Both the fragend and vertend shader state was called
"CoglPipelineShaderState", which was rather annoying, especially when
the type needs to be exposed outside of the .c file as part of moving
out unit tests. Make the types unique. This also avoids confusing what
type one is looking at.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2555>
Because both code paths require the existence of `GL_TIMESTAMP[_EXT]`
which is only guaranteed if `ARB_timer_query` (included in GL core 3.3)
is implemented.
We know when that is true because `context->glGenQueries` and
`context->glQueryCounter` are non-NULL. So that is the minimum
requirement for any use of `GL_TIMESTAMP`, even when it is used in
`glGetInteger64v`.
Until now, Raspberry Pi (OpenGL 2.1) would find a working implementation
of `glGetInteger64v` but failed to check whether the driver understands
`GL_TIMESTAMP` (it doesn't).
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2107
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2253>
When Cogl gained support for importing pixmaps, I think there was a
misunderstanding that there is a difference in how it works in GLX and
EGL where GLX needs to rebind the pixmap in order to guarantee that
changes are reflected in the texture after it detects damage, whereas
with EGL it doesn’t. The GLX spec makes it pretty clear that it does
need to rebind whereas the EGL spec is a bit harder to follow. As a
fallout from Mesa MR 12869, it seems like the compositor really does
need to rebind the image to comply with the spec. Notably, in
OES_EGL_image_external there is:
"Binding (or re-binding if already bound) an external texture by calling
BindTexture after all modifications are complete guarantees that
sampling done in future draw calls will return values corresponding to
the values in the buffer at or after the time that BindTexture is
called."
So this commit changes the x11_damage_notify handler for EGL to lazily
queue a rebind like GLX does. The code that binds the image while
allocating the texture has been moved into a reusable helper function.
It seems like there is a bit of a layering violation when accessing the
GL driver internals from the EGL winsys code, but I noticed that the GLX
code also includes the driver GL headers and otherwise it seems pretty
tricky to do properly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2062>
These match their alpha counterparts, apart from not setting the
alpha bit. This allows our internal mashinery to more easily
distinguish whether we need a slow alpha-pass during rendering or not.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1810>
These match their alpha counterparts, apart from not setting the
alpha bit. This allows our internal mashinery to more easily
distinguish whether we need a slow alpha-pass during rendering or not.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1810>
Seems glGetString(GL_RENDERER) in the wild can return NULL, causing
issues with strstr(). Handle this more gracefully by using
g_return_val_if_fail(), that assumes a NULL renderer means software
rendering.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1931>
Add utilities that allow getting the current GPU timestamp and creating
a query which completes upon completion of all operations currently
submitted on a framebuffer. Combined, these two allow measuring how long
it took the GPU to finish rendering something to a framebuffer.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1762>
Previously we were using a mask of 0x1 for the lifetime of the stencil.
This was wrong for two reasons:
* The intersection algorithm needs to count up to a maximum 2, so a
mask of 1 would clamp to 1 instead. Then decrementing all pixels
resulted in all pixels being zero even though we want some to be 1.
So the stencil then blocked some color buffer pixels being rendered.
* The lifetime of the mask was too long. By leaving it non-zero at
the end of the function we could accidentally end up modifying the
stencil contents during our later color buffer paints.
This fixes faulty rendering of some actors seen in gnome-shell with
test case: `env COGL_DEBUG=stencilling`
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1873>
Previously we were using a mask of 0x1 for the lifetime of the stencil.
This was wrong for two reasons:
* The intersection algorithm needs to count up to a maximum 2, so a
mask of 1 would clamp to 1 instead. Then decrementing all pixels
resulted in all pixels being zero even though we want some to be 1.
So the stencil then blocked some color buffer pixels being rendered.
* The lifetime of the mask was too long. By leaving it non-zero at
the end of the function we could accidentally end up modifying the
stencil contents during our later color buffer paints.
This fixes missing rendering of some actors seen in gnome-shell with
test case: `env COGL_DEBUG=stencilling CLUTTER_PAINT=disable-clipped-redraws`
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1873>
It's currently only handled by a surface backend framebuffer (assuming
the right GLX extensions are available). While it's theoretically
possible to do the same with the offcreen by having multiple textures,
it's not supported, so leave the FBO variant with a single warning if we
end up there.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
The object was still pretending to be CoglFramebuffer itself, by using
naming and calling conventions making it seem like that. Fix that by
passing around the driver instead of the framebuffer.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
The framebuffer driver was lazilly initialized on demand in some cases
(onscreen), and up front other (offscreen). Replace this with a more
predictable up front initialization, done at framebuffer allocation.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
The CoglGLFramebuffer (not CoglGlFramebuffer) is a private struct for
keeping track of the framebuffer object. To avoid confusing with
CoglGlFramebuffer, rename it CoglGlFbo.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
This way we can have separate types per modes of operation (e.g. if it's
backed by an EGLSurface or single texture), instead of being dependent
on a certain type (onscreen vs offscreen).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
A first step towards abandoning the CoglObject type system: convert
CoglFramebuffer, CoglOffscreen and CoglOnscreen into GObjects.
CoglFramebuffer is turned into an abstract GObject, while the two others
are currently final. The "winsys" and "platform" are still sprinkled
'void *' in the the non-abstract type instances however.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1496
CoglMatrix already is a typedef to graphene_matrix_t. This commit
simply drops the CoglMatrix type, and align parameters. There is
no functional change here, it's simply a find-and-replace commit.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
Ideally, we would use Graphene to do that, however as of now Graphene
lacks these APIs so we still need these helpers. Since we're preparing
to get rid of CoglMatrix, move them to a separate file, and rename them
with the 'cogl_graphene' prefix.
Since I'm already touching the world with this change, I'm also renaming
cogl_matrix_transform_point() to cogl_graphene_matrix_project_point(),
as per XXX comment, to make it consistent with the transform/projection
semantics in place.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
Rename cogl_matrix_get_array() to cogl_matrix_to_float(), and
make it copy the floats to an out argument instead of returning
a pointer to the casted CoglMatrix struct.
The naming change is specifically made to match graphene's,
and ease the transition.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439