Support changing the mouse and trackball acceleration profile. This
makes it possible to for example disable pointer acceleration by
choosing the 'flat' profile.
This adds an optional dependency on gudev. Gudev is used by the X11
backend to detect whether a device is a mouse or not. Without gudev
support, the accel profile settings has have effect for mouse devices.
Trackball still uses the "strstr" approach, since udev doesn't support
tagging devices as trackball devices yet.
https://bugzilla.gnome.org/show_bug.cgi?id=769179
Add support for setting edge-scrolling separately from two-finger
scrolling. We now have 2 separate boolean settings for those, with the
Mouse panel in gnome-control-center allowing to set only one of those at
a time, but nothing precludes both being set in the configuration.
We need to handle:
- two-finger-scrolling-enabled and edge-scrolling-enabled settings both
being set.
- those 2 settings being change out-of-order
- two-finger-scrolling being set on a device that doesn't support it
- edge-scrolling-enabled on a device that doesn't support it
And the combinations of one touchpad supporting just one of edge
scrolling and two-finger scrolling and another vice-versa.
https://bugzilla.gnome.org/show_bug.cgi?id=768245
Instead of continuing eventually crashing with a segmentation fault due
to a missing renderer, make MetaBackend an GInitable, and gracefully
handle the failure to fully create the backend with an EXIT_FAILURE.
https://bugzilla.gnome.org/show_bug.cgi?id=769036
We only use a handful of the attributes set, so lets stop pretending
that things are initialized for a reason. Eventually we should stop
using XWindowAttributes in the generic MetaWindow creation path.
https://bugzilla.gnome.org/show_bug.cgi?id=769070
If the compiler cannot figure out that the condition for setting
the dev variable is the same as the condition for accessing it,
it will complain about potential uninitialized use.
We must lookup the mode switch serial for the group where the button
belongs to. Also, avoid the changes if the client requests setting
the feedback for buttons owned by the compositor.
We assumed that each group could only have 1 strip and/or ring, because
accounting is performed per group, so we could not assume the real
index for anything above 1. Get rid of this restriction, now that
MetaWaylandTabletPad does its own accounting of rings/strips, alongside
groups.
This is best for 2 reasons:
- It's feels cleaner doing first creation of rings/strips and then
the group assignment. The other option is making groups iterate
other all rings/strips and selectively skip those not meant for
it, which sounds somewhat redundant.
- Some minimal accounting of rings/strips without group restrictions
is needed for meta_wayland_tablet_pad_get_label().
The rings/strips memory is now owned by MetaWaylandTabletPad instead
of groups, which is sort of meaningless since all are meant to go
at the same time.
There may be external/compositor-specific reasons to trigger the
pad OSD. Expose this call so the pad OSD can be triggered looking
up the right settings, monitor, etc...
This API will be used from the gnome-shell pad OSD implementation, in order
to show the actions that currently apply to every button/ring/strip in the
tablet.
It does nothing at the moment, but can be hooked into MetaWaylandTabletPad
now. For X11, we need to trigger these for the pad events we receive from
the passive pad button grabs.
This function will be useful for the wayland implementation, because buttons
are mapped at the time of sending those through the wire.
As x11/wayland implementations differ here, this function will be useful for
the wayland implementation, as the action is handled lat
Some settings make no sense on external tablets, and others make
no sense in display/system-integrated tablets. Perform those checks
so we don't end up with possibly broken configuration.
Given that information defines largely how such devices are to be
configured, it makes sense to have that information at hand. A getter
has been also added for the places where it could be useful, although
it will require HAVE_LIBWACOM checks in callers too.
All pads will share the same focus than the keyboard, so this means that:
- The focus changes in-sync for keyboard and all pad devices, and
- Newly plugged pads will be immediately focused on that same surface
This object represents the collection of buttons, strips and rings
in a tablet pad. All the objects created (pad, strips and rings)
share a common focus surface and have the same lifetime.
This is now separated from the generic cursor one. This means that wl_surfaces
can't be shared across wl_pointer and wp_tablet_tool. This is a change in
tablet protocol v2.
This is a simple subclass of MetaWaylandSurfaceRoleCursor, mostly
so we can distinguish by GType, the methods in the parent class
still apply and are useful.
When launching a GNOME session from a text-mode VT, the logind session
type is unlikely to be set to either "wayland" or "x11". We search for a
supported session type first with logind and then with
$XDG_SESSION_TYPE. As a fallback, we also test $DISPLAY in case of a
"tty" logind session to support starting through xinit. Ideally, such
setups should set XDG_SESSION_TYPE=x11.
If no supported session type is found, we throw an error.
https://bugzilla.gnome.org/show_bug.cgi?id=759388
They are already effectively interchangeable so this should reduce
pointless casts.
Just like in GDK though, we need to keep the old definition for
instrospection to be able to include the struct's fields.
By creating a pending gbm/EGL surface pair, only setting it on
swap-buffers, we would draw onto a buffer on the old surface, then swap
the buffer from the new surface, causing the first frame after a
hot-plug always having no content.
This was in the past not very noticable since some non-deterministic but
frequent side effect in gnome-shell caused hot-plugging to always render
two new frames, but after "Introduce regional stage rendering", this
side effect did not occur as often, thus making it more visible.
This commit updates the current gbm/EGL surface pair before painting a
frame, so that when the frame is painted, the surface with the correct
size is used and the buffer from correct surface is swapped.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Being a listener to a signal, it is inconvenient to enforce order of
execution between different signal listeners. If there are things in
the backend that should be updated before various other signal
handlers, make sure so is done by emitting the signal after having
explicitly notified the backend.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
CoglFrameInfo is a frame info container associated with a single
onscreen framebuffer. The clutter stage will eventually support drawing
a stage frame with multiple onscreen framebuffers, thus needs its own
frame info container.
This patch introduces a new stage signal 'presented' and a accompaning
ClutterFrameInfo and adapts the stage windows and past onscreen frame
callbacks users to use the signal and new info container.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Call a CoglContext "cogl_context", CoglDisplay "cogl_display" and
CoglRenderer "cogl_renderer" so that they won't be confused with
ClutterContext, MetaDisplay and MetaRenderer etc.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Make the cogl vfunc functions have names that are globally
discoverable. Calling the same function in every backend the same name
causes code navigation tools to not function properly. Rename the
affected functions to closer correspond to the style mutter uses.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Add support for drawing a stage using multiple framebuffers each making
up one part of the stage. This works by the stage backend
(ClutterStageWindow) providing a list of views which will be for
splitting up the stage in different regions.
A view layout, for now, is a set of rectangles. The stage window (i.e.
stage "backend" will use this information when drawing a frame, using
one framebuffer for each view. The scene graph is adapted to explictly
take a view when painting the stage. It will use this view, its
assigned framebuffer and layout to offset and clip the drawing
accordingly.
This effectively removes any notion of "stage framebuffer", since each
stage now may consist of multiple framebuffers. Therefore, API
involving this has been deprecated and made no-ops; namely
clutter_stage_ensure_context(). Callers are now assumed to either
always use a framebuffer reference explicitly, or push/pop the
framebuffer of a given view where the code has not yet changed to use
the explicit-buffer-using cogl API.
Currently only the nested X11 backend supports this mode fully, and the
per view framebuffers are all offscreen. Upon frame completion, it'll
blit each view's framebuffer onto the onscreen framebuffer before
swapping.
Other backends (X11 CM and native/KMS) are adapted to manage a
full-stage view. The X11 CM backend will continue to use this method,
while the native/KMS backend will be adopted to use multiple view
drawing.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
We were compensating for a clone paint viewport offset even when we
were not in clone paniting mode. This would break painting if we offset
the viewport for some other reason for example as in the future stage
view painting.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Instead of assuming there is a single onscreen framebuffer, use the
helper functions for setting the frame callback and getting the frame
counter.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
In preperation for having allowing drawing onto multiple onscreen
framebuffers, move the onscreen framebuffer handling to the
corresponding winsys dependent backends.
Currently the onscreen framebuffer is still accessed, but, as can seen
by the usage of "legacy" in the accessor name, it should be considered
the legacy method. Eventually only the X11 Compositing Manager backend
will make use of the legacy single onscreen framebuffer API.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Split the stage window implementations into three separate objects: one
for X11 as a compositing manager, one for X11 running as a nested
Wayland compositor, and one for running with the native backend.
The new stage window implementations are only thin shells; this is in
preparation for making the stage windows behave more differently.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
The stage resizing was placed in the generic backend, which was only
run on certain configurations (when running nested or using the native
backend). This commits makes the resizing more explicit thus more
obvious.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
This commit completes the move of monitor logic to the monitor
mangager. The renderer now only deals with framebuffers, asking the
monitor manager to do the crtc flip tracking.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Let MetaMonitorManagerKms manage KMS modes. This lets us pass less
state to MetaRendererNative. Instead let MetaMonitorManager tell the
monitor manager when it should set the mode and with what framebuffer.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Absorb the CoglRendererKMS struct into MetaRendererNative. The gbm
device initialization is moved earlier so that the renderer fails to
initialize if the gbm device creation failed.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Move the KMS interaction from cogl into mutter, where most of the other
KMS interaction already takes place. This also removes dead code which
were only excercised when non-mutter callers used the cogl KMS backend.
The cogl KMS API was updated to pass via MetaRendererNative instead of
via the different cogl objects.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Instead of passing around the KMS file descriptor via clutter to cogl,
just make our own clutter backend create the cogl renderer and set the
KSM fd.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
MetaRenderer is meant to be the object responsible for rendering the
scene graph. It will contain the logic related to the cogl winsys
backend, the clutter backend, and the clutter stage window.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Make it possible to force mutter to start as a X11 compositing/window
manager. This is needed when intending to start mutter as an X11 window
manager while running inside a Wayland session, for example when
intending to debug it in Xephyr.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Use the correct pointer types for cogl objects. This avoids warnings
when including the cogl headers doesn't result in all the cogl types
being typedefs to void.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Introduce two new clutter backends: MetaClutterBackendX11 and
MetaClutterBackendNative. They are so far only wrap ClutterBackendX11
and ClutterBackendEglNative respectively, but the aim is to move things
from the original clutter backends when needed.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Using clutter API to transform coordinates is only accurate right
after a clutter layout pass but this function is used e.g. to deliver
pointer motion events which can happen at any time. This isn't a
problem for wayland clients since they don't control their position,
but X clients do and we'd be sending outdated coordinates if a client
is moving a window in response to motion events.
https://bugzilla.gnome.org/show_bug.cgi?id=768039
This layer isn't really being used and in fact, it causes
meta_stack_get_default_focus_window() to return a fullscreen window
even if the naturally topmost window in the stack isn't a fullscreen
one.
Note that commit a3bf9b01aa changed how
we choose the default focus window from the MRU to the topmost in the
stack.
https://bugzilla.gnome.org/show_bug.cgi?id=768221
When restarting (X compositor only, obviously), we want to keep
the same window focused. There is code that tries to do this by
calling XGetInputFocus() but the previously focused window will
almost certainly not still be focused by the time we get to the
point where we call XGetInputFocus(), and in fact, probably was
no longer correct after the previous window manager exited, so
the net result is that we tend to focus no window on restart.
A better approach is to leave the _NET_ACTIVE_WINDOW property
set on the root window during exit, and if we find it set when
starting, use that to initialize focus.
https://bugzilla.gnome.org/show_bug.cgi?id=766243
Emit a signal so that interested parties can recreate their FBOs and
queue a full scene graph redraw to ensure we don't end up showing
graphical artifacts.
This relies on the GL driver supporting the
NV_robustness_video_memory_purge extension and cogl creating a
suitable GL context. For now we only make use of it with the X backend
since the only driver with which this is useful is NVIDIA.
https://bugzilla.gnome.org/show_bug.cgi?id=739178
The call fetching the targets mistakenly used the timestamp meant
to back up the TIMESTAMP atom (hence, it's the timestamp at which
the selection is *owned* by the compositor, on behalf of a wayland
client).
This timestamp is actually only updated when the compositor gets
to own the selection, so it's a randomly late timestamp to retrieve
the TARGETS atom content, which certain clients might end up
ignoring.
https://bugzilla.gnome.org/show_bug.cgi?id=768007
Frames are painted on the frame window according to the GTK+ theme.
Depending on the target's visual, this means either drawing over
a black destination or a fully transparent one. So in cases where
the theme doesn't paint decorations with full opacity, decorations
for windows with an rgba visual look different from those with a
non-rgba visual. Using an rgba visual for all frames independent
from the client's visual can potentially break clients, so our
only option for a consistent appearance is to explicitly initialize
the frame background to black before painting the theme's decoration
on top.
https://bugzilla.gnome.org/show_bug.cgi?id=745060
The GTK+ theme may draw parts of the decorations outside the actual
frame. Since commit f9db65f47f we make sure that the frame is big
enough to account for any overdrawing, however as we still clip the
cairo context to the actual frame before drawing the decorations,
those parts aren't actually painted.
This issue is not very obvious for most frames, as they use a non-rgba
visual where the unpainted parts appear black, which gives the expected
result with many themes once the shape mask is applied (as the mask does
include any overdrawn parts). For frames using an rgba visual however,
unpainted parts are transparent, so any overdrawn decorations are clearly
missing.
Fix this by only clipping out the client area when drawing decorations.
https://bugzilla.gnome.org/show_bug.cgi?id=745060
We ignore all damage while a surface is frozen and queue a full
update instead once it's thawed. While not super efficient, this
isn't overly bad for the intended case of catching up with any
updates that happened during a compositor effect. However when
extended frame sync is used, surfaces are also frozen while the
client is drawing a frame, in which case the current behavior is
pretty damaging (pun intended), as we end up redrawing the entire
window each frame. To address this, keep track of the actual damage
we ignore and apply it when the surface is thawed.
https://bugzilla.gnome.org/show_bug.cgi?id=767798
The result flag needs to be marked as moved even for pending moves,
otherwise the window's unconstrained_rect doesn't get updated in
meta_window_move_resize_internal() and the anchor grab is wrong.
https://bugzilla.gnome.org/show_bug.cgi?id=764180
The X11 backend uses EWMH's _NET_WM_PID to get the PID of an offending
client and kill its PID to force the client to terminate.
The Wayland backend is using a Wayland protocol error, but if the client
is hung, that will not be sufficient to kill the client.
Retrieve the client PID under Wayland using the Wayland client API
wl_client_get_credentials() and kill() the client the same way the X11
backend does.
https://bugzilla.gnome.org/show_bug.cgi?id=767464
xdg-shell allows desktop environments to extend the list of states
within a given range.
Use this possibility to add a new state for tiled so that gtk+ can
benefit from this.
https://bugzilla.gnome.org/show_bug.cgi?id=766860
gjs throws exceptions on non UTF-8 strings which, in some cases, crash
gnome-shell. ICCCM string properties are defined to be Latin-1 encoded
so we can try to convert them to avoid it.
Note that _NET_WM_NAME is defined to be UTF-8 and we already validate
it in utf8_string_from_results() .
https://bugzilla.gnome.org/show_bug.cgi?id=752788
printf string precision counts bytes so we may end up creating invalid
UTF-8 strings here. Instead, use glib's unicode aware methods to clip
the title.
https://bugzilla.gnome.org/show_bug.cgi?id=765535
This makes us behave the same both on bind and when an output
changes. In particular, we were not sending scale and done events on
output changes. We were also unconditionally sending mode events on
output changes even though these should only be sent if there is an
actual mode change.
https://bugzilla.gnome.org/show_bug.cgi?id=766528
Stacking hidden X windows below the guard window is a necessity to
ensure input events aren't delivered to them. Wayland windows don't
need this because the decision to send them input events is done by us
looking at the clutter scene graph.
But, since we don't stack hidden wayland windows along with their X
siblings we lose their relative stack positions while hidden. As
there's no ill side effect to re-stacking hidden wayland windows below
the X guard window we can fix this by just doing it regardless of
window type.
https://bugzilla.gnome.org/show_bug.cgi?id=764844
If we try to send notify event (either from surface_state_changed()
or from meta_window_wayland_move_resize_internal()),
we will crash, because we don't have a sufrace anymore.
There's no reason why to resize the window that is being
unmanaged anyway.
https://bugzilla.gnome.org/show_bug.cgi?id=751847
meta_parse_accelerator() considers 0 length accelerator strings as
valid, meaning that the keybinding should be disabled. Unfortunately,
it doesn't initialize the MetaKeyCombo so if the caller doesn't
initialize it either, we end up using random values and possibly
grabbing random keys.
https://bugzilla.gnome.org/show_bug.cgi?id=766270
All the upper layers are prepared for multiple onscreen cursors, but
this. All MetaCursorRenderers created would poke the same internal
MetaOverlay in the stage.
This will lead to multiple cursor renderers resorting to the "SW"
rendering paths (as it can be seen with tablet support) to reuse the
same overlay, thus leading to flickering when a different
MetaCursorRenderer takes over the overlay.
Fix this by allowing per-cursor-renderer overlays, their lifetime
is attached to the cursor renderer, so is expected to be tear down
if the relevant device (eg. tablet) disappears.
meta_wayland_tablet_manager_update()/handle_event() are called before
the MetaWaylandSeat counterparts. If the event comes from a device
managed by MetaWaylandTabletManager, the event will be exclusively handled
by it.
Each tool has its own MetaCursorRenderer instance, which is created/destroyed
upon proximity, and possibly updated through focus and set_cursor calls in
between.
This struct keeps the server side information for the wl_tablet_manager
global resource. It keeps the clients requesting this interface, and
does keep track of the plugged tablet devices, so
wl_tablet_manager.device_added is emitted on the expected clients.
Move into a standalone meta-wayland-surface-role-cursor.[ch], and
make generic enough to work for pointe and additional (eg. tablet)
cursors.
Most notably, the sprite is now kept completely internal to the
cursor role, and updates are routed through the given
MetaCursorRenderer (which may be the default one for the pointer,
or something else).
The way cursor updates after cursor surface destruction has also
been reworked, the pointer will just keep track of the last cursor
surface, so older surfaces being destroyed don't trigger pointer
rechecks/updates.
There's places where it would be convenient to add listeners to this,
so add the signal. The signal is only emitted once during destruction,
it is convenient for the places where we want notifications at a time
the object is still alive, as opposed to weak refs which notify after
the fact.
Sadly, GLib's autoptr cleanup macros cannot be detected by the C
pre-processor, because they generate a function. This means that we are
forced to bump up the dependency on GLib 2.49, in order to build against
a newer version of gdbus-codegen.
Starting from GLib 2.49, the gdbus-codegen tool automatically generates
the auto cleanup symbols for the GDBus proxy and skeleton interfaces.
Since we don't depend on a specific version of GLib we need to
conditionally generate the auto cleanup symbols in case an older version
of gdbus-codegen is used when building Mutter.
This commit unbreaks the build under GNOME Continuous, which has been
failing with:
usr/include/glib-2.0/glib/gmacros.h:415:43: error: redefinition of 'glib_autoptr_cleanup_Login1Session'
#define _GLIB_AUTOPTR_FUNC_NAME(TypeName) glib_autoptr_cleanup_##TypeName
^
[...]
/usr/include/glib-2.0/glib/gmacros.h:415:43: note: previous definition of 'glib_autoptr_cleanup_Login1Session' was here
./meta-dbus-login1.h:82:1: note: in expansion of macro 'G_DEFINE_AUTOPTR_CLEANUP_FUNC'
G_DEFINE_AUTOPTR_CLEANUP_FUNC (Login1Session, g_object_unref)
^
Separate "xdg_surface", "xdg_popup" and "xdg_shell" related functions
into three sections. Prior to this, the "xdg_shell" part was a bit all
over the place.
https://bugzilla.gnome.org/show_bug.cgi?id=763431
Dismiss the popup when the parent is destroyed, and do this in the
destructor of the parent object. This makes the parent destory listener
unnecessary, since we already handle the parent child unlinking
explicitly in the object destructor.
https://bugzilla.gnome.org/show_bug.cgi?id=763431
Instead of relying on destroy signals attached to the corresponding
role object, let the roles explicitly dismiss the popup when it should
be dismissed.
https://bugzilla.gnome.org/show_bug.cgi?id=763431
Add a bridge between the MetaWaylandPopup object and the corresponding
popup surface role. This bridge replaces communicating dismissed and
unmapped popup events.
https://bugzilla.gnome.org/show_bug.cgi?id=763431
The only time the surface pointer (priv->surface) may be NULL is when
the surface is unmanaged but still painting, possibly due to a unmap
animation or the like, so only guard handle this situation in the entry
points that may come from the stage painting.
https://bugzilla.gnome.org/show_bug.cgi?id=763431
Before this commit, on Wayland, the buffer rect would have the size of
the attached Wayland buffer, no matter the scale. The scale would then
be applied ad-hoc by callers when a sane rectangle was needed. This
commit changes buffer_rect to rather represent the surface rect (i.e.
what is drawn on the stage, including client side shadow). The users of
buffer_rect will no longer need to scale the buffer_rect themself to
get a usable rectangle.
https://bugzilla.gnome.org/show_bug.cgi?id=763431
A large part of meta_wayland_surface_apply_window_state() was only
relevant for xdg_surface. Make this more obvious by splitting it up,
moving the relevant parts to the relevant roles.
https://bugzilla.gnome.org/show_bug.cgi?id=763431
Move xdg_shell related functionality to a new meta-wayland-xdg-shell.c
and wl_shell related functionality to a new meta-wayland-wl-shell.c,
and adapt role object tree.
Common functionality related to the surface being drawn as a
MetaSurfaceActor was moved to a MetaWaylandSurfaceRoleActorSurface role.
The subsurface role GObject is made to inherit the actor surface GObject.
Shell surface hooks (configure, ping, close, popup done) were added to
a MetaWaylandSurfaceRoleShellSurface GObject which inherits the
surface actor role GObject.
The shell surface roles (xdg_surface, xdg_popup, wl_shell_surface) are
made to inherit the shell surface GObject and implement the relevant
API.
https://bugzilla.gnome.org/show_bug.cgi?id=757623https://bugzilla.gnome.org/show_bug.cgi?id=763431
Leave these checks up to the callers, the only uses of this function
(indirect, through meta_wayland_seat_get_grab_info) are
[wl_shell|xdg]_surface.move/resize/show_window_menu.
In move/resize it makes sense to check for a button being pressed, because
we must expect a button release event. However for xdg_surface.show_window_menu
we 1) don't strictly need further events and 2) we must account for press+release
event pairs being processed at once in the compositor before the client sees
the former.
That is eg. the case of touchpad 2nd/3rd button tap emulation, multifinger
taps will emit the event pair at once, so when the client manages to request
xdg_surface.show_window_menu, it'll be too late in the compositor side, so the
request is ignored.
https://bugzilla.gnome.org/show_bug.cgi?id=764519
A wl_data_device object may be created while it is being focused,
either because the client destroyed it or because the client was
destroyed. Handle this by early out in focus handler vfuncs the case
where it was destroyed, so that we don't corrupt memory and/or cause
segmentation fault.
https://bugzilla.gnome.org/show_bug.cgi?id=765062
Wrap the existing laptop_display_is_on() method in a public function
that gnome-shell can use to query whether a builtin output is present
and enabled.
https://bugzilla.gnome.org/show_bug.cgi?id=765267
If we get a key event but still have pending modifier state changes we
need to send a modifiers event right away so that the key event can be
interpreted by clients correctly modified.
This case could happen when mutter/gnome-shell itself consumes the
modifier key press event such as with the overview key which by
default is triggered on super press.
https://bugzilla.gnome.org/show_bug.cgi?id=748526
The wayland protocol has enough space to send both virtual and real
modifiers on modifiers events which saves clients the work of
resolving virtual modifiers themselves.
https://bugzilla.gnome.org/show_bug.cgi?id=748526
While CoglError is a define to GError, it doesn't follow the convention
of ignoring errors when NULL is passed, but rather treats the error as
fatal :-(
That's clearly unwanted for a compositor, so make sure to always pass
an error parameter where a runtime error is possible (i.e. any CoglError
that is not a malformed blend string).
https://bugzilla.gnome.org/show_bug.cgi?id=765058
The previous configuration might not apply because the number of
enabled outputs when trying to apply it might have changed. This isn't
a bug so we shouldn't assert. Instead, we can handle it by falling
back as we would if we didn't have a previous configuration to start
with.
https://bugzilla.gnome.org/show_bug.cgi?id=764286
Since g_array_append_val isn't smart enough to do a proper upcast, we
have to do it manually, lest we get junk.
This fixes various RAISE_ABOVE: window not in stack: 0x8100c8003
warnings that appear on 32-bit systems.
Just like we do for _NET_WM_MOVERESIZE messages on X11, consider
wayland client move/resizes as "frame actions" so that the same
constraints are applied to them, in particular the titlebar visibility
constraint.
https://bugzilla.gnome.org/show_bug.cgi?id=748819
In order for the native cursor renderer to be able to create a hw
cursor in response to wl_pointer.set_cursor(), keep a private use-count
and reference to the active buffer, stopping it from being released
until it is consumed, replaced, or the surface is destroyed.
https://bugzilla.gnome.org/show_bug.cgi?id=762828
Whether a surface needs to keep the committed wl_buffer un-released
depends on what role the surface gets assigned to. For example a cursor
role may need an unreleased shm buffer in order to create a hw cursor from
it.
In order to support this, keep a separate reference and use count to
the buffer on behalf of the in the future assigned role, and release
those references after the surface was assigned a role. A role that
needs its own references and use counts, must in its assign function
make sure to add those.
https://bugzilla.gnome.org/show_bug.cgi?id=762828
Each wl_surface.commit with a newly attached buffer should result in
one wl_buffer.release for the attached buffer. For example attaching
the same buffer to two different surfaces must always result in two
wl_buffer.release events being emitted by the server. The client is
responsible for counting the wl_buffer.release events and be sure to
have received as many release events as it has attached and committed
the buffer, before reusing it.
https://bugzilla.gnome.org/show_bug.cgi?id=762828