This adds COGL_DEBUG=disable-fixed to disable the fixed function
pipeline backend. This is needed to test the GLSL shader generation
because otherwise the fixed function backend would always override it.
We don't want to use gl_PointCoord to implement point sprites on big
GL because in that case we already use glTexEnv(GL_COORD_REPLACE) to
replace the texture coords with the point sprite coords. Although GL
also supports the gl_PointCoord variable, it requires GLSL 1.2 which
would mean we would have to declare the GLSL version and check for
it. We continue to use gl_PointCoord for GLES2 because it has no
glTexEnv function.
The GLES2 wrapper no longer needs to generate any fragment shader
state because the GLSL pipeline backend will always give the wrapper a
custom fragment shader. This simplifies a lot of the state comparison
done by the wrapper. The fog generation is also removed even though
it's actually part of the vertex shader because only the fixed
function pipeline backend actually calls the fog functions so it would
be disabled when using any of the other backends anyway. We can fix
this when the two shader backends also start generating vertex
shaders.
GLES2 has no glAlphaFunc function so we need to simulate the behaviour
in the fragment shader. The alpha test function is simulated with an
if-statement and a discard statement. The reference value is stored as
a uniform.
Previously the flag to mark the differences for the alpha test
function and reference value were conflated into one. However this is
awkward when generating shader code to simulate the alpha testing for
GLES 2 because in that case changing the function would need a
different program but changing the reference value just requires
updating a uniform. This patch makes the function and reference have
their own state flags.
The GLSL shader generation supports layer combine constants so there's
no need to disable it for GLES2. It looks like there was also code for
it in the GLES2 wrapper so I'm not sure why it was disabled in the
first place.
The GLSL pipeline backend can now generate code to represent the
pipeline state in a similar way to the ARBfp backend. Most of the code
for this is taken from the GLES 2 wrapper.
_cogl_shader_compile_real had some code to create a set of strings to
combine the boilerplate code with a shader before calling
glShaderSource. This has now been moved to its own internal function
so that it could be used from the GLSL pipeline backend as well.
need_texture_combine_separate is moved to cogl-pipeline.c and renamed
to _cogl_pipeline_need_texture_combine_separate. The function is
needed by both the ARBfp and GLSL codegen backends so it makes sense to
share it.
The code for finding the arbfp authority for a pipeline should be the
same as finding the GLSL authority. So that the code can be shared the
function has been moved to cogl-pipeline.c and renamed to
_cogl_pipeline_find_codegen_authority.
Only one of the material backends can be generating code at the same
time so it seems to make sense to share the same source buffer between
arbfp and glsl. The new name is fragment_source_buffer in case we
later want to create a new buffer for the vertex shader. That probably
couldn't share the same buffer because it will likely need to be
generated at the same time.
Use the internal child list for the default map/unmap vfuncs. This removes
the requirement for non-container composite actors to implement their own
map/unmap functions.
Unrealizing an actor is a recursive process that needs to traverse the
children of an actor to ensure they are also unrealized. This maintains
the invariant that if any given actor is marked as unrealized then you
know that all its children have also been unrealized.
The previous implementation would use the container interface's
foreach_with_internals vfunc to explicitly traverse the children of
container actors but this didn't consider composite actors that aren't
containers.
Since clutter-actor now maintains an explicit list of children we can
also handle composite actors that aren't containers using
_clutter_actor_traverse.
This makes it possible to choose the traversal order; either depth first
or breadth first and when visiting actors in a depth first order there
is now a callback called before children are traversed and one called
after. Some tasks such as unrealizing actors need to explicitly control
the traversal order to maintain the invariable that all children of an
actor are unrealized before we actually mark the parent as unrealized.
The callbacks are now passed the relative depth in the graph of the
actor being visited and instead of only being able to return a boolean
to bail out of further traversal it can now do one of: continue,
skip_children or break. To implement something like unrealize it's
desirable to skip children that you find have already been unrealized.
ClutterX11TexturePixmap watches for configure events to tell when it
needs to name a new pixmap for the window. However, ConfigureEvents
occur on moves in addition to resizes, and doing round trips and
naming new pixmaps every time a window is moved is a real performance
killer.
Add clutter_x11_texture_pixmap_sync_window_internal() that takes the
size/position of the window as arguments rather than always calling
XGetWindowAttributes. This allows us to bypass all work other than
notifying the window-x/window-y properties when we get a ConfigurEvent
for a move.
The last received width/height is saved to allow us to also omit
XGetWindowAttributes on MapNotify events.
The public clutter_x11_texture_pixmap_sync_window() becomes a bit less
efficient since we no longer combine the roundtrips for
XGetWindowAttributes() and XCompositeNameWindowPixmap(), but it appears
to have no callers in current publicly available code.
Several FIXME's are added for areas where there are still weird things
going on in the code or improvements could be made.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2356
* cogl_texture_get_data() is converted to use
_cogl_texture_foreach_sub_texture_in_region() to iterate
through the underlying textures.
* When we need to read only a portion of the underlying
texture, we set up a FBO and use _cogl_read_pixels()
to read the portion we need. This is enormously more
efficient for reading a small portion of a large atlas
texture.
* The CoglAtlasTexture, CoglSubTexture, and CoglTexture2dSliced
implementation of get_texture() are removed.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2414
Previously in cogl_read_pixels we assume the format of the framebuffer
is always premultiplied because that is the most likely format with
the default Cogl blend mode. However when the framebuffer is bound to
a texture we should be able to make a better guess at the format
because we know the texture keeps track of the premult status. This
patch adds an internal format member to CoglFramebuffer. For onscreen
framebuffers we still assume it is RGBA_8888_PRE but for offscreen to
textures we copy the texture format. cogl_read_pixels uses this to
determine whether the data returned by glReadPixels will be
premultiplied.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2414
When converting the data in cogl_read_pixels it was using bmp_format
instead of the format passed in to the function. bmp_format is the
same as the passed in format except that it always has the premult bit
set. Therefore the conversion would not handle premultiply correctly.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2414
This is the same as _cogl_read_pixels except that it takes a rowstride
parameter for the destination buffer. Under OpenGL setting the
rowstride this will end up calling GL_ROW_LENGTH so that the buffer
region can be directly written to. Under GLES GL_ROW_LENGTH is not
supported so it will use an intermediate buffer as it does if the
format is not GL_RGBA.
cogl_read_pixels now just calls the full version of the function with
the rowstride set to width*bpp.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2414
This function is the same as cogl_offscreen_new_to_texture but it
takes a level parameter and a set of flags so that FBOs can be used to
render to higher mipmap levels and to disable the depth and stencil
buffers. cogl_offscreen_new_to_texture now just calls the new function
with the level set to zero. This function could be useful in a few
places in Cogl where we want to use FBOs as an implementation detail
such as when copying between textures.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2414
In clutter_stage_real_queue_redraw we were checking to see if the
backend will ignore any subsequent redraw_clip so we can avoid the cost
of projecting the paint-volume of an actor into stage coordinates, but
we weren't ensuring that a full redraw would be queued instead we just
bailed out immediately. This makes sure to call
_clutter_stage_window_add_redraw_clip (stage_window, NULL) in this case
to make sure the backend will do an un-clipped redraw.
This tweaks the semantics of the has_redraw_clips vfunc so we can assume
that at the start of a new frame there is an implied, initial,
redraw_clip that clips everything (i.e. nothing would be redrawn) so in
that case we would expect the has_redraw_clips vfunc to return True at
the start of a new frame for backends that support clipping.
Previously there was an ambiguity when this function returned False
since it could either mean a full screen redraw had been queued or it
could mean that the clip state wasn't yet initialized for that frame.
This would result in _clutter_stage_has_full_redraw_queued() returning
True at the start of a new frame even before any actors have been
updated, which in turn meant we would incorrectly ignore queue_redraw
requests for actors, believing them to be redundant.
Previously we were leaving it up to the default implementation of
get_paint_volume in ClutterGroup to handle the stage by determining the
bounding box of all contained children. This isn't the true bounding box
of the stage though since the stage is responsible for clearing the
entire framebuffer at the start of the frame. This adds a
get_paint_volume implementation for ClutterStage which simply returns
False which means Clutter has to assume it covers everything.
When we handle Expose events we try and queue a clipped redraw of the
stage, but for some reason we were also redundantly calling
clutter_actor_queue_redraw for the stage which would negate the request
to queue a clipped redraw.
When uploading a 3D texture with an awkward rowstride, on GLES Cogl
will copy the images to an intermediate buffer to pass to GL. However
it was using the wrong height when copying the data so it would end up
overflowing the buffer and crashing.
Since we're using CoglPipelineWrapModeInternal in the internal API
anyway, and the compiler complains loudly when comparing two enumeration
types without casting, the PipelineLayer struct should store the
wrap modes using the internal enumeration.
The last_paint_box for an actor represents its "normal" position - we
shouldn't update it or use it to cull drawing if we are painting
a clone of the actor. Tracking whether we are painting a clone is
done by adding _clutter_actor_push/pop_clone_paint() and a global
"clone paint level".
http://bugzilla.clutter-project.org/show_bug.cgi?id=2396
When using clip planes and we we have to project some vertices into
screen coordinates we used to transform those by the modelview and then
the projection matrix separately. Now we combine the modelview and
projection matrix and then use that to transform the vertices in one
step instead.
When logging quads in the journal it used to be possible to specify a
mask of fallback layers (layers where a default white texture should be
used in-place of the corresponding texture in the current source
pipeline). Since we now handle fallbacks for cogl_rectangle* primitives
when validating the pipeline up-front before logging in the journal we
no longer need the ability for the journal to apply fallbacks too.
When transforming a paint-volume or transforming allocation vertices we
are transforming more than one point at a time so we can batch those
together with cogl_matrix_transform_points instead of
cogl_matrix_transform_point. Also in both of these cases we don't need
to do a projective transform so using cogl_matrix_transform_points also
lets us reduce the per-vertex computation.
This add two new function that allows us to transform or project an
array of points instead of only transforming one point at a time. Recent
benchmarking has shown cogl_matrix_transform_point to be a bottleneck
sometimes, so this should allow us to reduce the overhead when
transforming lots of vertices at the same time, and also reduce the cost
of 3 component, non-projective transforms.
For now they are marked as experimental (you have to define
COGL_ENABLE_EXPERIMENTAL_API) because there is some concern that it
introduces some inconsistent naming. cogl_matrix_transform_point would
have to be renamed cogl_matrix_project_point to be consistent, but that
would be an API break.
Switch _cogl_rectangles_with_multitexture_coords to using
_cogl_pipeline_foreach_layer to iterate the layers of a pipeline when
validating instead of iterating the pipelines internal list, which is
risky since any modifications to pipelines (even to an override pipeline
derived from the original), could potentially corrupt the list as it is
being iterated.
This removes the possibility to specify wrap mode overrides within a
CoglPipelineFlushOptions struct since the right way to handle these
overrides is by copying the user's material and making the changes to
that copy before flushing. All primitives code has already switched away
from using these wrap mode overrides so this patch just removes unused
code and types. It also remove the wrap_mode_overrides argument for
_cogl_journal_log_quad.
The CSS Color Module 3, available at:
http://www.w3.org/TR/css3-color/
allows defining colors as:
rgb ( r, g, b )
rgba ( r, g, b, a)
along with the usual hexadecimal and named notations.
The r, g, and b channels can be:
• integers between 0 and 255
• percentages, between 0% and 100%
The alpha channel, if included using the rgba() modifier, can be a
floating point value between 0.0 and 1.0.
The ClutterColor parser should support this notation.
With the refactoring to centralize code into CoglBuffer,
_cogl_buffer_fini() was never actually implemented, so all GL
vertex and index buffer objects were leaked.
The duplicate call to glDeleteBuffers() in CoglPixelArray is
removed (it wasn't paying attention to whether the buffer had been
allocated as a PBO or not.)
http://bugzilla.clutter-project.org/show_bug.cgi?id=2423
This adds egl backend support for handling clipped redraws. This uses
the EGL_NOK_swap_region extension to enable the EGL backend to present a
subregion from the back buffer to the front so we don't always have to
redraw the entire stage for small updates.
This adds a COGL_DEBUG=wireframe option to visualize the underlying
geometry of the primitives being drawn via Cogl. This works for triangle
list, triangle fan, triangle strip and quad (internal only) primitives.
It also works for indexed vertex arrays.
In cogl_vertex_buffer_indices_get_for_quads() we sometimes have to
extend the length of an existing array, but when we came to unref the
previous array we didn't first check that it wasn't simply NULL.
This adds an optional data argument for cogl_vertex_array_new() since it
seems that mostly every case where we use this API we follow up with a
cogl_buffer_set_data() matching the size of the new array. This
simplifies all those cases and whenever we want to delay uploading of
data then NULL can simply be passed.
The Behaviour class and its implementations have been replaced by the
new animation framework API and by the constraints for layout-related
animations.
Currently, we need to make tests build, so we undef DISABLE_DEPRECATED
in specific test cases while they get ported.
The paint volume structure is cached in the Actor it references, and
this causes a reference cycle.
The paint volume is going to be used when painting, so the actor must
still be valid - otherwise Clutter will bail out far before than
accessing the actor pointer in ClutterPaintVolume.
Otherwise, we could have used dispose() to check for a valid actor and
remove a reference if the actor field is !NULL; it feels less clean,
though, since we're effectively managing an extra reference on
ourselves.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2431
Starting from the 2.27 cycle, GLib is exposing a monotonic clock with
microseconds granularity throughout the time-based API. We can start
using it, given that the old, non-monotonic version is going to be
deprecated by the same cycle.
GLib 2.28 will deprecate GTimeVal and related API in favour of
standardizing on microseconds granularity for all time-based API.
Clutter should switch too.
All of the current users of GTimeVal convert to milliseconds when
doing time operations, and use GTimeVal only as storage. This can
effectively be replaced by a gint64.
The Master Clock uses a microsecond resolution, except when interacting
with the main loop itself, since the main loop has a millisecond
resolution - at least until Ryan Lortie manages to switch that too to
microseconds on Linux.
The clutter_timeline_do_tick() function was erroneously not privatized,
but it was still assumed to be private; we should just remove it from
the public symbols.
For internal usage, writing:
clutter_actor_get_name (actor) != NULL
? clutter_actor_get_name (actor)
: G_OBJECT_TYPE_NAME (actor)
is overly verbose and does two type checks. A simple, internal method
for getting the same result without type checks would be much more
appreciated.
The "watch" function functionality in xsettings-client.c is designed
for setups like GDK where filters are per-window. If we are going
to pass all events to _clutter_xsettings_client_process_event()
anyways, we can just pass in NULL for watch.
This avoids a nasty infinite loop where an event would get processed
triggering removing a filter and adding a new filter, which would
immediately run and remove a filter and add another and so on
ad-infinitum.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2415
The same behavior can be achieved by capturing events on stage while
button is pressed. This fixes a problem when using click and drag
actions on the same actor as there no grabs involved.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2409
There's no longer any need to use the GL handle in the callback for
_cogl_texture_foreach_sub_texture_in_region because it can now work in
terms of primitive cogl textures so it has now been removed. This
would be helpful if we ever want to make the foreach function public
so that apps could implement their own primitives using sliced
textures.
Since d5634e37 the sliced texture backend now works in terms of
CoglTexture2Ds so there's no need to have special casing for
overriding the texture of a pipeline layer with a GL handle. Instead
we can just use cogl_pipeline_set_layer_texture with the
CoglHandle. The special _cogl_pipeline_set_layer_gl_texture_slice
function has now been removed and parts of the code for comparing
materials have been simplified.
The cogl_texture_foreach_sub_texture_in_region virtual for the sliced
texture backend was previously passing the CoglHandle of the sliced
texture to the callback. Since d5634e37 the slice texture backend now
works in terms of 2D textures so it's possible to pass the underlying
slice texture as a handle too. This makes all of the foreach callbacks
consistent in that they pass a CoglHandle of the primitive texture
type that matches the GL handle.
When COGL_ENABLE_EXPERIMENTAL_2_0_API is defined cogl.h will now include
cogl2-path.h which changes cogl_path_new() so it can directly return a
CoglPath pointer; it no longer exposes a prototype for
cogl_{get,set}_path and all the remaining cogl_path_ functions now take
an explicit path as their first argument.
The idea is that we want to encourage developers to retain path objects
for as long as possible so they can take advantage of us uploading the
path geometry to the GPU. Currently although it is possible to start a
new path and query the current path, it is not convenient.
The other thing is that we want to get Cogl to the point where nothing
depends on a global, current context variable. This will allow us to one
day define a sensible threading model if/when that is ever desired.
For now this new define is simply an alias for
COGL_ENABLE_EXPERIMENTAL_API but the intention is that we will also use
it to start experimenting with changes that need to break the existing
Cogl API in incompatible ways.
Since EGA colors are apparently all the rage in other toolkits, Clutter
should not be left out. On top of the usual CGA/EGA palette the static
colors also include the Tango Icon palette, which at least is more
pleasant to the eye.
Static colors are accessed through an enumeration by using
clutter_color_get_static(), or using the short-hand pre-processor
macros.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2066
We now prepend a set of defines to any given GLSL shader so that we can
define builtin uniforms/attributes within the "cogl" namespace that we
can use to provide compatibility across a range of the earlier versions
of GLSL.
This updates test-cogl-shader-glsl.c and test-shader.c so they no longer
needs to special case GLES vs GL when splicing together its shaders as
well as the blur, colorize and desaturate effects.
To get a feel for the new, portable uniform/attribute names here are the
defines for OpenGL vertex shaders:
#define cogl_position_in gl_Vertex
#define cogl_color_in gl_Color
#define cogl_tex_coord_in gl_MultiTexCoord0
#define cogl_tex_coord0_in gl_MultiTexCoord0
#define cogl_tex_coord1_in gl_MultiTexCoord1
#define cogl_tex_coord2_in gl_MultiTexCoord2
#define cogl_tex_coord3_in gl_MultiTexCoord3
#define cogl_tex_coord4_in gl_MultiTexCoord4
#define cogl_tex_coord5_in gl_MultiTexCoord5
#define cogl_tex_coord6_in gl_MultiTexCoord6
#define cogl_tex_coord7_in gl_MultiTexCoord7
#define cogl_normal_in gl_Normal
#define cogl_position_out gl_Position
#define cogl_point_size_out gl_PointSize
#define cogl_color_out gl_FrontColor
#define cogl_tex_coord_out gl_TexCoord
#define cogl_modelview_matrix gl_ModelViewMatrix
#define cogl_modelview_projection_matrix gl_ModelViewProjectionMatrix
#define cogl_projection_matrix gl_ProjectionMatrix
#define cogl_texture_matrix gl_TextureMatrix
And for fragment shaders we have:
#define cogl_color_in gl_Color
#define cogl_tex_coord_in gl_TexCoord
#define cogl_color_out gl_FragColor
#define cogl_depth_out gl_FragDepth
#define cogl_front_facing gl_FrontFacing
The profiling support was broken - probably during the restructuring of
the build environment, but I'm too lazy to bisect that.
The fix is trivial, and everything works as it should.