Add support for the (mostly theoretical) case of an input-device
offering tablet-mode-switch functionality being unplugged.
This makes the has_tablet_switch handling identical to the has_touchscreen
handling, leading to more consistent code.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1506
Detect if a tablet-mode-switch device is already present when mutter
starts by checking for this from meta_seat_native_constructed. This
mirrors how we also set has_touchscreen from meta_seat_native_constructed.
This fixes tablet-mode-switches only being recognized when they are added
at runtime.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1506
Unconditionally setting has_touchscreen to check_touch_mode
when a new device gets added leads to has_touchscreen becoming
false when during runtime e.g. an USB keyboard gets plugged in.
Fix this by setting has_touchscreen to TRUE when check_touch_mode
is TRUE and leaving it alone otherwise.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1506
Add a helper function to determine if a seat has a (physical)
touchscreen associated with it.
Currently src/backends/meta-backend.c has a private version of this
(check_has_physical_touchscreen) and further patches in this patch-set
need the same functionality. So add a generic helper for this to
avoid code duplication.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1506
_cogl_util_get_eye_planes_for_screen_poly() is quite a complicated beast. Ever
since Clutter became a compositor toolkit, and specially after we switched to
graphene_frustum_t on paint volumes, we can brutally simplify this function.
The new code assumes camera is at (0, 0, 0) at world coordinates (i.e. before
applying the projection). We also consider that the redraw clip are at stage
coordinates. That means that converting the clip rectangle to world rectangle
is simply a matter of projecting the corresponding vertices using the "view"
matrix. Furthermore, we only need to project the top-left, and bottom-right
vertices, since top-right and bottom-left can be derived from those two.
The frustum setup still uses triplets of vertices to setup the planes, except
now the first vertex is always the camera (hardcoded to 0, 0, 0), and the other
two vertices are the projected clip rectangle vertices.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
The redraw clip region may contain multiple clip rectangles. We currently
only use the extents of this region, but having multiple frusta for each
rectangle is a better alternative, and will allow us to remove the extra
projection we currently do.
Make the clip frustum an array, with multiple frusta.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
The clip planes / frustum are contextual to painting. In the past, for
the lack of a better place, it was added to ClutterStage, but now we
have an appropriate home for such data: ClutterPaintContext.
Move the frustum to the paint context.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
While refactoring the clipping planes / frustum code, it became more and
more evident that we do not need to update them while picking. Picking
nowadays goes through a completely different code path, that does not
rely on paint volume culling.
While it might be interesting to eventually also cull out based on paint
volumes, it certainly won't go through the painting code anymore.
Remove setting up the view when picking, and rename functions appropriatedly.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
Culling paint volumes don't give this level of detail anymore, and in
fact knowing whether it was partially or fully in was only being used
in a debug path. For the purposes of culling, it doesn't matter if a
given actor is partially or completely inside the frustum; either way,
it must be painted.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
Instead of 4 planes, use a graphene_frustum_t to store the clipping
planes.
The cautious reviewer might noticed that we are now setting up 6
planes: the 4 planes we were doing before, plus 2 extra planes in
the Z axis. These extra planes simulate an "infinite" Z far, and
an "on-camera" Z near.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
ClutterStage defines the 8 vertices of a frustum:
4 ----------------------------- 5
| \ / |
| \ / |
| 0 --------------------- 1 |
| | | |
| | | |
| 3 --------------------- 2 |
| / \ |
| / \ |
7 ----------------------------- 6
Then, it uses triplets of vertices to create each clipping plane.
It only sets up 4 planes (it doesn't clip based on depth), defined
by the following vertices:
* 0 - 4 - 5
* 1 - 5 - 6
* 2 - 6 - 7
* 0 - 7 - 4
The first 3 triplets are selected using the for-loop. However, the
last triplet is different, and is done out of the loop. It could
have been made simpler by using the "3 - 7 - 4" triplet.
Simplify the current code by using the suggested triplet, calculated
inside the for-loop.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
Instead of our own implementation that upscales, then downscales back,
use graphene_matrix_inverse() directly. This is possible after switching
to a z-near value that doesn't have problems with float precision.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
Picking is specially sensitive for float precision, and tests can
easily fail when something changes, even if ever so slightly. A
simple way to workaround this is by adjusting the projected points
using the same procedure described at 67cc60cbda.
Round projected points for picking to 256ths.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1489
A first step towards abandoning the CoglObject type system: convert
CoglFramebuffer, CoglOffscreen and CoglOnscreen into GObjects.
CoglFramebuffer is turned into an abstract GObject, while the two others
are currently final. The "winsys" and "platform" are still sprinkled
'void *' in the the non-abstract type instances however.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1496
The first argument is the framebuffer operated on, so in order to stay
consistest, rename 'src' to 'framebuffer'. The second is the
destination. The destination is commonly referred to as 'dst' elsewhere,
so rename 'dest' to 'dst'.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1496
The spec states:
```
A sub-surface becomes mapped, when a non-NULL wl_buffer is applied
and the parent surface is mapped. The order of which one happens
first is irrelevant. A sub-surface is hidden if the parent becomes hidden,
or if a NULL wl_buffer is applied. These rules apply recursively
through the tree of surfaces.
```
In the past we relied on Clutter actor behaviour to realize the recursive
part - which then broke in
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/664
when we changed the actor hierachy in regards to subsurfaces.
Explicitly encode the desired behaviour in `MetaWaylandSubsurface`, fixing
the issue and making it future proof.
Closes https://gitlab.gnome.org/GNOME/mutter/-/issues/1384