implementations.
Lets remove the work around, and follow the spec, again.
This reverts commit c39f18c2d4.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2457
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2657>
We'd set the capabilities to 'none', meaning all previously enabled
device classes would be disabled. That means we shouldn't re-disable
them directly after.
This ensures '..disable()' is only called once for every '..enable()'.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2657>
With high frequency mouse devices, we would send very many configure
events per each update cycle, which had the end result that some clients
constantly re-allocating and redrawing their buffers far too often, if
they did this in direct response to xdg_toplevel configure events.
Lets throttle the interactive resize updates to stage updates, to avoid
having these clients doing the excessive buffer reallocation.
This also removes some old legacy X11 client resize throttling, that
throttled a bit arbitrarily on 25 resizes a second; it is probably
enough to throttle on stage updates for these clients.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2652>
Some mice send a value slightly lower than 120 for some detents. The
current approach waits until a value of 120 is reached before sending a
low-resolution scroll event.
For example, the MX Master 3 sends a value of 112 in some detents:
detent detent
| | |
^ ^ ^
112 REL_WHEEL 224
As illustrated, only one event was sent but two were expected. However,
sending the low-resolution scroll event in the middle plus the existing
heuristics to reset the accumulator solve this issue:
detent detent
| | |
^ ^ ^ ^
REL_WHEEL 112 REL_WHEEL 224
Send low-resolution scroll events in the middle of the detent to solve
this problem.
Fix https://gitlab.gnome.org/GNOME/mutter/-/issues/2469
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2668>
Previously, when scroll was received in a remote session, it was handled
as continuous scroll.
This generated issues with clients without high-resolution scroll
support as the code path in charge of accumulating scroll until 120 is
reached was not used and therefore discrete scroll events were not being
generated.
Handle scroll generated in a remote session as discrete scroll when the
source is CLUTTER_SCROLL_SOURCE_WHEEL to fix this issue.
Fix https://gitlab.gnome.org/GNOME/mutter/-/issues/2473
Fixes: 9dd6268d13 ("wayland/pointer: Send high-resolution scroll data")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2664>
In fcfe90aa, multiple for loops were replaced with
META_WAYLAND_SURFACE_FOREACH_SUBSURFACE.
However, this substitution was not side-effect free, and introduced a
null-pointer dereference risk as shown in the example below:
Old:
for (n = g_node_first_child (surface->subsurface_branch_node);
n;
n = g_node_next_sibling (n))
{
if (G_NODE_IS_LEAF (n))
continue;
meta_wayland_surface_update_outputs_recursively (n->data);
}
n is checked for NULL during each loop in the condition expression.
Therefore, when `G_NODE_IS_LEAF (n)` is called, `n` is guaranteed not to
be NULL. Note also that g_node_first_child is also NULL-safe since it
performs a NULL check internally.
New:
META_WAYLAND_SURFACE_FOREACH_SUBSURFACE (surface, subsurface_surface)
meta_wayland_surface_update_outputs_recursively (subsurface_surface);
=
for (GNode *G_PASTE(__n, __LINE__) = meta_get_first_subsurface_node ((surface)); \
(subsurface = (G_PASTE (__n, __LINE__) ? G_PASTE (__n, __LINE__)->data : NULL)); \
G_PASTE (__n, __LINE__) = meta_get_next_subsurface_sibling (G_PASTE (__n, __LINE__)))
In the new logic `subsurface` is still checked for NULL in the loop
condition. However, in the new loop init:
...
meta_get_first_subsurface_node (MetaWaylandSurface *surface)
...
n = g_node_first_child (surface->subsurface_branch_node);
if (!G_NODE_IS_LEAF (n))
...
The above implementation performs a `G_NODE_IS_LEAF` call, which
performs a dereference on `n`, without first checking for NULLs.
This NULL dereference triggers the following gnome-shell crash:
Core was generated by `/usr/bin/gnome-shell'.
Program terminated with signal SIGSEGV, Segmentation fault.
#0 meta_get_first_subsurface_node (surface=0x55d589623450) at ../src/wayland/meta-wayland-surface.h:399
#1 pointer_can_grab_surface (pointer=0x7f6dc4012700, surface=0x55d589623450) at ../src/wayland/meta-wayland-pointer.c:1306
#2 0x00007f6ddb94d509 in meta_wayland_pointer_can_grab_surface (pointer=<optimized out>, surface=surface@entry=0x55d589623450, serial=serial@entry=996) at ../src/wayland/meta-wayland-pointer.c:1321
#3 0x00007f6ddb950d05 in meta_wayland_seat_get_grab_info (seat=seat@entry=0x55d586c24f20, surface=0x55d589623450, serial=996, require_pressed=require_pressed@entry=0, x=x@entry=0x0, y=y@entry=0x0)
at ../src/wayland/meta-wayland-seat.c:467
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2655>
Unlike the multi-view path, the optimized/single-view one doesn't check
if the surface-actor is really present on the view. That is the case
whenever it's hidden - e.g. when the window is minimized.
Fixes 3b7137cb35
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2662>
Fullscreen Wayland toplevel surfaces don't need to respect the
configured size in which case the window content get centered on a black
background which covers the whole monitor.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2338>
Fullscreen Wayland toplevel surfaces don't need to respect the
configured size in which case it should be shown centered on the monitor
with a black background. The black background becomes part of the window
geometry.
The surface container is responsible for correctly culling the surfaces
and making sure the surface actors are removed from the actor tree to
avoid destroying them.
The window actor culling implementation assumes all surfaces to be direct
children of said actor. The introduction of the surface_container actor
broke that assumption. This implements the culling interface in
MetaWindowActorWayland which is aware of the actor surface_container and
fullscreen state.
v2: Fix forwarding culling to surface even if there is a background.
v2: Don't alter passed geometry.
v2: Update window geometry code documentation to reflect these changes.
v2: Only use constrained rect if we're acked fullscreen.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2338>
Prepare for adding Wayland specific culling logic to the
MetaWindowActorWayland class by moving all the logic to the non-abstract
classes, since there will be no reason to keep the logic in
MetaWindowActor around.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2338>
This is helpful to know what current state a window actually have, in
contrast to the state in MetaWindow (e.g. MetaWindow::fullscreen) which
is the intended state, be it current or not yet so.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2338>
First make sure we call 'move_resize()' in all cases where the size or
position can change, then move the updating of the buffer rect to the
same place as we update the frame rect. This means keeping track of
surface size changes, in addition to geometry changes, and calling
finish_move_resize() whenever any of those changes, in addition to
acknowledged configurations.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2338>
A "window rect" in most places refers to the rectangle the window
corresponds to when it comes to window management. MetaWindow::rect also
refers to this window management related rectangle. However in the
geometry sync functions, it instead called what was to be the rectangle
the actor should have as "window rect", which is arguably a bit
confusing. Fix this by renaming it "actor_rect" so that it becomes clear
that it's the rectangle the actor should get on the stage.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2338>
MetaWindowActor previously peeked at the number of child Actors to
determine the number of surfaces. The following commit rearranged the
tree such that MetaWindowActorWayland always has two Actors. This change
lets the subclass determine if the main surface describes the whole
window.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2338>
When a window configuration is constructed for a Wayland surface it
contains a position, size and a scale. The scale is the geometry scale
for the configuration, i.e. before the size is sent the passed dimension
is divided with the passed scale.
When moving between monitors with different scales, if we use the
existing geometry scale, this means we will send a configure event with
incorrect dimensions. Fix this by calculating the scale used in the
configuration given the rect we're configuring with as this will mean
the correct size will be sent to the client.
v2: Removed the fullscreen condition. Don't know why it was added to
begin with.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2338>
There were some magic conditions that decided when
meta_window_constrain() was to be called or not. Reasoning about and
changing these conditions were complicated, and in practice the caller
knows when constraining should be done. Lets change things by adding a
'constrain' flag to the move-resize flags that makes this clearer. This
way we can, if needed, have better control of when a window is
constrained or not without leaking that logic into the generic
to-constrain-or-not expression.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2338>
We have no way to sanely add safe modes if there are no modes we can
compare with, thus don't try.
Fixes the following crash:
#0 are_all_modes_equally_sized at ../src/backends/native/meta-output-kms.c:284
#1 maybe_add_fallback_modes at ../src/backends/native/meta-output-kms.c:310
#2 init_output_modes at ../src/backends/native/meta-output-kms.c:347
#3 meta_output_kms_new at ../src/backends/native/meta-output-kms.c:414
#4 init_outputs at ../src/backends/native/meta-gpu-kms.c:332
#5 meta_gpu_kms_read_current at ../src/backends/native/meta-gpu-kms.c:368
#6 meta_gpu_kms_new at ../src/backends/native/meta-gpu-kms.c:403
#7 create_gpu_from_udev_device at ../src/backends/native/meta-backend-native.c:461
#8 init_gpus at ../src/backends/native/meta-backend-native.c:551
#9 meta_backend_native_initable_init at ../src/backends/native/meta-backend-native.c:632
Fixes: 877cc3eb7d44e2886395151f763ec09bea350444
Related: https://bugzilla.redhat.com/show_bug.cgi?id=2127801
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2646>
This just checks for any chromaticity being zero and gamma being in
range but we could do a better job at detecting bad data in the future.
Also check the return value of cmsCreateRGBProfileTHR which can be NULL.
Fixes gnome-shell#5875
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2627>
Make sure that if we wiggle a scan-out capable surface a bit, it won't
scan out if it's not exactly in the right position. Do this by first
making the window not fullscreen, then moving it back and forth,
verifying the correct scanout state for each presented frame.
This test addition reproduces the issue described in
https://gitlab.gnome.org/GNOME/mutter/-/issues/2387.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2624>
If we have a window that match the size (i.e. will pass the "fits
framebuffer" low level check), that doesn't mean it matches the
position. For example, if we have two monitors 2K monitors, with two 2K
sized windows, one on monitor A, and one on monitor both monitor A and
B, overlapping both, if the latter window is above the former, it'll end
up bing scanned out on both if it ends up fitting all the other
requirements.
Fix this by checking that the paint box matches the stage view layout,
as that makes sure the actor we're painting isn't just partially on the
right view.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2387
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2624>
Painting the swap region with CLUTTER_DEBUG_PAINT_DAMAGE_REGION happens
on the view framebuffer, so don't transform the region we paint to the
onscreen.
Fixes the swap region painting on rotated monitors.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2590>
Gnome-shell uses meta_display_focus_default_window() when shell elements
loose focus which is the case with Alt+Tab window switching. Globally
active input clients don't immediately gain focus though so if
meta_display_focus_default_window focuses a wrong window stacking and
focus don't behave as expected.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2489>
New commands to set the number of workspaces, activate a workspace, with
and without focus, move windows to specific workspaces, and check the
stacking on a specific workspace.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2489>
When switching workspaces we previously focused on whatever window is on
top of the stack. If a window is marked as "always on top" then it would
always receive focus when switching workspaces.
Fixes#2240
Fixes gnome-shell#5162
Fixes#178Fixes#678
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2489>
We want to use the workspace MRU list to decide the default focus but
Globally Active Input clients don't call
meta_window_set_focused_internal and therefore don't update the MRU
list. Move the update to meta_window_focus instead.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2489>
The completed signal is only emitted if the timeline actually completed
but when an actor is destroyed or removed from its parent the timeline
is stopped and not completed.
The workspace switch effect removes window actors from the window group
which destroys the timeline so on_$EFFECT_effect_stopped is never
called and the pointer to the timeline is dangling.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2489>
The workspace switch animation moves the WindowActors out of the
WindowGroup so if we shut down while the animation is playing the
WindowActors will have queued a destroy but will be disposed only after
the compositor is destroyed, leaving the WindowActor with a dangling
pointer.
Fix the issue by killing the workspace switch animation on shutdown.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2489>
This is an old relic from when ClutterStageView was being added, and
tests were somewhat prepared to be able to test the "X11 style" of
things, with the nested backend some how managing to emulate that.
Lets drop that stuff, it isn't used by the test suite, and isn't useful
anyway; if we want to test X11 configurations, we should use the actual
X11 backend, which didn't make use of this anyway.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2619>
It exposed unnecessary public and private API, and used a global static
variable instead of a return value, none which was necessary. Remove
both API and use a return value for communicating to the caller.
This doesn't remove a public symbol, lets do that for GNOME 44.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2619>
This was used gala to implement hot corners, and the way the barrier API
works, there isn't really any practical reasons to not make it
derivable, since the backend is a separate type and object.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2626>
This adds a copy of the calibration test profile and sets up a test to
first add it as a system profile, then setting up the XDG_DATA_HOME
directory so that the duplicate profile is detected, added, and later
discarded.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2622>
We might fail with some part of the color profile construction and
initialization. For example there might be a system wide profile with
the same ID as one we attempt to add from a local ICC directory. When
this happens, we should drop these profiles, and use the ones from the
system instead.
Profiles may fail to initialize for other reasons too, e.g.
unpredictable colord errors, or other I/O issues.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2429
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2622>
If our profile wasn't fully initialized, we'd try to clean it up, in an
attempt to handle race conditions by finding synchronously then cleaning
it up, but don't attempt this if the profile is ready, as that means we
didn't create one in the first place.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2622>
This is instead of getting anything from the CdDevice. This avoids a
crash when CdDevice isn't successfully setup but something still tries
to look up the filename of the ICC profile.
This isn't a real bug fix for anything, but there is no reason having to
rely on CdDevice for this anyway, and as we don't really have control of
it, it's less reliable of containing something valid.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2622>
When creating a render device, we create a temporary EGLContext where we
then query the `GL_RENDERER` string to check whether the renderer is any
of the known software renderers. After we're done, we destroy the
context and move on.
This should be fine as according to specification eglDestroyContext(),
with the context being actually destroyed a bit later when it's no
longer current, but mesa, when running RK3399 (Pinebook Pro), this
results in a crash in a future eglMakeCurrent():
#0 in dri_unbind_context () at ../src/gallium/frontends/dri/dri_context.c:266
#1 in driUnbindContext () at ../src/gallium/frontends/dri/dri_util.c:763
#2 in dri2_make_current () at ../src/egl/drivers/dri2/egl_dri2.c:1814
#3 in eglMakeCurrent () at ../src/egl/main/eglapi.c:907
...
We can avoid this, however, by calling eglMakeCurrent() with
EGL_NO_CONTEXT on the EGLDisplay, prior to destroying, effectively
avoiding the crash, so lets do that.
Related: https://gitlab.freedesktop.org/mesa/mesa/-/issues/7194
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2414
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2612>
We'll never scan out, which is why ADDFB2 is required otherwise, and we
won't enable the DMA buffer extension if
'EGL_EXT_image_dma_buf_import_modifiers' is missing, so send modifiers
in this case.
This also happens to avoid crashing when the GPU is null, since we'd
otherwise attempt to dereference it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2578>
EGLStream is incompatible with atomic mode setting, but nvidia-drm when
using libgbm is not, so lets only deny using atomic mode setting when
the render device is an EGLStream based one.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2578>
The type of render device used for a specific GPU affects the mode
setting backend that can be used, more specifically, when the render
device is an EGLStream based one, atomic mode setting isn't possible, as
page flipping is done via EGL, not via atomic mode setting commits.
Preparing the render devices before KMS devices means can make a more
informed decision whether to deny-list atomic mode setting for when
a certain GPU uses a EGLStream based render device instance.
This also means we need to translate mode setting devices to render node
devices when creating the render device itself, as doing it later when
creating the mode setting device is already too late.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2578>
Doing an early out in a constructed() is a bit awkward, and unexpected,
and makes it tricky to call the parents constructed() method (which we
didn't), so clean that up.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2578>
Currently, the peripheral "output" setting will be unset if Mutter is
deciding automatically the mapped output of a tablet device. In that
case, gnome-control-center will have a hard time figuring out itself
the better output to show the tablet calibration UI, unless it's hand
held by Mutter.
Add this private D-Bus interface so that gnome-control-center can look
up the output as determined by Mutter to bring the missing harmony
between both. This interface consists of a simple method to get the
mapped output for a input device node.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2605>
The D-Bus runner used by tests, including installed tests, is made to be
reusable from GNOME Shell. To do this, install it and the templates in
the pkgdatadir (e.g. /usr/share/mutter-APIVERSION/tests/), generate a
custom runner for the installed tests that uses the installed script and
templates, and change the non-installed original runner to use the
non-installed templates.
The end goal is to reuse the D-Bus session runner and templates used for
mutter when test running GNOME Shell.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1354>
When moving to another monitor the window size may change in some
cases. While unconditionally notifying a size change is not always
correct, it animates the window when moved to another monitor in
GNOME Shell.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2558>
Following the EGL_KHR_swap_buffers_with_damage specification, the
surface damage used by eglSwapBuffersWithDamage does not need to
contain the damage history.
Rework that to initialize swap_region earlier, before appending the
damage history.
This may help optimizing the composition process in some cases (at least
on X11 when EGL_KHR_swap_buffers_with_damage is available) by not
accumulating additional regions as damaged unnecessarily.
Signed-off-by: Erico Nunes <nunes.erico@gmail.com>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2241>
This is what the protocol says we should do, and even though normally
an out of focus client should not have any reason to create IM requests,
there is a bit of a grey area around focus changes, as both the client
losing focus and the client gaining focus may respectively try to
disable/enable in an undetermined order.
Anyways, since in that situation the client losing focus is not aware
of the requests being ignored, the serial should always be incremented
in order not to break accounting of .done/.commit for that specific
client.
Fixes the IM focus being possibly "lost" after changing focus between
clients, if the race condition turned the odds in that direction.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2585>
Mutter can play sounds in some contexts and also provides an API
for libmutter users to do so using libcanberra internally.
In some specific use cases of Mutter, we would like to not depend
on libcanberra and not have any sound playing feature by default.
The changes keeps the sound player API but make it no-op if the
sound_player feature is disabled to not make it possible to break
a gnome-shell build.
See https://gitlab.gnome.org/GNOME/gnome-shell/-/merge_requests/2270
for relevant discussion
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2375>
If the vendor_name was previously successfully determined, we would end
up in the else case, overwriting it with "Unknown vendor" and leaking
the previous vendor_name.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2603>
This allows using two separate ICC profiles for one "color profile",
which is necessary to properly support color transform
calibration profiles from an EFI variable.
These types of profiles are intended to be applied using the color
transformation matrix (CTM) property on the output, which makes the
presented output match sRGB. In order to avoid color profile aware
clients making the wrong assumption, we must set the profile exposed
externally to be what is the expected perceived result, i.e. sRGB, while
still applying CTM from the real ICC profile.
The separation is done by introducing a MetaColorCalibration struct,
that is filled with relevant data. For profiles coming from EFI, a
created profile is practically an sRGB one, but the calibration data
comes from EFI, while for other profiles, the calibration data and the
ICC profile itself come from the same source.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2568>
We may want to use scanout even if the default framebuffer
of the stage view is an offscreen, for example when a Wayland
client provides pre-rotated buffers. The caller is responsible
to ensure this is correct - we already asserted on that before.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2468>
If a stage view uses an offscreen framebuffer exclusively for
rotation and a Wayland client provides pre-rotated buffers,
we should try to use scanout.
This saves us one copy more than scanout in the onscreen case,
i.e. two fullscreen copies in total.
Offscreen rotation is notably used for all 90/270 degree rotations
at the moment, as using display hardware for them is apparently
more complex than for x-/y-flips and can even have detrimental
effects on power consumption.
This can be tested with `weston-simple-egl`.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2468>
This mocks gsd-colord to enable night ligth at a given temperature. The
test then verifies that the result exactly matches that of the gamma
ramps gsd-color generated for the same temperature and ICC profile.
There are two types of profiles tested; ones with VCGT, i.e. calibrated
profiles, and ones without. These are tested as the VCGT affects how the
gamma curve looks, while the non-VCGT profiles all only rely on
the blackbody temperature to generate a gamma ramp.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
More or less copied from gnome-settings-daemon. The look up tables are
either calculated based on the VCGT (Video Card Gamma Table) and the
blackbody color for a given temperature, or the blackbody color for a
given temperature alone, if no VCGT is available.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
This means that e.g. custom profiles or calibrated profiles will be
added and registered with colord. This does not use CdIccStore for two
reasons: don't want to generate duplicate entries for auto-generated
EDID or EFI profiles, and we want to store profiles as MetaColorProfile.
It also happens to be the case that CdIcc does synchronous I/O, which
should be avoided everywhere except on startup.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
It will be used to generate gamma look up tables depending on
temperature.
The temperature comes from org.gnome.SettingsDaemon.Color and
depends on the current night light state.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
It uses the org.gnome.SettingsDaemon.Power.Screen D-Bus API. Currently
brightness set if the proxy is not ready are ignored; whether the
brightness value should be cached and set once it appears or whether
color profiles should be reapplied is yet to be decided.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
Instead of passing 4 arguments (red, green and blue arrays as well as a
size), always pass them together in a new struct MetaGammaLut. Makes
things slightly less tedious.
The KMS layer still has its own variant, but lets leave it as that for
now, to keep the KMS layer "below" the cross backend CRTC layer.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
In practice, for KMS backend CRTC's, we cache the gamma in the monitor
manager instance, so that anyone asking gets the pending or up to date
value, instead of the potentially not up to date value if one queries
after gamma was scheduled to be updated, and before it was actually
updated.
While this is true, lets still move the API to the MetaCrtc type; the
backend specific implementation can still look up cached values from the
MetaMonitorManager, but for users, it becomes less cumbersome to not
have to go via the monitor manager.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
We created device profiles, that we manage the lifetime of in colord,
but color devices can be assigned profiles other than the ones it was
created for. For example, this can include the standard sRGB profile
provided by colord.
To achieve this, keep track of the default profile of the CdDevice as
the "assigned" color profile of the device. Given this profile
(CdProfile), construct a MetaColorProfile that can then be interacted
with as if it was generated by ourself.
The assigned profile (default profile in colord terms) does nothing
special so far, but will later be used to determine how to apply CRTC
gamma ramps etc.
The sRGB.icc file used in the tests was copied from colord. It was
stated in the repository that it has no known copyright restrictions.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2164>
This works similiarly to how MetaColorDevice works, by creating them
asynchronously then signalling the 'ready' signal when done. Also
similarly to MetaColorDevice, the on-demand sync cleanup on finalize is
added, to avoid race conditions when hotplugs happens very rapidly,
e.g. in tests.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2164>
Just as gsd-color does, generate color profiles. This can either be done
from EFI, if available and the color device is associated with a built
in panel, or from the EDID. If no source for a profile is found, none is
created.
The ICC profiles are also stored on disk so that they can be read by
e.g. colord. The on disk stored profiles will only be used for storing,
not reading the profiles, as the autogenerated ones will no matter what
always be loaded to verify the on disk profiles are up to date. If a on
disk profile is not, it will be replaced. This is so that fixes or
improvements to the profile generation will be made available despite
having run an older version earlier.
After generating, add some metadata about the generated file itself
needed by colord, i.e. file MD5 checksum and the file path.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2164>
Tests that test case EDID is setup correctly, and that color devices for
monitors are created.
tests/color: Add hotplugging tests
Checks that changing the number of connected monitors reflects the
number of current color devices, and that we end up with the correct end
state.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2164>
Ready means it has established the connection to colord and can operate.
Will be used by tests to make sure tests don't fail due to race
conditions when connecting to colord.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2164>
gsd-color provides this API, which exposes details about the night light
state. Currently, gsd-color also turns this state into CRTC gamma
changes, but this will eventually change, and this is a preparation for
this.
The proxy isn't yet used for anything.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2164>
Previously, gsd-color handled adding color devices. It got information
about those via the GnomeRR API, which is part of libgnome-desktop.
libgnome-desktop itself got this information from the
org.gnome.Mutter.DisplayConfig.GetResources() D-Bus method, implemented
by mutter.
Now, mutter itself will add all the monitor color devices itself,
without having to go via gsd-color.
We sometimes need to delete colord devices synchronously, in certain
race conditions when we add and remove devices very quickly (e.g. in
tests). However, we cannot use libcolord's 'sync' API variants, as it
has a nested takes-all main loop as a way to invoke the sync call. This
effectively means we end up sometimes not return from this function in a
timely manner, causing wierd issues.
Instead, create our own sync helper, that uses a separate context that
we temporarly push as the thread-default one.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2141>
This will be needed for adding colord integration without breaking
testing.
The test context is altered to make sure any left over color devices are
cleaned up before starting. This means it becomes possible to run a test
case multiple times without having to restart meta-dbus-runner.py.
Note: Don't use os.getlogin() to get the current username; as that
requires a controlling terminal.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2141>
It's not really about monitors, even though it is used for monitors.
Lets shrink MetaMonitorManager a bit moving it to the backend.
While at it, stop leaking it too.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2141>
What determines whether one MetaMonitor is the same as the other should
be whether the actual monitor is the same. The way to check this is
comparing the EDID vendor/product/serial fields. Whene these are
incomplete, fall back on the 'winsys ID'.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2141>
Same applies to MetaOutput. The reason for this is to make it possible
to more reliably know when there was EDID telling us about these
details. This will be used for colord integration.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2141>
We fairly consistently had multiple monitors with the whole
vendor,product,serial tuple identical. If we start relying on making
monitors a bit more unique, e.g. for colord integration, we need to make
two monitors connected distinguishable in order for tests to properly
reflect reality and excercise the correct colord integration paths.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2141>
As for the types of monitor, X11 and KMS are currently assumed to always be
physical, while the virtual ones are assumed to be virtual. In theory
X11 ones could be virtual, but lets not bother. KMS ones can be virtual
in the case of virtual KMS, but we typically use that for testing as if
it was physical, so lets leave it as such.
Will later be used to feed correct information to colord.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2141>
Create a color manager type that eventually will be the high level
manager of color related behavior, such as ICC profiles and
color "temperature" a.k.a. night light.
For now, it's only an empty shell. It's also constructed by the actual
backend, as at a later point, the X11 and native color management
implementations will differ.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2141>
Client connections may linger after the test driver is teared down;
handle this gracefully by unsetting the user data on the wl_resource,
and make the resource destructor a no-op, instead of where it would
otherwise remove itself from the resource list. This fixes this crash
seen in CI:
Received signal 11 (SIGSEGV)
#0 g_list_remove() at ../glib/glist.c:596
#1 test_driver_destructor() at ../src/tests/meta-wayland-test-driver.c:219
#2 destroy_resource() at ../src/wayland-server.c:730
#3 for_each_helper() at ../src/wayland-util.c:416
#4 wl_map_for_each() at ../src/wayland-util.c:430
#5 wl_client_destroy() at ../src/wayland-server.c:889
#6 wl_display_destroy_clients() at ../src/wayland-server.c:1482
#7 meta_wayland_compositor_prepare_shutdown() at ../src/wayland/meta-wayland.c:441
#8 meta_context_dispose() at ../src/core/meta-context.c:667
#9 g_object_unref() at ../gobject/gobject.c:3863
#9 g_object_unref() at ../gobject/gobject.c:3780
#10 glib_autoptr_clear_GObject() at /usr/include/glib-2.0/gobject/gobject-autocleanups.h:29
#10 glib_autoptr_clear_MetaContext() at ../src/meta/meta-context.h:32
#10 glib_autoptr_cleanup_MetaContext() at ../src/meta/meta-context.h:32
#10 main() at ../src/tests/wayland-unit-tests.c:707
#11 __libc_start_call_main() in /usr/lib64/libc.so.6
#12 __libc_start_main() in /usr/lib64/libc.so.6
#13 _start() in /builds/GNOME/mutter/build/src/tests/mutter-wayland-unit
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2601>
This reverts an attempt at saving texture memory that was introduced
recently in 16fa2100. It was misguided because the same texture may be
needed in the next frame if a window has multiple previews visible on
screen at once (gnome-shell's overview). Keeping the mipmaps around
seems to reduce the peak render times of the overview by roughly 5%-10%.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2598>
Although its atomic KMS support seems to work at first, mode sets to
anything other than the Xilinx preferred max resolution of 2048x1280
would result in a hang. The xlnx kernel driver is given:
`DRM_MODE_ATOMIC_ALLOW_MODESET | DRM_MODE_PAGE_FLIP_EVENT`
and it does complete the mode set without error, but page flip events
never arrive and so you're frozen on the first frame.
Revert to legacy KMS which has no such problem with non-default modes.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2596>
The "activate" and "deactivate" signals on ClutterStage are used by
Cally to track the key-focus when the user is interacting with shell UI.
key-focus only gets tracked while the stage is activated.
Wayland has no concept of the stage receiving focus or not, so right now
the activation state is bound to whether there's a focus_window in
meta_display_sync_wayland_input_focus(). Since display->focus_window is
set pretty much all the time, this effectively binds activation state to
whether the stage holds a grab or not. This is almost good enough, but
it misses cases where key-focus is on the stage without a grab, for
example when keyboard-navigating the panel after using Ctrl+Alt+Tab.
It seems to make more sense to bind the activation state to whether
key-focus is set to an actor or to NULL, so let's do that instead.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2329>
In the timespan between an activation token being created and the
token being used by the activated application, the surface that started
the activation request may end up destroyed/disposed.
In that case, the token would be left with a stale surface pointer,
maybe causing crashes later on. Set up a destroy notification listener
so that we do know to unset the token surface if that situation arises,
this will result in Mutter not considering the token activatable, thus
maybe issuing the "Application needs attention" notification if the
activated surface did not immediately get focus. In any case this is
better than a compositor crash.
A typical situation where this may happen is "Open With..." dialogs,
since those don't live long after launching the application.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2390
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2592>
There is some surface tracking going on here, and all notify handlers
are possibly leaving the linked wl_listener behind. Ensure it is unlinked
in all destroy notification functions.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2588>
Since commit 1bf70334 "tests/runner: Make test runner use the headless
backend", tests are run with the native backend in headless mode, which
will attempt to open each GPU and show a warning (fatal during tests)
if it cannot.
However, in headless mode we might not be logged in on any seat (for
example we might be logged in via ssh instead), which means we might
legitimately not have permission to use any GPUs, even if they exist.
Downgrade the warning to a debug message in this case.
Resolves: https://gitlab.gnome.org/GNOME/mutter/-/issues/2381
Signed-off-by: Simon McVittie <smcv@debian.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2584>
The catch option makes test run via 'catch'[1], which will log
backtraces whenever an abort or segmentation fault happens in any of the
subprocesses. The aim is to enable this when running in CI to help
debugging crashes that only tend to happen in CI.
While it's possible to wrap the whole meson command in 'catch', doing so
doesn't cover the KVM tests, so this option is added instead that covers
both cases.
[1] https://gitlab.gnome.org/jadahl/catch/
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2561>
Until recently, mutter-test-runner called into libraries that
indirectly depend on (mutter's fork of) Clutter, but did not actually
call into Clutter itself. Commit 1bf70334 "tests/runner: Make test
runner use the headless backend" gave it a direct call into Clutter,
which means the runtime linker will fail unless the executable's
RUNPATH is sufficient to find Clutter.
For future-proofing, do the same for the other test executables.
Resolves: https://gitlab.gnome.org/GNOME/mutter/-/issues/2389
Signed-off-by: Simon McVittie <smcv@debian.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2581>
This adds the 4 new connector types that mutter didn't know about from
drm_mode.h in the kernel.
Noticed because mutter kept crashing when plugging in a USB-C adapter to
use an external monitor.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2577>
When we e.g. generate switch configs (i.e. the ones from pressing the
Super+P or the switch-config key on laptops), try a bit harder to find a
"good" monitor scale.
With "good", it means pick a scale that was used in a previous
configuration. In practice, this means that if you for example have
configured your external monitor to use a specific scale, then pressed
e.g. "built in only", and then switched back to e.g. "external only" or
"linear", the generated configuration will use the scale that was
previously configured.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2479>
If two modes are roughly the same, they should probably use the same UI
scaling factor. I.e. for the same monitor, if a 4K mode was configured to
have a certain scaling factor, and we generate a new configuration with
a similar sized 4K mode, we should re-use the scale previously
configured; however if we e.g. go from a 4K mode to a FHD mode, we
shouldn't.
This allows implementing better hueristics when using the switch-config
feature, where we'd be less likely to loose the for a certain monitor
mode combination previously configured scaling factor.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2479>
This will eventually help with better hueristics for finding a good
scale. It currently doesn't change much, but the helper will later gain
more functionality that will also help when coming up with mirroring
configs.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2479>
The resulting logical monitor was eventually marked as primary anyway,
but without the config being marked as such, various primary properties
was not set e.g. the one on the MetaOutput. Also, tests would fail.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2479>
This condition is inverted of how it should be. Since pad focus relies
on grouped devices lookups (e.g. pads not grouped with a tablet do not
focus surfaces), this fixes issues in pad focus and event propagation to
wayland clients.
Fixes: fff3654941 - wayland: Check input device capabilities in tablet seats
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2573>
This checks that an unmapped but created Wayland window correctly handle
monitor changes. This is specifically added to test an edge case causing
a crash with the following backtrace:
```
...
4) 0x00007ffff78a2a6b in g_assertion_message_expr ()
5) 0x00007ffff7defd5b in meta_window_update_for_monitors_changed () at ../src/core/window.c:3745
6) 0x00007ffff7899758 in g_slist_foreach () at ../glib/gslist.c:885
7) 0x00007ffff7dbe562 in meta_display_foreach_window () at ../src/core/display.c:3185
8) 0x00007ffff7dbe5fd in on_monitors_changed_internal () at ../src/core/display.c:3210
9) 0x00007ffff796f4ff in g_closure_invoke () at ../gobject/gclosure.c:830
10) 0x00007ffff7981316 in signal_emit_unlocked_R () at ../gobject/gsignal.c:3740
11) 0x00007ffff7987699 in g_signal_emit_valist () at ../gobject/gsignal.c:3495
12) 0x00007ffff7987bc2 in g_signal_emit () at ../gobject/gsignal.c:3551
13) 0x00007ffff7d89915 in meta_monitor_manager_notify_monitors_changed () at ../src/backends/meta-monitor-manager.c:3517
...
```
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2554>
If the window didn't have a size, it would still have a monitor, and
when we are asked to update, we must update, as the old monitor might
not be kept around, leaving us vulnerable to use after free.
Avoid not updating the monitor by using the stored IDs (preferred, or
previous) to find suitable logical monitors, with the primary monitor
being the last fallback unless we're completely headless.
This fixes the assert
!window->monitor ||
g_list_find (meta_monitor_manager_get_logical_monitors (monitor_manager),
window->monitor)
in meta_window_update_for_monitors_changed() being hit when a Wayland
window has been created, but not mapped, when a hotplug happens.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2554>
The function finds a suitable logical monitor given the window
rectangle; this wasn't all that clear from the name
"calculate_main_logical_monitor".
This is in preparation for finding a new logical monitor using things
other than the geometry of the window.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2554>
This will allow tests to change monitor resolution. The first argument
is the monitor ID; there is always one monitor added by default, and it
has the id 0. It's currently not possible to add more monitors, so
passing '0' is the only valid way to resize monitors.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2554>
This hasn't worked for a while, since the test always runs the nested
backend, meaning it's a Wayland compositor. To unblock testing window
management in combination to monitor changes, lets remove the
unreachable X11 WM paths, so that we can start using virtual monitors.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2554>
util-private.h includes glib-i18n-lib.h, which requires GETTEXT_PACKAGE
to be defined. The define comes from config.h,
but that cannot be included in headers, so we have to make sure
that any source file that pulls in util-private.h (or a header
that includes it) includes config.h first.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2566>
mutter needs GDK to use the x11 backend. It already calls
gdk_set_allowed_backends ("x11") for this purpose; however, if
GDK_BACKEND=wayland (or any other non-x11 backend possibly) happened to
be in the environment, GDK would fail to initialize at all. This would
result in mutter not registering as X11 window manager, and all X11
clients hanging.
Big thanks to Olivier Fourdan for figuring this out!
v2:
* Restore original value of GDK_BACKEND environment variable after
initializing GDK.
Bug: https://bugzilla.redhat.com/show_bug.cgi?id=2022283
Bug: https://bugs.debian.org/1008992
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2496>
It consists of only a macro and build description logic.
Adds a macro for simpler tests that doesn't require a context; unit
tests requiring a context should use the same framework as conform
tests.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2555>
All working tests have already migrated to the test suite using mutter;
move the old unported tests over too, and remove the conform test
framework, as it is no longer used.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2555>
This is in preparation of moving Cogl tests into src/tests, so they can
use the real backend, instead of the franken-backend it some how still
manages to use some how.
This makes them no longer installed. Most mutter tests are yet to be
installed, so leave that for later, since bigger changes are needed for
that.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2555>
Now that we support Wayland buffer transforms in all cases, we can
properly report them to outputs.
Also make sure we resend the output geomerty on transform changes.
This partly reverts commit bda9c359
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/344>
This allows the GL fallback path to correctly paint the cursor
if clients pre-rotated the buffer using
`wl_surface::set_buffer_transform`, visually matching the
hardware cursor path.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/344>
They can be quite heavy, as they load up one virtual machine each. If
your system is already busy, this can easily cause them to time out
instead of finish in time, as they all fight over the same limited
amount of CPU and I/O time.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2556>
Failing in `wait_for_effects_completed()` or `wait_for_view_verified()
indicates client- or compositor-bugs. As hitting those is quite likely
during test development, print error messages to simplify debugging.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2246>
The "single pixel buffer" Wayland protocol extension provides a way for
clients to create 1x1 buffers with a single color, specified by
providing the color channels (red, green and blue) as well as the
alpha channel as a 32 bit unsigned integer.
For now, this is turned into a 1x1 texture. Future potential
improvements is to hook things up to the scanout candidate logic and
turn it into a scanout capable DMA buffer.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2246>
When taking the scanout path we still want to clear the
redraw-clip from the stage-view in order to ensure we skip
frames in `handle_frame_clock_frame()` if no new redraw-clip
was recorded.
This was not done previously as the accumulated redraw-clip was
needed for the next repaint, likely under the assumption that
scheduling a scanout repeatedly would be computationally cost-free.
This assumption does not hold in a VRR world.
In order to archive both, an accumulated redraw-clip for the next
paint and frame-skipping during scanout, introduce new API to defer
and accumulate redraw-clips until the next repaint.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2480>
To Wayland clients, it doesn't matter how we configure our onscreen
buffers, since they don't necessarily have the same bandwidth issues
related to mode setting, whichis the primary reason why we disable
modifiers using the udev rule, so simply check whether importing with
modifiers will work at all and advertise modifiers if so is the case.
This might help avoid issues using legacy non-modifiers path in drivers.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2546>
We disable modifiers for two reasons: an udev rule saying so, or the
lack of a working drmModeAddFB2(). However, to the users, this is not
granular enough. While the current user, whether to enable modifiers in
MetaRendererNative, doesn't need more granularity, we want to send
modifiers to Wayland clients even if the onscreen framebuffers should
still be allocated without modifiers.
Prepare for differentiating between how Wayland DMA buffers work and how
onscreen buffer allocation work by separating the relevant device flags.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2546>
This uses MetaCompositorViewNative to find a candidate surface for
scanout and to keep track of it separately for each view, effectively
allowing each CRTC to use a different buffer for direct scanout.
There are three parts for potentially assigning a buffer for direct
scanout at the compositor level:
1. Finding a candidate surface actor on the view (if any)
2. Attempting to assign the candidate's buffer for direct scanout
3. Updating references relating to the scanout candidate as needed
The three parts were moved in their entirety from being handled by the
MetaCompositorNative to being handled by the MetaCompositorViewNative.
As part of this transition, the logic was also slightly refactored so
that each of the three parts is handled by its own helper function.
This allowed to avoid the use of "goto" statements and hopefully make
the logic easier to read and follow.
The first part mentioned above was changed in this commit to make use
of the new meta_compositor_view_get_top_window_actor () API to get the
top window actor in the view instead of the top window actor on all
views.
The second part and third parts mentioned above weren't changed other
than being done in the context of a view instead of globally.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2526>
All of the checks this function performed internally were already
done before calling it, making it a simple wrapper function without a
meaningful purpose.
Removing this function also reduces the chance of additional checks
being added to the MetaSurfaceActor after it is already chosen as a
scanout candidate.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2526>
This class is meant to hold logic specific to the native backend
in the context of a MetaCompositorView.
Its addition requires making MetaCompositorView inheritable, and an
addition of a virtual function which allows each compositor to create
its own MetaCompositorView instance.
In the case of the MetaCompositorNative, a MetaCompositorViewNative
is created. In all other cases, a MetaCompositorView is created.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2526>
First, add logic in MetaCompositorView to find topmost visible
MetaWindowActor on its view, and expose it through a new API.
Then, queue an update to find the top MetaWindowActor of each
MetaCompositorView in the following cases:
1. The MetaCompositor is in its initial state.
2. The window stack order has changed.
3. A window has changed its visibility.
4. A "stage-views-changed" signal was emitted for a MetaWindowActor.
Finally, perform the queued update in meta_compositor_before_paint (),
and assert that an update isn't queued during painting. This ensures
that the top window actor in the MetaCompositorView remains up-to-date
and available to child classes of MetaCompositor throughout the entire
paint stage.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2526>
The idea is that the state of the MetaCompositorView shall be
up-to-date only in specific scenarios, thus allowing operations
performed on it to be queued and aggregated to be handled in the
right time, and only if they are still necessary.
For example, in a following commit, the top window actor in each
view will be planned (if needed) only once before painting a frame,
rendering the top window actor in the MetaCompositorView potentially
stale in all other times.
Similarly, if a MetaCompositorView is destroyed before the beginning
of the frame, a queued operation to update its top window actor can be
discarded.
As an interface segragation measure, and as part of an attempt to
avoid the use of g_return_if_fail () to check the validity of the
MetaCompositorView's state in multiple places (which is still prone to
human error), the interfaces through which a MetaCompositorView is
made available would only ones where it's state is gurenteed to be
up-to-date.
Specifically, this commit gurentees that the state of the
MetaCompositorView would be up-to-date during the before_paint () and
after_paint () vfuncs exposed to child classes of the MetaCompositor.
The frame_in_progress variable will be used in a following commit to
guarantee that the MetaCompositorView's state is not invalidated during
this time.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2526>
MetaCompositorView is a class which contains compositor logic
specific to ClutterStageViews.
Each MetaCompositorView is "attached" to a ClutterStageView as an
opaque pointer using g_object_set_qdata_full (), and is freed when
the ClutterStageView is destroyed. This ensures that the lifetime of
the MetaCompositorView can't extend beyond the lifetime of its
ClutterStageView.
In a following commit, MetaCompositorView will be expanded to allow
keeping track of the top MetaWindowActor located on each
ClutterStageView.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2526>
Use the dark variant for decorations if the color-scheme preference
indicates that it's preferred, and the client didn't explicitly
pick a variant via the _GTK_THEME_VARIANT hint.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2541>
Although mipmapping is still slower than not mipmapping, commit 16fa2100
simplified N synchronous draw calls per texture tower into just one. So
it's more efficient now, and four years have passed since the throttling
was introduced so people also have better hardware as well as mutter being
generally faster than it used to be. So I am happy to effectively revert
commit c9c32835.
This means antialiasing will remain consistent rather than popping in and
out of existence.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/403
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2538>
For this to pass, pass an explicit Wayland display name to avoid the
display conflict warning that may happen when there is an already
running Wayland display server.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2448>
This one does proper error reporting. Via Javascript, barriers are
constructed directly via GObject construction, which currently can't
handle error reporting, but when calling from C we can. However, if we
initialize using GInitable, and use that in our constructor method, once
gjs gains support for construction using GInitable, including the error
reporting, we'll automatically get proper error reporting to Javascript.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2442>
In the past, barries were added to the window management X11 display
instance window table, and then special cased when iterating over the
list.
Since then, barriers, which are really part of the backend, has stopped
being added to the window hash table, instead being managed by the
backend. Lets clean up the left-over special casing that is no longer
needed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2442>
Prior to this commit, barriers were created with a MetaDisplay pointer,
despite being entities related and owned by the backend. In the X11
case, it was also not hooked up to the backend X11 connection, but the
clutter one, meaning for example that the logic was active (but dormant)
also for the Xwayland connection.
Fix this by moving X11 barrier management and event processing fully to
the backend. Also replace passing a display pointer with passing a
backend pointer. Keep the display pointer around for a release, but mark
it as deprecated.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2442>
It papered over wrong `meta_rectangle_transform()` behaviour for
non-flipped output transforms. Also there is no obvious reason
why we would need inverted values here.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2459>
- Drop bogus `meta_monitor_transform_invert()`. It papered over
wrong `meta_rectangle_transform()` behaviour for non-flipped
output transforms.
- Update `scale_and_transform_cursor_sprite_cpu` to match the GL
pipeline matrix in `MetaShapedTexture`, fixing several of the
flipped cases. Note: the rotation applied is the one a client would
need to apply to the buffer for a given monitor transform.
- While on it, drop a redundant `return`.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2459>
With `META_MONITOR_TRANSFORM` values matching their `WL_OUTPUT_TRANSFORM`
counterparts, the definition from the Wayland spec applies: the
`META_MONITOR_TRANSFORM` value tells us how the output was rotated
and that the buffer was drawn by the client to compensate for that.
The matrix describes the transformation from surface- to buffer-
coordinates, so the operation we need here is the same one that
the client applied (not from buffer- to surface-coordinates, i.e.
the inverse).
While on it fix `FLIPPED_90` and `FLIPPED_270` to use the correct
axes: flip on the x-axis, rotation on the z-axis.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2459>
`meta_rectangle_transform()` is used in the stack to *compensate* for a
`MetaMonitorTransform` applied to a output, not to apply it again.
Change the function accordingly.
Context:
Experimenting with direct scanout on offscreen-rotated outputs revealed
that the 90/270 degree cases were actually interchanged.
Further digging revealed that we use `meta_rectangle_transform()` with
those values swapped in every single case, papering over the issue.
Either a unintuitive and unexplained `meta_monitor_transform_invert()`
was added, in which case "flipped" values would be wrong, or, in case
of Wayland buffer transforms, the values were swapped by interpreting
the Wayland enums accordingly, see commit 8d9bbe10.
Swapping the 90/270 degree values in `meta_rectangle_transform()`:
1. fixes hardware cursor positioning with flipped output transforms
2. fixes rendering issues with offscreen-rotated flipped output transforms
3. allows us to drop unexplained `meta_monitor_transform_invert()`s in
follow-up commits
4. allows us to make `META_MONITOR_TRANSFORM` and `WL_OUTPUT_TRANSFORM`
enums match again (reverting 8d9bbe10, as already done)
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2459>
The following implicit definition for `transform()` did not
correctly apply:
```
a * b = c
c * invert(b) = a
```
Crucially the following did not apply for `FLIPPED-90`
and `FLIPPED-270`:
```
a * invert(a) = identity
```
Fix this by applying the operations, first the flip, then the
rotation, in this order and add tests to ensure correct results
for the requirement above.
Also drop `relative_transform()` as it only had a single user and
can be replaced by `transform()`:
```
invert(a) * b = c
a * c = b
```
As this is not very intuitive, ensure in tests as well.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2459>
Checking for both bits at once means only one matching bit is
sufficient - very likely in case of `rotate-0'.
This fixes crashes on hardware that does not support 'reflect-'
bits when setting a flipped output transform.
While on it, also update the check for `reflect-y` instead of
`reflect-x` + `rotate-180`. They are logically equivalent,
however some hardware may support `reflect-y` but not both
other bits.
Fixes commit 4e3f3842a1
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2459>
As testing of direct scanout revealed, `META_MONITOR_TRANSFORM`
does actually match `WL_OUTPUT_TRANSFORM` enums. The fact that
things rendered correctly with 90/270 degree values swapped
was because other parts of the stack got the interpretation
wrong, most notably `meta_rectangle_transform()`.
Thus lets revert this change and fix the stack accordingly.
This reverts commit 8d9bbe109b.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2459>
We started to report resource changes using prediction when an update
had been successfully committed. While at it, gamma changes were
reported too, but this was problematic, as gsd-color will listen for the
MonitorsChanged D-Bus signal and naively set the gamma again, even if it
didn't change. There aren't currently any actual use cases for being
told when gamma changes from a prediction, so just ignore it and just
report privacy screen changes.
This avoids a feedback loop between mutter and gsd-color.
Fixes: 81b28a1d97
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2531>
Fixes memory leak:
==995170== 936 (40 direct, 896 indirect) bytes in 1 blocks are definitely lost in loss record 15,090 of 15,641
==995170== at 0x48445EF: calloc (vg_replace_malloc.c:1328)
==995170== by 0x4B211D0: g_malloc0 (gmem.c:155)
==995170== by 0x4A56693: meta_wayland_tablet_manager_new (meta-wayland-tablet-manager.c:109)
==995170== by 0x4A56693: meta_wayland_tablet_manager_init (meta-wayland-tablet-manager.c:126)
==995170== by 0x4A3FA95: meta_wayland_compositor_new (meta-wayland.c:626)
==995170== by 0x49C7FA7: meta_context_start (meta-context.c:412)
==995170== by 0x10F065: main (mutter.c:148)
Fixes: 745cb67988 ("wayland: Initialize the MetaWaylandTabletManager")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2527>
Fixes memory leak:
==995170== 383 (96 direct, 287 indirect) bytes in 1 blocks are definitely lost in loss record 14,733 of 15,641
==995170== at 0x483F7B5: malloc (vg_replace_malloc.c:381)
==995170== by 0x4B21178: g_malloc (gmem.c:125)
==995170== by 0x4B395C0: g_slice_alloc (gslice.c:1072)
==995170== by 0x4B0766D: g_hash_table_new_full (ghash.c:1071)
==995170== by 0x4A4A8B4: meta_wayland_compositor_update_outputs (meta-wayland-outputs.c:483)
==995170== by 0x4A4ABAB: meta_wayland_outputs_init (meta-wayland-outputs.c:716)
==995170== by 0x4A3FA65: meta_wayland_compositor_new (meta-wayland.c:620)
==995170== by 0x49C7FA7: meta_context_start (meta-context.c:412)
==995170== by 0x10F065: main (mutter.c:148)
v2:
* Use meta_backend_get_monitor_manager. (Jonas Ådahl)
Fixes: 9a4783e364 ("Integrate the monitor manager with wayland")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2527>
Fixes memory leak:
==995170== 288 (96 direct, 192 indirect) bytes in 1 blocks are definitely lost in loss record 14,607 of 15,641
==995170== at 0x483F7B5: malloc (vg_replace_malloc.c:381)
==995170== by 0x4B21178: g_malloc (gmem.c:125)
==995170== by 0x4B395C0: g_slice_alloc (gslice.c:1072)
==995170== by 0x4B0766D: g_hash_table_new_full (ghash.c:1071)
==995170== by 0x4A4F973: meta_wayland_init_presentation_time (meta-wayland-presentation-time.c:222)
==995170== by 0x4A3FB04: meta_wayland_compositor_new (meta-wayland.c:635)
==995170== by 0x49C7FA7: meta_context_start (meta-context.c:412)
==995170== by 0x10F065: main (mutter.c:148)
Fixes: dccc60ec3e ("wayland: Implement stub presentation-time")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2527>
Fixes memory leak:
==995170== 240 (48 direct, 192 indirect) bytes in 1 blocks are definitely lost in loss record 14,428 of 15,641
==995170== at 0x48445EF: calloc (vg_replace_malloc.c:1328)
==995170== by 0x4B211D0: g_malloc0 (gmem.c:155)
==995170== by 0x4A3CDB3: meta_wayland_activation_init (meta-wayland-activation.c:383)
==995170== by 0x4A3FB0C: meta_wayland_compositor_new (meta-wayland.c:636)
==995170== by 0x49C7FA7: meta_context_start (meta-context.c:412)
==995170== by 0x10F065: main (mutter.c:148)
Fixes: ec390b68c5 ("wayland: Implement the xdg-activation protocol")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2527>
Fixes memory leak:
==995170== 192 (96 direct, 96 indirect) bytes in 1 blocks are definitely lost in loss record 14,260 of 15,641
==995170== at 0x483F7B5: malloc (vg_replace_malloc.c:381)
==995170== by 0x4B21178: g_malloc (gmem.c:125)
==995170== by 0x4B395C0: g_slice_alloc (gslice.c:1072)
==995170== by 0x4B0766D: g_hash_table_new_full (ghash.c:1071)
==995170== by 0x4A3F3A4: meta_wayland_compositor_init (meta-wayland.c:477)
==995170== by 0x4E1F509: g_type_create_instance (gtype.c:1929)
==995170== by 0x4E03DFC: g_object_new_internal (gobject.c:2011)
==995170== by 0x4E0538C: g_object_new_with_properties (gobject.c:2181)
==995170== by 0x4E05D40: g_object_new (gobject.c:1821)
==995170== by 0x4A3F8C4: meta_wayland_compositor_new (meta-wayland.c:590)
==995170== by 0x49C7FA7: meta_context_start (meta-context.c:412)
==995170== by 0x10F065: main (mutter.c:148)
Fixes: 8df2a1452c ("wayland: Notify actively of xwayland window/surface associations")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2527>
Fixes potential use-after-free during mutter shutdown, e.g.:
==993876== Invalid read of size 8
==993876== at 0x4A4FCA3: meta_wayland_presentation_time_ensure_feedbacks (meta-wayland-presentation-time.c:373)
==993876== by 0x4A3F07F: on_presented (meta-wayland.c:282)
==993876== by 0x661B7E9: ??? (in /usr/lib/x86_64-linux-gnu/libffi.so.8.1.0)
==993876== by 0x661A922: ??? (in /usr/lib/x86_64-linux-gnu/libffi.so.8.1.0)
==993876== by 0x4DFF4BC: g_cclosure_marshal_generic_va (gclosure.c:1648)
==993876== by 0x4DFE948: _g_closure_invoke_va (gclosure.c:893)
==993876== by 0x4E17498: g_signal_emit_valist (gsignal.c:3406)
==993876== by 0x4E176BE: g_signal_emit (gsignal.c:3553)
==993876== by 0x51D9DB5: clutter_stage_view_notify_presented (clutter-stage-view.c:1226)
==993876== by 0x499ACD2: frame_cb (meta-stage-view.c:83)
==993876== by 0x499ACD2: frame_cb (meta-stage-view.c:43)
==993876== by 0x50CAA41: notify_event (cogl-onscreen.c:175)
==993876== by 0x50CAA41: _cogl_onscreen_notify_complete (cogl-onscreen.c:545)
==993876== by 0x4A877F5: meta_onscreen_native_notify_frame_complete (meta-onscreen-native.c:211)
==993876== Address 0x24b7be58 is 296 bytes inside a block of size 344 free'd
==993876== at 0x484217B: free (vg_replace_malloc.c:872)
==993876== by 0x4E1F88B: g_type_free_instance (gtype.c:2001)
==993876== by 0x49C793C: meta_context_dispose (meta-context.c:675)
==993876== by 0x4E037E0: g_object_unref (gobject.c:3636)
==993876== by 0x4E037E0: g_object_unref (gobject.c:3553)
==993876== by 0x10F145: glib_autoptr_clear_GObject (gobject-autocleanups.h:27)
==993876== by 0x10F145: glib_autoptr_clear_MetaContext (meta-context.h:32)
==993876== by 0x10F145: glib_autoptr_cleanup_MetaContext (meta-context.h:32)
==993876== by 0x10F145: main (mutter.c:126)
==993876== Block was alloc'd at
==993876== at 0x483F7B5: malloc (vg_replace_malloc.c:381)
==993876== by 0x4B21178: g_malloc (gmem.c:125)
==993876== by 0x4B395C0: g_slice_alloc (gslice.c:1072)
==993876== by 0x4B39C29: g_slice_alloc0 (gslice.c:1098)
==993876== by 0x4E1F544: g_type_create_instance (gtype.c:1901)
==993876== by 0x4E03DFC: g_object_new_internal (gobject.c:2011)
==993876== by 0x4E0538C: g_object_new_with_properties (gobject.c:2181)
==993876== by 0x4E05D40: g_object_new (gobject.c:1821)
==993876== by 0x4A3F864: meta_wayland_compositor_new (meta-wayland.c:585)
==993876== by 0x49C7FA7: meta_context_start (meta-context.c:412)
==993876== by 0x10F065: main (mutter.c:148)
Fixes: 2ce3a050f0 ("wayland: Wire up presentation-time machinery")
Fixes: 8cff3b84f7 ("wayland/compositor: Process frame callbacks on 'after-update'")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2527>
When we change the privacy screen, we added a result listener to the KMS
update object to notify the upper layer about the privacy screen state
change. This was slightly awkward as one might have changed the state
multiple times for a single update, thus it was necessary to remove any
old result listeners to an update before adding a new one.
Doing this will not be possible when updates are fully async and managed
by the KMS impl device.
To handle this, instead make the post-commit prediction notify about
changes that happens in response to a successfully committed update. We
already predicted the new privacy screen state, so the necessary change
was to plumb the actual change into a callback which emits the signal if
there actually was a privacy screen change.
This will then be communicated via the same signal listener that already
listens to the 'resources-changed' signal.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2340>
The name had a bit conceptual conflicts with MetaKmsUpdate, as it shared
its namespace but had no relation to it. Fix this by renaming it
MetaKmsResourceChanges (and the corresponding META_KMS_UPDATE_CHANGE_*
to META_KMS_RESOURCE_CHANGE_*). The term "resource" is used since that's
already used in the signal, and the fact that the changes partly comes
from changes in the DRM resource as retrieved by drmModeGetResources.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2340>
With this header we can set a flag to signal that the whole buffer is
corrupt and should be ignored. With this we can cater to all cases:
* Window buffer fine, but cursor broken:
Use the spa_meta_cursor properties like id or offset accordingly
* Window buffer broken, but cursor fine:
Use the chunk flags
* Both are broken / the dequeued buffer is not usable
Use the spa_meta_header flag
Additionally clients can now check if a buffer contains spa_meta_header
data and can thus only check for the new or the old behaviour.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2516>
Since the commit below, meta_crtc_kms_get_cursor_renderer_private has
returned a CrtcCursorData pointer, but this code was still treating it
as a MetaDrmBuffer pointer.
Fixes: fea8ebcca9 ("cursor-renderer/native: Store struct in CRTC private")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2524>
PipeWire supports flags to signal a corrupted buffer. We should use the
flag SPA_CHUNK_FLAG_CORRUPTED for `chunk->flags` instead of setting
`chunk->size = 0` since the size isn't well defined for arbitrary dmabufs
and should be set to 0.
Sadly clients like obs are using a chunk size of 0 to decide if a buffer
should be imported. Thus we should offer both until clients are using
the flag.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2323>
Change meta_seat_impl_notify_discrete_scroll_in_impl to receive 120
based values and report high-resolution scroll values as smooth scroll.
Notify discrete scroll only when the accumulated value reach 120.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1962>
In order to get the delta X/Y value of the
LIBINPUT_EVENT_POINTER_SCROLL_FINGER
or LIBINPUT_EVENT_POINTER_SCROLL_CONTINUOUS events the new function
libinput_event_pointer_get_scroll_value should be used instead of
libinput_event_pointer_get_axis_value.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1962>
Ignore deprecated LIBINPUT_EVENT_POINTER_AXIS events and handle
LIBINPUT_EVENT_POINTER_SCROLL_WHEEL,
LIBINPUT_EVENT_POINTER_SCROLL_FINGER and
LIBINPUT_EVENT_POINTER_SCROLL_CONTINUOUS instead.
The scroll source is now encoded in the event type making
libinput_event_pointer_get_axis_source and translate_scroll_source
redundant.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1962>
When building the list of formats to be sent as part of the scanout
tranche, avoid requiring modifier support by the DRM driver for
formats relying on implicit modifiers (DRM_FORMAT_MOD_INVALID).
Specifically, the previous check required the DRM driver to have
advertised some modifier support for the given format in its
IN_FORMATS KMS plane property, regardless of modifier it was. If it
hadn't, the format was left out of the list of formats to be sent
in the scanout tranche.
When no formats remained to be sent in the scanout tranche, the
tranche simply wasn't sent.
This resulted in the scanout tranche never being sent for GPUs where
modifiers aren't supported. In those cases, no formats are advertised
using the IN_FORMATS property, and thus the list of formats to be sent
in the scanout tranche remained empty.
Since Mesa doesn't use scanout-compatible buffers for native Wayland
clients unless specifically requested to do so using the "scanout"
tranche flag, it effectively means that direct scanout of native
Wayland clients wasn't supported for GPUs without modifiers support.
Sending a tranche with formats paired with the implicit modifier
(DRM_FORMAT_MOD_INVALID) is both allowed by the protocol and is
already done by default for GPUs with modifiers support, unless the
experimental support for explicit modifiers is enabled in Mutter.
So instead of requiring modifiers to be supported for each format
being evaluated for the scanout tranche, when processing formats
which rely on implicit modifiers, only check if the format in
question is supported by the DRM driver for scanout on the primary
plane.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2510>
While the check for `clutter_actor_has_mapped_clones` clearly indicates
an intention to take clones into account, the following code
does not do so, likely because it predates the introduction of
`clutter_actor_is_effectively_on_stage_view()`.
Switch to that newer API in order to take clones into account. This
avoids unnecessary `wl_surface_send_enter()` and `wl_surface_send_leave()`
events when entering the overview, reducing client work.
This also avoids unnecessarily allocating a `cairo_region_t`.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2502>
`clutter_actor_set_child_at_index()` is far from a no-op, even if
the current index is equal to the new one - presumably for good
reasons. For the use-case here we want it to be a no-op though, so
skip calling it if the index already matches.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2501>
Unparenting the surface actor when the subsurface object is destroyed
has several issues:
- subsurface actors can be unparented while a close animation is
still ongoing, breaking the animation for e.g. Firefox.
- adding and removing the actor to/from the parent is not handled in
one place, making the code harder to follow.
- if the destroyed subsurface had children of its own, they potentially
stick around until a surface-tree rebuild. This makes the Firefox
hamburger menu not close with the "compositor" backend.
Move the unparenting back to
`meta_window_actor_wayland_rebuild_surface_tree()` and instead just
notify the parent of a state change, if it still exist. This will ensure
a correct mapping between the subsurface node tree and the flat surface
actor list. In case of the closing animation the parent will already be
removed and the call is skipped.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2501>
Since b443bd42ac, we unmanage a wayland window when clearing its
transient parent. That's to make sure that xdg-foreign doesn't
leave the dialog around after the imported surface was destroyed.
While that behavior is sound, it is problematic to implement it
by unmanaging the window, as that happens entirely behind the
client's back.
Instead, send a close event for the window. Unless the client has
good reasons, it should honor the request. (And if it has good
reasons - like unsaved work - then effectively hiding the window
from both the user and client is probably not the best idea anyway).
https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/5458
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2499>
Not all windows can be minimized: X11 clients can disable the
functionality, and so do we for windows that aren't shown in
the alt-tab popup or the shell overview, so there would be no
way of getting them back.
While we make sure that we respect that ourselves (keybinding,
window menu, etc.), we don't guard meta_window_minimize(), so
clients or extensions can still minimize a window that isn't
supposed to be minimized.
That can lead to all kinds of issues, from the hidden window
being lost (as far as users are concerned) to a crash when
the minimzed window has a transient parent.
Just add an explicit check to make sure the unexpected doesn't
happen after all, and print a warning if it does.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2491>
The cursor rendering code path used by the screen cast code relies on
the cursor tracker machinery to determine where to blit the cursor
texture, but at the moment the cursor position invalidation is behind
a check for whether the shell is using a Wayland backend. (This code
path used to be Wayland-specific before 00cbcb7ba1 but has been
backend-agnostic since).
This commit removes the check for a Wayland compositor, allowing
cursor drawing to function correctly on X11 when screen casting in
embedded cursor mode.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1780
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2474>
The test case checks that the stage views of hidden actors are
not updated when the views of the visible outer parent change.
The check for the outer parent's updated stage views currently
relies on ClutterFixedLayout not excluding hidden children in
its size request: As the container doesn't contain any visible
children at that point, its size would change to 0x0 and end
up on no stage view (rather than the assumed two).
Avoid that oddity by giving the outer container a fixed size,
so that the visibility of its child doesn't affect the test
when we fix ClutterFixedLayout.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2488>
This adds support for E-EDID extensions. Tags are allocated by VESA and
the CTA has such an extension defined in CTA-861.
The switch in `decode_ext_cta` is empty in this commit because we don't
parse any CTA-861 data blocks, yet.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2351>
The EDID code is copy from elsewhere, without adapting to conventions
regarding e.g. API and types. Clean this up a bit, as EDID information
will be kept around longer when possible, to be used e.g. by color
management.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2351>
The test aims to test that trying to fetch X11 clipboard content after
Xwayland went away doesn't cause issues. What happens though is that
sometimes the clipboard content doesn't have time to settle (i.e. fetch
mime types etc) before Xwayland gets terminated, which causes flakyness.
Fix this by waiting for the compositor side clipboard owners to finish
setting up before continuing.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2484>
The pixel clock determines how fast pixels can be processed. When adding
non-native common modes, avoid adding modes that exceed the max pixel
clock frequency of the native modes. Avoiding these avoids potential
mode setting failures where the GPU can't handle the modeline since the
configured pixel clock is too fast. This replaces the "bandwidth" check
which used the number of pixels and refresh rate, which wasn't enough to
avoid incompatible modes.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2492>
'screen-cast/monitor-src: Use clutter_stage_paint_to_buffer'
(6c818cd8d5) made the non-dma-buf path use
clutter_stage_paint_to_buffer() to avoid running into direct scanout
issues. At a glance, the dma-buf paths didn't have the same issue since
it explicitly handled dma-bufs by blitting them.
What it also did was move the recording to an idle callback, to avoid
paint reentry issues. A side effect of this, however, is that it also
broke the dma-buf paths, as they rely on the back buffer existing, and
the stage view direct scanout already being setup, which it isn't in an
idle callback.
Fix this by using the dma-buf variant of
clutter_stage_paint_to_buffer(): clutter_stage_paint_to_framebuffer().
This has some negative performance impact, but we can't use
cogl_blit_framebuffer() when using an idle callback for recording.
Potential performance improvements to make things work more as they did
before is to enhance 'cogl_blit_framebuffer()' a bit, making it a vfunc
that could be implemented by MetaOnscreenNative. A flag to say whether
to look at the back or front buffer would let MetaOnscreenNative know
whether to use the already committed-to-KMS buffer, or the current back
buffer.
Fixes: 6c818cd8d5
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2282
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2462>
Fixes leak:
==14889== 2,168 (16 direct, 2,152 indirect) bytes in 1 blocks are definitely lost in loss record 15,308 of 15,584
==14889== at 0x48445EF: calloc (vg_replace_malloc.c:1328)
==14889== by 0x4BAC1D0: g_malloc0 (gmem.c:155)
==14889== by 0x4AAFF60: meta_wayland_dma_buf_feedback_new (meta-wayland-dma-buf.c:298)
==14889== by 0x4AAFFE0: meta_wayland_dma_buf_feedback_copy (meta-wayland-dma-buf.c:317)
==14889== by 0x4AB16B6: ensure_surface_feedback (meta-wayland-dma-buf.c:1121)
==14889== by 0x4AB1848: dma_buf_handle_get_surface_feedback (meta-wayland-dma-buf.c:1169)
==14889== by 0x66F77E9: ??? (in /usr/lib/x86_64-linux-gnu/libffi.so.8.1.0)
==14889== by 0x66F6922: ??? (in /usr/lib/x86_64-linux-gnu/libffi.so.8.1.0)
==14889== by 0x5318750: ??? (in /usr/lib/x86_64-linux-gnu/libwayland-server.so.0.20.0)
==14889== by 0x5313B99: ??? (in /usr/lib/x86_64-linux-gnu/libwayland-server.so.0.20.0)
==14889== by 0x5316649: wl_event_loop_dispatch (in /usr/lib/x86_64-linux-gnu/libwayland-server.so.0.20.0)
==14889== by 0x4AA7C19: wayland_event_source_dispatch (meta-wayland.c:110)
Fixes: 64e6bedb6b ("wayland/dma-buf: Add support for scanout surface feedback")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2469>
The MetaKeyboardA11yFlags are used by gnome-shell to show a dialog
whenever a keyboard accessibility feature is switched using the
keyboard.
Unfortunately, commit c3acaeb25 renamed the Clutter flag to Meta and
moved them to a private header. As a result, gnome-shell do not show any
dialog anymore when a keyboard accessibility feature is activated.
Move the MetaKeyboardA11yFlags definition to a public header so that
gnome-shell can use it.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2306
Fixes: c3acaeb25 - backends: Move keyboard a11y into backends
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2463>
The min distance to the right/bottom edge depends on Wayland concepts
(wl_fixed_t) and eventually geometry scale. Move the logic the Wayland
side of the pointer constraints machinery to avoid the backend trying to
figure this out without the proper data.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2460>
There were some coordinate nudging to avoid running into Clutter
floating point math issues related to coordinate transformations. Over
the years these things have improved, especially with the move to
graphene, so remove the old work around.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2460>
The ImplDeviceAtomic converts the MetaKmsPlaneRotation back to the
concrete KMS value. The MetaMonitorTransform is always directly
converted to a MetaKmsPlaneRotation.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2379>
Updating the PropTable has the side effect that the parse callback now
also gets called on hotplug but it is used to initialize data. The parse
callbacks are moved to the read_state functions which are aware if this
is an initializing call or just an update.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2379>
* creating an actor will result in it being assigned a color state
with the color space sRGB
* creating an actor with a color state passed will result in that
color state being returned
* changing an actor's color state makes that happen
* changing an actor's color state to NULL ends up with it being
changed back to a color state with the sRGB color space
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2443>
This avoids the following error:
../src/tests/wayland-test-clients/dma-buf-scanout.c💯5: error:
implicit declaration of function ‘close’; did you mean ‘pclose’?
[-Werror=implicit-function-declaration]
100 | close (buffer->dmabuf_fds[i]);
| ^~~~~
| pclose
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2458>
The Cogl feature was removed a while back, while Clutter just hard coded
it to TRUE. Lets remove the confusion that GLSL isn't supported and just
remove the (dead) fallback paths.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2015>
Add `sync_effects_completed()` and `verify_view()` in
order to allow Wayland test clients to trigger verifications
and add convenience functions to use them to client-utils.
Notes:
- `sync_effects_completed()` works in two stages in order
to ensure it doesn't race with window effects. By the time
`sync_effects_completed()` is processed, an effect could
already have ended or not yet been scheduled. Thus we
defer a check for pending effects to the next paint cycle,
assuming that by then they should have been scheduled.
- `meta_ref_test_verify_view()` internally triggers the
`paint` signal for the stage which is why it can not be run
in the after-paint signal handler.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1055>
Version 2 is required for buffer transform, however directly going
for the highest currently supported version doesn't break any
tests and makes more features available.
Also fix indentation below while on it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1055>
Our internal interpretation of output transforms is not in line with
the Wayland spec. Wayland describes them as the transform that a
compositor will apply to a surface to compensate for the rotation
or mirroring of an output device - counter-clockwise.
Mutter in turn interprets it the other way around. One could
argue it does the same but clock-wise - or it interprets the transform
from the viewpoint of the content, not the device.
In either way, the difference is that 90 and 270 degree values are
switched. Thus swap these accordingly when we translate from
`WL_OUTPUT_TRANSFORM` to `META_MONITOR_TRANSFORM`.
See: https://gitlab.freedesktop.org/wayland/weston/issues/99
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1055>
This launches Xvfb, using xvfb-run, and inside tests the following:
1. Launching 'mutter --x11' works
2. Launching a couple of X11 clients works (doesn't crash or result in
warnings)
3. Launching 'mutter --x11 --replace' works
4. Terminating works
It does this using a simple shell script.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2434>
We don't make use of the refresh rate in any useful way in the X11, and
in this case we just ended up with warnings since the refresh rate was
NaN. Fix this by making it 0.0 to mean "no refresh rate". This also is
what 'xrandr' itself reports.
Fixes warnings when launching 'mutter --x11' in Xvfb.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2434>
This adds a minimalistic fullscreen direct scanout test case, that runs
on vkms. It doesn't use EGL, and it uses uninitialized memory, thus it
lacks any kind of implicit synchronization, but it does test that the
scanout selection paths are working.
What is tested is:
* DMA buffer allocated using gbm on top of VKMS
* Buffer passes a mode setting TEST_ONLY check
* Paint is omitted
* Correct buffer active in KMS after presentation
What isn't yet tested:
* Implicit synchronization related behavior
* Presented pixel content
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2417>
We passed the pointer to a GError * as user data on an async I/O call.
The callback function didn't make use of it, so it was never written to,
thus remained NULL, thus was dead code. Remove it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2446>
It works by using an X11 client to set the clipboard content, using a
mimetype that on purpose is not handled by the clipboard manager. The
test then makes sure we don't crash when trying to transfer data from
the old X11 selection source.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2364>
The Xwayland server can go away at any time; when this happen we might
have a test client running, and for it to tear down more nicely, make
sure to avoid trying to clean up X11 resources on the old X11 display.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2364>
Xwayland can disappear at any time, for example during a new_async() or
read_async() call. When we eventually finalize the stream, the X11
display it was created for is gone, thus can't clean up the X11
resources. Handle this by making the MetaX11Display pointer a weak
pointer, and ignore cleaning up if it disappeared. This is fine since
the X11 server it created those resources one is gone already.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2364>
The property doesn't necessarily exist when using drivers that doesn't
support atomic mode setting, and the way it worked will break night
light and other gamma related features. This makes things use the gamma
length; if it is higher than 0, it definitely supports it one way or the
other, i.e. GAMMA_LUT with the atomic backend, and drmModeCrtcSetGamma()
with the legacy/simple backend.
Fixes: 364572b95c
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2287
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2435>
It doesn't depend on whether the CRTC is active or not, so always read
it. This is also useful to know whether a CRTC supports gamma, before it
is being turned on, without relying on the existance of properties.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2435>
The COMPOSITOR_GRAB event route has effectively been replaced by
ClutterGrabs, which are no longer covered by the existing check.
So check for grabs as well to restore the old behavior.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2436>
The event-route is never set to COMPOSITOR_GRAB nowadays, so the
condition will never be met.
Furthermore, it is expected that ClutterGrabs only happen when
events are routed normally, so the remaining NORMAL check should
already fully cover the old COMPOSITOR_GRAB case.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2436>
We already bypass wayland if there is a ClutterGrab, so the case
that used to be covered by the event-route check is already handled,
and we can just remove the obsolete check.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2436>
Since the new ClutterGrab API replaced the old plugin-modal hook,
the event-route is never set to COMPOSITOR_GRAB.
The code in question already checks whether the stage has a grab,
so we can just remove old checks.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2436>
Initializing the event mask, SubstructureRedirectMask in particular,
before taking the manager selection fails with BadAccess. Fix this by
initializing said mask after taking the manager selection.
This fixes `--replace`.
Fixes: eb4307c350
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2432>
The code is already trying to avoid creating new laters when there
already is one for the queue type, but this wasn't working because the
ID of the later was never stored after creating a new one. This would
then result in as many laters as meta_display_queue_window() was called
and all of them would run the handler function, even if only the first
one had a non-empty window queue.
Similarly this was causing the later to not be removed if the window
queue got empty after meta_display_unqueue_window().
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2414>
Currently the signal is getting emitted accidentally, because even when
removing a window from the queue, the later handler of that queue will
still get run due to a bug. This bug is going to get fixed in the next
commit, but some things might depend on the signal getting emitted when
the visibility of a window has changed.
This change affects the behavior in two ways. First the signal is now
emitted immediately rather than from an idle. And second it now
correctly includes the window in the should_show or should_hide list.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2414>
The compositor currently only updates the topmost window actor that is
visible to it after stacking changes. The visibility of a window actor
to the compositor however might only change via the display idle queue
after the stacking changes. This could then lead to the topmost window
actor being assumed to be NULL on Wayland after switching from an empty
workspace or when opening the first window on an empty workspace. The
result of this is direct scanout being disabled in these cases.
To fix this also trigger the update when the visibility of windows
changes.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2269
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2413>
Some windows span the entire screen but still use transparency, such as
the desktop window of Nemo. When these windows were used for direct
scanout, the transparent areas would turn black and nothing else would
be rendered.
In addition to checking the surface for opaqueness, for X11 windows also
the window actor itself has to be checked, because its opacity might
have been changed via _NET_WM_WINDOW_OPACITY.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2263
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2409>
This replaces the API to get the topmost surface actor with an API to
get the surface actor that could be a candidate for direct scanout. The
advantage of this is that it allows X11 and Wayland specific
restrictions for these actors.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2409>
It's not allowed to call eglQueryWaylandBuffer() if the call to
eglBindWaylandDisplay() failed, and will result in an assert being hit
in mesa if called.
Avoid that by keeping track whether we succeeded to bind, and only
attempt to realize a legacy EGL wl_buffer if binding succeeded.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2415>
Mutter makes use of a gsettings scheme that comes from
gnome-settings-daemon to check for the screen orientation.
In use cases where gnome-settings-daemon is not available,
this would lead to a crash as the key doesn't exists
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2398>
The monitors settings such as the privacy screen property is propagated
to the monitors via kms updates, however during initialization and
on monitors changes, we end up clearing the pending KMS updates because
such settings are added to the queue before the backend has fully
initialized the monitors, and this may lead to discarding all the
pending updates, including the one we've just planned.
To avoid this, move settings applications after we've both initialized
the backend and notified it about changes.
Also avoid to try set the settings during actual initialization, but
delay that after post-init.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2372>
Prior to 'compositor: Destroy actors when unmanaging', window actors
were destroyed when the compositor object was destroyed, long after the
windows were unmanaged, however, when this instead changed to happen
when unmanaging, with the original goal to avoid having these actors try
to interact with the disposed MetaCompositor instance, it caused an
issue where window actors would be indirectly destroyed as a side effect
of their parents being destroyed, which caused some fallout in the logic
handling window-close animation tracking, which relies on
meta_window_actor_queue_destroy() being called before a window actor is
actually destroyed.
Fix this by unmanaging windows before unmanaging the compositor.
From an X11 point of view, this should be harmless, since all it really
do is call XCompositeUnredirectSubwindows().
For the native backend and the common behavior, all unmanaging the
compositor instance does is destroy clutter actors, so doing so after
window actors were already cleaned up should not be a problem, as this
was the case before too.
Fixes: 35ac3a096d
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/5330
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2403>
Quoting Ray Strode:
we don't expose a way to explicitly save the session in gnome anymore
afaik, and I don't think it's going to show on log out because
I believe we use the FORCE flag from the log out dialog.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2370>
'kms/impl-device/simple: Get the buffer handle from MetaDrmBuffer'
changed how fb ids are generated, but it only made it fully work with
atomic mode setting. For legacy/simple mode setting, it only handled the
primary plane buffer, not the hardware cursor.
Fix this by making sure the fb id is generated also in the legacy mode
setting case.
Fixes: ea39142da2
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2250
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2397>
When an X11 window becomes an all-workspace window its `workspace` is
set to NULL before `meta_window_x11_current_workspace_changed()` is
called. The latter then checks for `workspace` being NULL (which also
happens when unmanaging) and then returns early. So this does not update
`_NET_WM_DESKTOP` to 0xFFFFFFFF. Instead it remains at the workspace the
window was on before. This was causing programs like `wmctrl` to switch
to this old workspace when activating such a window.
Fix this by checking if the window is unmanaging instead.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2242
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2387>
Simply signal preedit string changes from/to NULL once, in order
to avoid unwanted activity in the client side. We do still need to
send the preedit once each .done event, if there is one, in order
to behave according to the protocol when it matters the most.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2395>
With the unthrottled input emission, we ended up often getting the
cursor updates long before any damage had been posted, meaning that if
you moved around the mouse pointer where the mouse had a high enough
refresh rate, we'd effectively stall the screen cast stream by only
sending cursor updates and nothing else.
Fix this by scheduling an update when we get a cursor update, then
sending a cursor-only frame after any damage and relayout has been
processed, but only if there is no queued damage that will cause an
actual repaint.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2393>
This handle is used by the legacy KMS API; lets avoid having to have GBM
specific code where this is done by letting the MetaDrmBuffer API, that
already has this information, expose it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2275>
We'd put the message in a variable called `message`. If something passed
to meta_topic() was called `message`, it'd end up being `NULL` in the
log entry. Avoid this by making the local message variable a bit more
"on topic".
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2391>
Unfortunately we cannot do this generically since the target of the
button/touch press does matter, e.g. tapping on the OSK, or clicking
the IBus candidates window. These situations should not trigger a
reset.
So be more selective about the situations where button/touch presses
trigger an IM reset, in the case of ClutterText these are still clicks
inside the actor, for Wayland's text-input it is when clicking the
surface that has text_input focus.
For all other situations where clicking anywhere else might make
sense to trigger an IM reset are covered by the focus changing paths,
that also ensure a reset before changing focus between surfaces/actors.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1961
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2384>
Focus changes should trigger an IM reset, as some engines do want
to maybe commit the preedit string before changing focus. In addition,
we do not want the preedit string to be able to move between
windows/applications.
Ensure that the commit string is committed when the IM deems so, and
ensure we send a .done event disntinct to the .leave event, so that
the client doesn't miss the commit.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2030
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2384>
DMA buffers might be allocatable, but it doesn't mean the driver doesn't
fail when we try to allocate a buffer with an implicit modifier. Using
the proprietary NVIDIA driver for example, it will fail. Lets catch this
up front and avoid advertising DMA buffer support when we know it won't
work.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2383>
As of currently, we only emit .done() on actual changes coming from the
ClutterInputMethod/ClutterInputFocus. With the recent changes in the
interpretation of serials, it becomes more important now that the
compositor acknowledges every .commit done by the client, in order to
keep them feeding future IM state updates.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2365>
Compensate the protocol statelessness with our ClutterInputFocus
statefulness. This becomes more necessary now, since sending
consecutive .done() events is now considered acceptable behavior.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2365>
MetaCursorRendererNative only updates the cursor state when the
underlying texture changes. The cursor scale and transform do not
trigger updates. This results in wrong cursor orientations on rotated
displays. Use both texture changes and scale and transformation changes
to figure out when to update the cursor state.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2363>
When switching between the existence and not of a stage ClutterGrab, we
would correctly attempt to synchronize key focus from the perspective of
the Wayland clients.
But this synchronization should do its own checks about existing stage
grabs before determining a client window has key focus or not.
Add that check, so that grabs correctly unfocus the keyboard in Wayland
clients, in addition to pointers and touch.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2194
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2366>
When we get passed a "snippet" to the shaped texture, it's added as a
pipeline layer snippet to change how the source texture is sampled. When
we draw from a texture tower however we have allocated regular textures
which doesn't need any special layer snippet, so create separate
pipelines for those that doesn't use that snippet.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/528
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2278>
With Xwayland on demand, a number of maintenance X11 applications need
to be run first, before Xwayland starts accepting requests from the
normal clients, as soon as the WM_S0 selection is acquired by mutter.
On startup, mutter also sets a number of X11 properties that can be
queried by X11 clients.
Unfortunately, mutter acquires the WM_S0 selection before setting those
properties, so mutter and the first regular X11 client will race on
startup.
As a result, the X11 properties set by mutter on startup may not be
available to the very first X11 client when Xwayland starts.
To avoid that issue, make sure to take the WM_S0 selection last when
opening the display.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2176
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2336>
Currently, meta_xwayland_shutdown_dnd() is called from the handler
on_x11_display_closing() triggered from the signal "x11-display-closing"
hooked up from meta_xwayland_init_display().
Once the signal has been triggered, on_x11_display_closing() removes the
signal handler, disconnecting from the signal.
As meta_xwayland_init_display() is called from meta_display_new() which
is issued only once, the signal handler is not restored again.
As a result, meta_xwayland_shutdown_dnd() is not called anymore after
Xwayland has been restarted, but meta_xwayland_init_dnd() will check and
assert that the manager's DND object is NULL.
Basically, restarting Xwayland more that once will trigger an assertion
failure in mutter. That's even more of a problem with autoclose-xwayland
where Xwayland is expected to terminate when there is no meaningful X11
client remaining, which can happen multiple times during the lifetime
of a user session.
To make sure that meta_xwayland_init_display() is called for every new
instance of Xwayland, simply keep the signal hooked in place by not
disconnecting it when triggered.
This reverts commit 9a10b8ff94.
Even though, originally, this issue was first introduced with commit
b4fe1fdd95 ("xwayland: Make setup/teardown
a bit more symmetrical") which didn't actually kept 'x11-display-setup'
and 'x11-display-closing' connected.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2168
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2339>
For wayland meta_window_move_to_monitor sends a configure to the client
without actually moving the window, yet and the
meta_display_queue_check_fullscreen call won't detect any changes.
Checking for fullscreen in meta_window_update_monitor fixes the problem
because it is called whenever the window actually changed the monitor it
is on.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2325>
We rather confusingly still call a secondary display card that is
GPU-less (DisplayLink or other basic KMS device) a "secondary GPU",
so just because secondary_gpu_state is non-NULL doesn't mean we
can use it for rendering. The clearest indication of this is when
there is no EGL surface.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2341>
Since devices may be multiple things now, check all capabilities in order
to ensure all aspects of the device are correctly configured.
This change does the following observations:
- Devices that have TOUCHPAD | POINTER capabilities prefer the 'touchpad'
settings path. The regular pointer settings path is left for all
non-touchpads.
- Devices that are both a tablet and a touchscreen prefer the tablet
relocatable schema. This works for both aspects as the touchscreen
schema is a subset of the tablet one.
Other than that it's a rather boring, even if verbose search and replace.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2331>
We do not need to open code the ClutterInputDeviceType fetching from a
libinput_device, since we already created a native ClutterInputDevice that
has the right type.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2331>
We use meta_workpace_focus_default_window() to sync the input focus back
to a window after it was on shell UI, this is not really necessary on
Wayland, but it is on X11. What this function does internally is ask
MetaWindowStack about the topmost window and focus+raise that window.
In gnome-shell we set the input focus to the default window every time
the key-focus changes to NULL (see shell-global.c ->
sync_stage_window_focus()). Now when closing the alt-tab switcher and
activating a window while there's an always-on-top window on the
workspace, meta_workspace_focus_default_window() will focus that
always-on-top window right after closing the alt-tab switcher, making it
impossible to focus another window using alt-tab.
To fix this, make meta_workspace_focus_default_window() check if there's
an existing focus_window first, if there is, use that, and if there
isn't, resort to just focusing the topmost one.
Fixes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/5162
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2328>
This will allow us to reuse the keys and values more easily, as later
commits will rely on being able to iterate over the keys and values to
construct explict env strings for passing into special test cases.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2152>
We use get_window_for_event() to check whether an event happened on top
of a window or on top of shell UI to decide whether to bypass delivering
the event to Clutter. In case of crossing events though, we can't just
use the device actor to determine whether to forward the event to
Clutter or not: We do want to forward CLUTTER_LEAVE events which
happened on top of shell UI. In that case the device actor is already a
window actor (the pointer already is on top of a window), but the shell
still needs to get the LEAVE crossing event.
Since the event source actor got removed from the detail of
ClutterEvent, the context we're looking for (which actor did the pointer
leave) is now the target actor that the event gets emitted to. Since the
last commit, we also made event filters aware of this context by passing
the target actor to them, so use this context now to determine whether
we're on top of a window or not.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2321>
We'll need the additional context of which actor the event will be
emitted to in mutters event filter (see next commit), so pass that
target actor to the event filters that are installed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2321>
Before scanning out the surface of a native client we have
to check the following attributes that influence the
relationship between buffer and the defined result on screen:
- buffer scale
- buffer transform
- viewport
In the future we can loose these checks again in cases where the
display hardware supports the required operations (scaling, cropping
and rotating).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2276>
Prior to 67033b0a mutter was accidentally including sizes for
configurations that were just focus state changes. This was not leading
to any known problems on the client side, but it was causing issues in
mutter itself when detecting whether a resize originated from the client
or the server.
Not including sizes in focus change configurations anymore however
revealed a bug in gtk. It was storing the window size when in a fixed
size mode (tiled/maximized/fullscreen), but not on any other server side
resizes. It was then restoring this stored size whenever there was a new
configuration without a size while in floating mode, i.e. the focus
change configurations generated by mutter after 67033b0a.
This change now addresses the issue 67033b0a was fixing in a way that
restores the previous behavior of always including the size whenever
sending a configuration.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2091
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2238>
If the remote desktop service emits absolute input events (e.g. absolute
pointer events) before the stream has started streaming, we don't have a
virtual monitor, as the size has not been negotiated yet. When this
happens, just drop the event. Remote desktop services should probably
make sure not to send events before the streaming has started, but them
doing so anyway shouldn't trigger a crash, which would be the case
otherwise.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2270>
This test resizes the stream by updating the PipeWire stream properties.
This triggers a format negotiation, that results in the buffers being
reallocated with the new size. The test makes sure we eventually
receive this new size.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2270>
Keep the virtual monitor around if it's being resized. This reduces the
number of unnecessary object rebuilding that happen during monitor
rebuilding.
This changes finalize() vfunc into a dispose() vfunc in the abstract
stream source object implementation, as it needs the abstract stream
source object to close the stream early, so that various signal
listeners get disconnected early.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1904
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2270>
We'll change mode's on-demand so using IDs identical to the virtual
monitor ID would mean IDs didn't change when changing mode, and that is
rather unintuitive. IDs don't mean much anyhow, just make them grow
within the realm of a 63 bit unsigned integer, as the 64th bit means its
a virtual mode ID. Making sure the ID is in the virtual mode namespace
is handled by meta_crtc_mode_virtual_new().
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2270>
In some configurations (e.g. NVIDIA driver 470) Xwayland may use DMA
buffer for passing buffers around. When this is done, we might attempt
to scanout these buffers when they are fullscreen, and to do so we
import them using gbm.
However, for the mentioned configuration, there is no gbm device
available for importing. This was not handled, and resulted in a crash;
avoid this crash by checking whether we have a gbm device and fail
gracefully if we don't.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2098
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2318>
This aims to replace the x,y arguments in wl_surface.attach(); meaning
it can be used more sanely together with EGL, and at all when using
Vulkan.
The most common use case for the offset is setting the hotspot of DND
surfaces.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1905>
This implements the new 'bounds' event that is part of the xdg_toplevel
interface in the xdg-shell protocol. It aims to let clients create
"good" default window sizes that depends on e.g. the resolution of the
monitor the window will be mapped on, whether there are panels taking up
space, and things like that.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2167>
We'd guess the initial monitor before it was actually calculated by
looking at the initial geometry. For Wayland windows, this geometry was
always 0x0+0+0, thus the selected monitor was always the primary one.
This is problematic if we want to provide initial more likely
configurations to Wayland clients. While we're not doing that yet, it'll
be added later, and this is in preparation for that.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2167>
This will later be used to tell Wayland clients about a size they
shouldn't exceed.
If the window doesn't have a main monitor, this function does nothing
and returns FALSE.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2167>
gnome-desktop is used to retrieve the monitor vendor name which in some
use cases is not needed as it brings a bunch of gnome-desktop unwanted
dependencies.
The change makes mutter fallback to an "Undefined" vendor name if it is
built without gnome-desktop
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2317>
Return in meta_egl_choose_all_configs() the actual number of
configurations returned by eglChooseConfig(), which are not
necessarily the same number as those from eglGetConfigs().
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2303>
Since the introduction of ClutterGrabs, MetaDnd now no longer gets
notified about input events on the stage during grabs (for example while
the alt-tab popup is shown) and thus can't move the grab feedback actor
anymore.
To fix this, forward events to MetaDnD directly from
meta_display_handle_event() when a ClutterGrab is in effect.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2308>
We get the MetaWaylandCompositor a bunch of times, but we can do with
getting it only once and then also replace the is_wayland_compositor()
checks with a if (wayland_compositor).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2308>
The XDG activation support was missing interoperability with other
startup sequences, notably those coming from other means than XDG
activation.
In order to play nice with X11 startup sequence IDs, we not just
have to check for the startup ID being in the general pool, but
we also need to fallback into X11-style timestamp comparison so the
window ends up properly focused.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2314>
When a drag and drop occurs from an X11 client to a Wayland native
client, mutter uses an internal X11 window as a peer for the DnD drop
site.
That internal X11 window is moved and resized to match the Wayland
native windows as the drag destination moves.
When moving from one Wayland native window to another Wayland native
window, the same X11 window is used, and as a result no DND enter/leave
events is emitted.
In that case, the drop may occur on the wrong Wayland native window,
because no new XdndEnter/XdndLeave event were emitted.
To avoid that issue, use a pair of X11 windows instead of just one and
alternate between the two when repicking a new drop surface, so that
moving from a Wayland surface to another will always generate the
expected enter/leave events that we rely on.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2136
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2305>
When generating the action label, we expect both directions of these
features to have consistent settings (either both get a keycombo, or
they don't) or these just return NULL altogether.
Since one of the directions has an action associated, this is
misleading, so be more lenient at the time of generating the action
label.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2001>
If we happen to handle a CLUTTER_TOUCH_BEGIN without a corresponding
CLUTTER_TOUCH_END at MetaWaylandTouch, we would still attempt to
reuse the older MetaWaylandTouchInfo, resulting in an assert triggered
as there is a stale touch reference on the previous surface.
Warn in place and create a new touch info struct to still fix the
broken surface accounting, instead of finding out the hard
way after the surface is destroyed. The assert is preserved to ensure
the accounting does not sneakily break anymore/further.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/584
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2251>
It passes a MetaLogicalMonitor, which isn't introspected right now, so
skip it completely. The entry point to the UI is handled via
MetaDisplay, so it isn't needed.
This fixes the following warning:
<unknown>:: Warning: Meta: (Signal)monitor-privacy-screen-changed: argument object: Unresolved type: 'MetaLogicalMonitor'
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2287>
Structure tests in a list of dictionaries, instead of requiring each
test to have its own executable(...) and test(...) statement. The
intention of this is to make it easier to add more test cases.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2262>
It already was built into it without any symbols exported, but also
duplicated in test cases that used it. Make it so that the built in
functions are exported, with prefixes, and make all tests use the
exported functions. While at it, make things go via MetaContext or
MetaBackend depending on how early in initialization things are run.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2262>
We update some details like the last used device and pointer visibility
from events, but this is done inconsistently on X11 since the
ClutterEvents are created and pushed from an additional place.
Make these updates happen on a private call, that will be called from
these places in X11.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/285>
Even though it's great that XI2 has an event to notify about device
changes, this is something we can let the MetaBackend code handle
consistently for all backends, since looking for the source device
works everywhere.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/285>
Instead of relying in the device being updated from different parts of our
machinery for different backends, hook this up to our own event dispatching.
This will allow dropping all other places where this is done.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/285>
We create a cursor renderer per device for those at
meta_seat_native_handle_event_post() with PROXIMITY_IN events, but
the MetaWaylandTabletTool handles the event before that, and goes
with a NULL cursor renderer.
Make MetaBackend::get_cursor_renderer() on the native backend create
those cursor renderers on demand, and only handle PROXIMITY_OUT in
handle_event_post() to dispose those. This makes MetaWaylandTabletTool
happily get a cursor renderer again.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/285>
We now only enable DMA buffer based PipeWire screen casting if a
format/modifier has been negotiated. This practically means a consumer
is aware about what is needed, and we should not try to predict that it
uses the DMA buffer the right way (i.e. not mmap:ing directly).
However, in case we're not hardware accelerated, we never want to
attempt to use DMA buffer screen sharing, as we want to avoid
compositing into a DMA buffer on such hardware as doing so can be very
slow.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2086>
meta_window_(un)queue() was implemented with global arrays in window.c
that managed MetaLater handle IDs and lists of window queues. In order
to rely less on scattered static variables and making it clearer that
we're dealing with per display window management and not something
specific to a single window, move the window resize/calc-showing queue
management to MetaDisplay.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2264>
It's still used by e.g. GNOME Shell to produce fallback icons for X11
applications that doesn't come with a .desktop file. Geometry stays in
the generic class because it's used for minimize animations and is
configured by the panel (e.g. the one in gnome-shell-extensions).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2264>
The comments in this function tells a story of C programmer self
reflecting about data types and Perl. While that can be nice, the rest
consisted mostly of repeating what the code line below did, with the end
result being that the function didn't fit on screen, resulting in worse
readability overall.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2264>
When handling lid state, we used to update the idle time right after
opening the lid. This behavior changed in commit 14b6c8780d due
to a typo/thinko, "if (lid_is_closed)" used to be an early return
condition before updating idle time, now it only updates in that
case.
Restore the original behavior, since this idle time update is key
in having gsd-power light up the display again, this presumably
fixes situations that required extra "light up" hints after suspend.
What it does surely fix is "ninja test" in g-s-d against recent
mutter, since the behavioral change induced a test timeout there.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2272>
The `ensure_x11_unix_perms` function tries to detect systems on which
/tmp/.X11-unix is owned by neither root nor ourselves because in that
case the owner can take over the socket we create (symlink races are
fixed in linux 800179c9b8a1e796e441674776d11cd4c05d61d7). This should
not be possible in the first place and systems should come with some way
to ensure that's the case (systemd-tmpfiles, polyinstantiationm …). That
check however only works if we see the root user namespace which might
not be the case when running in e.g. toolbx.
This change relaxes the requirements such that in the root user
namespace we detect and abort if a vulnerable system is detected but
unconditionally run in toolbx.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2261>
Add some debug logging that allows checking whether we're using DMA
buffers for screencasting or system memory buffers. This can be useful
for debugging screencasting performance and CPU usage.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2256>
With the ability to query the renderer for DMA-BUF support we can
announce support for implicit modifiers. This allows PipeWire to check
for matching modifiers while negotiation.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1939>
Returns TRUE if the active renderer backend can allocate DMA buffers.
This is the case hardware accelerated GBM backends, but FALSE for
surfaceless (i.e. no render node) and EGLDevice (legacy NVIDIA paths).
While software based gbm devices can allocate DMA buffers, we don't want
to allocate them for offscreen rendering, as we really only use these
for inter process transfers, and as buffers allocated for scanout
doesn't use the relevant API, making it return FALSE for these solves
that.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1939>
There may be situations where we may stack a ClutterGrab on top of a
wayland popup's. Since ClutterGrab should win over client grabs, we
mostly correctly figure out that it should start doing
bypass_wayland=TRUE and bypass_clutter=FALSE while the ClutterGrab
holds, however the late checks for the MetaDisplay event route can
still toggle bypass_clutter on, resulting in neither handling events.
This check for wayland popups in the display event route should just
enforce wayland handling if wayland is meant to be receiving events,
so ensure these don't mix together.
Fixes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/5020
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2271>
Wayland event processing and WM operations are themselves outside the
ClutterGrab loop so far. Until this is sorted out, these pieces of
event handling have got to learn to stay aside while there is a
ClutterGrab going on.
So, synchronize foci and other state when grabs come in or out, and
make it sure that Wayland event processing does not happen while
grabs happen.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2099>
Since we want these accessed from bindings this must be a boxed
type. This has the side effect of making ClutterGrab a refcounted
object, since we want to avoid JS from pointing to freed memory
and maybe causing crashes if misusing the object after dismiss.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2099>
This is (luckily!) unused, and it's inconvenient to have a toggle to
break the input model we are striving towards. Drop this function
and stick to the default behavior.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2099>
The experimental feature "autoclose-xwayland" requires a couple of
prerequisites:
1. Be able to (re)start Xwayland on demand, i.e. with systemd
2. Xwayland must support the terminate delay
Add a warning message if "autoclose-xwayland" was requested but any of
those prerequisites is not met.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2258>
Since commit 226afa24a - "Use Xwayland auto-terminate feature", the
callback function shutdown_xwayland_cb() does not check for the
autoclose-xwayland experimental feature anymore.
As a result, when running nested or outside of systemd,
gnome-shell/mutter would quit after 10 seconds unless some X11 window
was mapped.
But now that we rely on Xwayland's own terminate feature, there really is
no need to use any xserver timeout function anymore.
We do not need to keep track of X11 windows being created or unmapped, as
again, Xwayland does all that for us at the client level.
Remove all this code that we do not need anymore.
fixes: 226afa24a - Use Xwayland auto-terminate feature
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2258>
Because both code paths require the existence of `GL_TIMESTAMP[_EXT]`
which is only guaranteed if `ARB_timer_query` (included in GL core 3.3)
is implemented.
We know when that is true because `context->glGenQueries` and
`context->glQueryCounter` are non-NULL. So that is the minimum
requirement for any use of `GL_TIMESTAMP`, even when it is used in
`glGetInteger64v`.
Until now, Raspberry Pi (OpenGL 2.1) would find a working implementation
of `glGetInteger64v` but failed to check whether the driver understands
`GL_TIMESTAMP` (it doesn't).
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2107
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2253>
When using Xwayland-on-demand (default), if the (experimental) autoclose
features is enabled, we can rely on Xwayland's auto-terminate feature
instead of explicitly killing the Xwayland process.
With it, gone is the mechanism that was added to check the X11 clients
connected and their executable to check whether we can (safely) kill
Xwayland.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1794>
The connection to the Xserver for the X11 window manager part of mutter
even on Wayland may prevent the Xserver from shutting down.
Currently, what mutter does is to check the X11 clients still connected
to Xwayland using the XRes extension, with a list of X11 clients that
can be safely ignored (typically the GNOME XSettings daemon, the IBus
daemon, pulseaudio and even mutter window manager itself).
When there is just those known clients remaining, mutter would kill
Xwayland automatically.
But that's racy, because between the time mutter checks with Xwayland
the remaining clients and the time it actually kills the process, a new
X11 client might have come along and won't be able to connect to
Xwayland that mutter is just about to kill.
Because of that, the feature “autoclose-xwayland” is marked as an
experimental feature in mutter and not enabled by default.
Thankfully, the Xserver has all it takes to manage that already, and
is even capable of terminating itself once all X11 clients are gone (the
-terminate option on the command line).
With XFixes version 6, the X11 clients can declare themselves
"terminatable", so that the Xserver could simply ignore those X11
clients when checking the remaining clients and terminate itself
automatically.
Use that mechanism to declare mutter's own connection to the Xserver as
"terminatable" when Xwayland is started on demand so that it won't hold
Xwayland alive for the sole purpose of mutter itself.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1794>
Adding a <dbus/> element containing a boolean (yes/no) determines
whether org.gnome.Mutter.DisplayConfig ApplyMonitorsConfig will be
callable. The state is also introspectable via the
ApplyMonitorsConfigAllowed property on the same interface.
For example
<monitors version="2">
<policy>
<dbus>no</dbus>
</policy>
</monitors>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2030>
The test aims to verify that setting the following policy
<policy>
<stores>
<store>system</store>
</stores>
</policy>
only applies monitor configurations from the system level.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2030>
This adds a way to define a way, at the system level, to define a policy
of how monitor configuration files are loaded.
The intended use case is to e.g. either prefer system level monitor
configurations before user levels, or only allow system level
configurations.
Examples:
Prefer system over user level configurations:
<monitors version="2">
<policy>
<stores>
<store>system</store>
<store>user</store>
</stores>
</policy>
<configuration>
...
</configuration>
</monitors>
Only allow system level configurations:
<monitors version="2">
<policy>
<stores>
<store>system</store>
</stores>
</policy>
<configuration>
...
</configuration>
</monitors>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2030>
strncmp() always return 0 if the passed length is 0. What this means is
that whatever the first string check happens to be, if the parsed XML
cdata was empty (e.g. if we got <element></element>), the first
condition would evaluate to true, which is rather unexpected.
Fix this by making sure the string length is correct first. Also move it
into a helper so we don't need to repeat the same strlen() check every
time.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2030>
The way device backends implement power saving differ, and power saving
needs to contain nothing incompatible in the same update. Make it
impossible to e.g. mode set, page flip, etc while entering power save by
not using MetaKmsUpdate's at all for this.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2159>
When we're predicting state, i.e. when having posted an update while
avoiding reading KMS state, copy the predicted state, update the actual
state, and check that the predicted state matches the newly updated one.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2159>
It was a bit scattered, with it being split between MetaKms and
MetaKmsImpl, dealing with MetaKmsDevice and MetaKmsImplDevice
differentation. Replace this by, for now, single entry point on
MetaKmsDevice: meta_kms_device_process_update_sync() that does the right
thing.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2159>
As other KMS tests, depends on being DRM master and vkms being loaded.
Currently consists of a sanity check that checks for the expected set of
connectors, CRTCs, planes, etc.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2159>
Right now gamma is set only via the D-Bus API (from gsd-color), but the
actual gamma isn't right after SetCrtcGamma(), meaning if one would call
GetCrtcGamma() right after setting it, one would get the old result.
Avoid this by getting the "current" CRTC gamma from the cache we manage.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2159>
In order to support dynamic imports, gjs added an implicit mainloop
that can drive the main context independently from other mainloops
like the one from GApplication or MetaContext.
That means that sources can now get dispatched to the main context
from the moment the plugin is started, resulting in a crash as the
association between compositor and plugin manager doesn't exist until
meta_plugin_manager_new() returns.
Make sure this doesn't happen by only starting the plugin after
meta_plugin_manager_new() has returned.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2242>
When privacy screen is changed and this happens on explicit user request
(that is not a setting change) we should notify about this via an OSD.
To perform this, we keep track of the reason that lead to a privacy
screen change, and when we record it we try to notify the user about.
When the hardware has not an explicit hotkey signal but we record a
change we must still fallback to this case.
Fixes: #2105
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1952>
Privacy screen events on connector are handled as notification events
that won't cause any monitors reconfiguration but will emit monitors
changed on DBus, so that the new value can be fetched.
We monitor the hardware state so that we can also handle the case of
devices with hw-switchers only.
In case a software state is available it means we can also support
changing the state, and if so expose the state as unlocked.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1952>
When both a setting change and a monitor change happens we need to
ensure that the monitor settings are applied.
This is currently only related to privacy settings, but will in future
also handle other monitor parameters such as brightness.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1952>
Some monitors support hardware features to enable the privacy screen
mode that allows users to toggle (via software or hardware button) a
state in which the display may be harder to see to people not sitting
in front of it.
Expose then this capability to the monitor level so that we can get its
state and set it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1952>
In some cases mutter is started in the user scope from a TTY (for
example using toolbox). Using sd_pid_get_session fails because it's not
in the session scope so it falls back to the primary session
(sd_uid_get_display). We want to start mutter on the TTY we started
mutter on however. Instead of relying on the scope to figure out the
correct session we first look at $XDG_SESSION_ID which is set by
systemd_pam.so.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2254>
It is possible that we never create a cached state for a surface
even if it is synced. That is the case if `commit()` is never called.
We still need to call `apply_state()` in this case in order to run
e.g. `role_post_apply_state()` or `parent_state_applied` on subsurfaces.
So just ensure to initialize the cached state instead of bailing out.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2232>
Subsurfaces can be effectively synced indirectly via their ancestors.
Right now such indirectly synced surfaces don't apply their cached
state when their ancestor effectively becomes desync as by the time
we call `parent_state_applied()` on them, they are considered as
desync.
Thus sligthly reoder things so when the ancestors becomes desync
and applies its state, those surfaces still count as synced and
will thus apply their cached state as well.
While on it, add a check to prevent `set_desync()` to have side
effects when the target surface is not currently synced.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2232>
At first glance the `goto` looks like a loop, or potentially an infinite
loop. It's not a loop because the mode has changed at that point to
`META_SHARED_FRAMEBUFFER_COPY_MODE_PRIMARY`. But we can make it more
obvious and avoid the need for a goto.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2240>
The stage window is an interface, that added properties, that were only
then actually managed by MetaStageImpl. Shuffle things slightly, and let
the MetaStageImpl object deal with these things itself.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2014>
What the keymap eventually is after, are things handled by the actual
backend (MetaBackendX11), so let it keep a pointer to that. This
eliminates some usages of globals.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2014>
It tests that if we go from (x is the pointer cursor)
+--------+
| |
| X |
+--------+
to
+----------------+
| |
| |
+--------+ |
| | |
| X | |
+--------+----------------+
i.e. making sure that X ends up somewhere within the logical monitor
region.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2237>
These will be skipped by default, but can be run from a TTY for easier
debugging by doing:
dbus-run-session -- meson test -C build --suite mutter/native/tty --setup plain
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2151>
This commit makes it possible to run test executables in a test
environment constructed of a virtual machine running the Linux kernel
with the virtual KMS driver enabled, and a mocked system environment
using meta-dbus-runner.py/python-dbusmock.
The qemu machine is configured to use 256M of memory, as the default
128M was not enough for the tests to pass.
Using qemu is also only made possible on x86_64; more changes are needed
for it to be runnable on aarch64, so add a warning if it was enabled on
any other architecture.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2151>
This is needed if one wants to run the test suite parts that need KMS or
evdev access in a virtual machine.
However, only initiate these methods if the meta-dbus-runner.py program
was launched with --kvm, as it's only suitable for using while running
as root in a virtual machine.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2151>
When we test, we might not have a systemd session to rely on, and this
may cause some API we depend on to get various session related data to
not work properly. Avoid this issue by passing fallback values for these
when we're running in test mode.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2151>
There will be another mode added later, 'test'; prepare for this by
changing the existing "mode" boolean ('headless') to a mode, which is
either 'default' or 'headless'. Checking the is_headless variable is
changed to using the function is_headless(), except for one place, being
VT switching, which in preparation is only allowed on the 'default'
mode. Other places where it makes sense, the conditions are changed to
switch statements.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2151>
When running in KVM, the EGL driver supports querying the render node
path, but it returns NULL. Handle that better by falling back to
querying the device main device file, instead of falling back on v3 of
the protocol and logging a warning.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2151>
Some API will return NULL or the equivalent; sometimes it's an error,
and sometimes it's not, and the way to check that is by looking at the
return value of eglGetError(). When we check this, don't set the GError
if it returned EGL_SUCCESS, as that indicates that the return value is
expected behavior, and not an error.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2151>
There was a sanity check that complained if there was still a "next
framebuffer" when disposing an onscreen. This is correct to complain
about under normal operation, as we always wait until receiving the page
flip callback before cleaning up the onscreen and their state.
However, when there are many hotplugs occurring, we might end up with
race conditions when the above sanity check is not valid: when we have
more than one monitor active, paint 1 one of them, but receive a hotplug
event before we paint the other(s), we will discard the already painted
onscreen before really issuing a page flip.
In this situation, we will have the "next framebuffer", but having that
is not a bug, it's a race condition, thus to not leak in this situation,
make sure to clean up the next framebuffer here too.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2081
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2225>
If there are any pending updates, for example if we painted one of
multiple monitors but without having posted the update due to waiting
for another monitor to be painted, but before we paint all of them and
post the update, another hotplug event happens, we'd have stale pending
KMS update. When that update eventually would be processed, we'd try to
apply out-of-date updates which may contain freed memory.
Fix this by discarding any update when we're rebuilding the views. We
can be sure not to need any of the old updates since we're rebuilding
the whole content anyway.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1928
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2216>
Following the EGL_KHR_swap_buffers_with_damage specification, the
surface damage used by eglSwapBuffersWithDamage does not need to
contain the damage history.
Rework that to reduce the amount of rectangles that get passed to
the backend.
Also rework some of the regions that were using fb_clip_region and
missing the last scaling to support fractional scaling.
Signed-off-by: Erico Nunes <nunes.erico@gmail.com>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2089>
When the before-paint function is executed, it's only purpose
is to check if there's any scanout queue, and immediately
record it if any.
However, since [1], we regressed in this specific case with the
introduction of an idle callback in the before-paint function.
The regression only happens when the PipeWire stream is using
DMA-BUF buffers, and it would operate as follows:
1. In before-paint, when there's a scanout available, we queue
an idle callback to capture the monitor. The idle callback
(almost always) executes after the scanout is pulled from
the stage view
2. meta_screen_cast_stream_src_maybe_record_frame() is called
by the idle callback. In the DMA-BUF case, it then runs
meta_screen_cast_monitor_stream_src_record_to_framebuffer()
3. In meta_screen_cast_monitor_stream_src_record_to_framebuffer(),
because the stage view doesn't have a scanout anymore, it
ends up calling cogl_blit_framebuffer() with the stage view
framebuffer. This is the regression bug.
This regression presents itself in the form of the screencast
stream showing the desktop when there's an unredirected fullscreen
application window running.
Revert before-paint - and only that - back to immediately capturing
any available scanout. Only record these frames when the target
buffer is a DMA-BUF handle. Nothing is captured on before-paint if
the stream is not using DMA-BUF, since the regular paint routine
will handle these frames regularly post-paint.
[1] https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1914
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2186>
Next commits will reintroduce a certain behavior of stage
capturing that can only happen with DMA-BUF buffers. To
control this, add a new flag tp MetaScreenCastRecordFlags
for this behavior.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2186>
If a Wayland subsurface is the topmost actor, consider in for
scanout as well. This will extend our scanout capabilities to apps
like Firefox
While on it, correct a unnessary type check to a NULL check.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2211>
On Wayland a window actor may have more than one surface actor,
most importantly when subsurfaces are used.
Add a new function to request the one which is at the top -
it will be used in the next commit.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2211>
If the EGL header is not new enough, it will not contain that relatively
new macro definition, so to avoid breaking compilation, define it
ourselves for now. Should be possible to remove after some time.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2214>
We save the window rect before going fullscreen to a dedicated variable,
so we can go back to the correct dimension. We also have a dedicated
variable for returning from other window states, e.g. maximized, and
this one we initialized when creating the MetaWindow. This meant that we
could always rely on this being up to date on X11 windows that were
mapped maximized or fullscreen.
What the commit that introduced the saved rect dedicated for going
unfullscreen missed was to initialize the new saved rectangle too when
creating the MetaWindow. This resulted in windows mapped as fullscreen
often ending up misbehaving when unfullscreening, as mutter would tell
them to unfullscreen to 0x0.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1786
Fixes: a51ad8f932
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2210>
Since every input stream now uses its own window, the X property used to
transfer the data no longer has to be unique, so we can stop generating
those unique names. This avoids creating a new atom for every transfer
since those are never freed, neither on the shell nor on the server
side. Also don't unnecessarily duplicate other strings that are
(almost) never used and get them from the atom in the rare case when
they are needed.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1328
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1812>
When there are two (or more) concurrent XConvertSelection requests with
the same target, selection and window and the data is large enough for
SelectionNotify events to overlap. This can result in the affected streams
being considered completed without any data being transferred.
While regular mutter/shell code does not make use of concurrent
XConvertSelection requests with the same targets, some extensions might.
Such as for example a clipboard manager that like the built-in clipboard
manager tries to read the selection on owner-changed.
One potential solution would be to make sure the event is for the correct
property, but not all clients seem to support concurrent requests for the
same targets but different properties on the same window.
This commit instead changes the streams to use their own window which
seems to be more widely supported.
Fixes https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/4034
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1812>
This is a preparation for each input stream creating its own window. It
moves deleting the property from meta_x11_selection_input_stream_xevent
where it can run after the stream has been finalized to a spot where
the stream still exists. Use an error trap in case the property was not
set by the client, such as when the conversion failed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1812>
This significantly increases the chance of a fullscreen surface buffer
being scanned out instead of being painted via composition. This is
assuming the client supports the DMA buffer feedback Wayland protocol.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2146>
This API can be used to construct a MetaKmsUpdate with plane assignments
that in isolation will be tested against the current KMS state. How it
is tested depends on the KMS implementation; in the simple / legacy KMS
backend, the tests are identical to the current scanout requirements
(dimension, stride, format, modifiers, all must match), and with atomic
KMS, it uses the TEST_ONLY on a real constructed atomic mode setting
commit.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2146>
Whenever a surface is promoted as a scanout candidate by
MetaCompositorNative, it'll get a CRTC set as the candidate CRTC.
When a client asks for DMA buffer surface feedback, use this property to
determine whether we should send a scanout feedback tranche.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1959>
The final tick of a timeline is >= its duration, but when using ticks that
are slightly in the future ("next presentation time") this means the final
tick will execute and complete the timeline up to one frame interval before
the timestamp of that final tick.
For the single clock test we now just check if the overall duration is
within one frame of the expected timeline duration.
The dual clock (switching) test needs a threshold of two frames because
starting each new clock creates a phase shift (error) of up to one frame.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2161>
We're in the destructor, it's pointless to unset the userdata as we'll
never ever see a request being invoked with it ever again, since the
resource itself will be destroyed or marked as destroyed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2202>
When rendering to a buffer that is not the stage view buffer, we can not
know where the buffer will be displayed on the screen. As a result we
also can not know what translation would need to be applied to culling.
This was causing glitches when the gnome-shell magnifier was applying
offscreen effects. ClutterOffscreenEffect causes MetaWindowGroup to be
rendered to an offscreen buffer at an offset, because it draws to a
slightly larger texture with an accordingly translated origin. This
translation then later is canceled out again when the offscreen buffer
is drawn. To meta_actor_painting_untransformed() however which only sees
the translation used when drawing to the buffer this looked like the
window group was being rendered at the offset. This then lead to
redraw_clip getting translated accordingly, resulting in wrong
coordinates used for culling.
Similarly this was leading to issues when taking area screenshots while
at 1x zoom.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1678
Fixes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/4876
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2080>
Refresh rates >60Hz become ever more common. In order to allow users
to keep hight refresh rates when not running at a natively advertized
resolution, add common refresh rates to our fallback modes.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2189>
Right now we often add a duplicate fallback mode that's almost
identical to the native mode. This adds unnecessary clutter to
UIs, thus filter out such modes.
In order to keep the code small, use `MetaCrtcModeInfo` directly
instead of recalculating the values. And to keep consistency, do
the same in the loop above.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2189>
This is so that it can unregister from it on tear down. The tracker owns
references to cursors too, but this cycle is already broken as the
backend calls 'g_object_run_dispose()' when tearing the cursor tracker
down.
Fixes a crash on shutdown.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2181>
An incorrect assumption that after mode set there would be no pending
page flips was made. This meant that if there was a mode set, followed
by a page flip, if that page flip was for a CRTC on a now unused GPU,
we'd crash due to the renderer GPU data having already been freed. This
commit avoids that by keeping it alive as long as the page flips are
still in the air. It fixes crashes with backtraces such as
0) meta_render_device_get_egl_display (render_device=0x0)
at ../src/backends/native/meta-render-device.c:320
1) secondary_gpu_state_free (secondary_gpu_state=0x1c8cc30)
at ../src/backends/native/meta-onscreen-native.c:560
2) meta_onscreen_native_dispose (object=0x1cb65e0)
at ../src/backends/native/meta-onscreen-native.c:2168
3) g_object_unref (_object=<optimized out>)
at ../gobject/gobject.c:3540
4) g_object_unref (_object=0x1cb65e0)
at ../gobject/gobject.c:3470
5) clutter_stage_view_finalize (object=0x1cbb450)
at ../clutter/clutter/clutter-stage-view.c:1412
6) g_object_unref (_object=<optimized out>)
at ../gobject/gobject.c:3578
7) g_object_unref (_object=0x1cbb450)
at ../gobject/gobject.c:3470
8) meta_kms_page_flip_closure_free (closure=0x1d47e60)
at ../src/backends/native/meta-kms-page-flip.c:76
9) g_list_foreach (list=<optimized out>, func=0x7fb3ada67111 <meta_kms_page_flip_closure_free>, user_data=0x0)
at ../glib/glist.c:1090
10) g_list_free_full (list=0x1cb4d20 = {...}, free_func=<optimized out>)
at ../glib/glist.c:244
11) meta_kms_page_flip_data_unref (page_flip_data=0x1c65510)
at ../src/backends/native/meta-kms-page-flip.c:109
12) meta_kms_callback_data_free (callback_data=0x227ebf0)
at ../src/backends/native/meta-kms.c:372
13) flush_callbacks (kms=0x18e2630)
at ../src/backends/native/meta-kms.c:391
14) callback_idle (user_data=0x18e2630)
at ../src/backends/native/meta-kms.c
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2147>
This ensures we don't have any left over cursor GPU buffers (via
gbm_bo's) after destroying the corresponding gbm_device (owned by
MetaRenderDevice).
Fixes crashes with backtraces such as
1) meta_drm_buffer_gbm_finalize at ../src/backends/native/meta-drm-buffer-gbm.c:450
4) invalidate_cursor_gpu_state at ../src/backends/native/meta-cursor-renderer-native.c:1167
9) update_cursor_sprite_texture at ../src/wayland/meta-wayland-cursor-surface.c:70
10) meta_wayland_surface_role_apply_state at ../src/wayland/meta-wayland-surface.c:1869
11) meta_wayland_surface_apply_state at ../src/wayland/meta-wayland-surface.c:832
12) meta_wayland_surface_commit at ../src/wayland/meta-wayland-surface.c:993
13) wl_surface_commit at ../src/wayland/meta-wayland-surface.c:1158
14) ffi_call_unix64 at ../src/x86/unix64.S:76
15) ffi_call at ../src/x86/ffi64.c:525
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2147>
During tear down, if anything teared down after the seat tries to get
the cursor renderer, we'd crash trying to get it as the seat would
already be gone. Avoid this by returning NULL when there is no seat.
It's assumed that any path that will happen during tear down that relies
on getting the cursor renderer will gracefully handle it not being
present, e.g. by relying on the cursor rendering cleaning up itself.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2147>