mutter/clutter/clutter-types.h

669 lines
24 KiB
C
Raw Normal View History

/*
* Clutter.
*
* An OpenGL based 'interactive canvas' library.
*
* Authored By Matthew Allum <mallum@openedhand.com>
*
* Copyright (C) 2006 OpenedHand
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#if !defined(__CLUTTER_H_INSIDE__) && !defined(CLUTTER_COMPILATION)
#error "Only <clutter/clutter.h> can be included directly."
#endif
#ifndef __CLUTTER_TYPES_H__
#define __CLUTTER_TYPES_H__
#include <cairo.h>
#include <cogl/cogl.h>
2012-02-27 14:03:57 +00:00
#include <clutter/clutter-macros.h>
#include <clutter/clutter-enums.h>
G_BEGIN_DECLS
#define CLUTTER_TYPE_ACTOR_BOX (clutter_actor_box_get_type ())
#define CLUTTER_TYPE_FOG (clutter_fog_get_type ())
#define CLUTTER_TYPE_KNOT (clutter_knot_get_type ())
#define CLUTTER_TYPE_MARGIN (clutter_margin_get_type ())
#define CLUTTER_TYPE_MATRIX (clutter_matrix_get_type ())
#define CLUTTER_TYPE_PAINT_VOLUME (clutter_paint_volume_get_type ())
#define CLUTTER_TYPE_PERSPECTIVE (clutter_perspective_get_type ())
#define CLUTTER_TYPE_VERTEX (clutter_vertex_get_type ())
#define CLUTTER_TYPE_POINT (clutter_point_get_type ())
#define CLUTTER_TYPE_SIZE (clutter_size_get_type ())
#define CLUTTER_TYPE_RECT (clutter_rect_get_type ())
typedef struct _ClutterActor ClutterActor;
typedef struct _ClutterStage ClutterStage;
typedef struct _ClutterContainer ClutterContainer; /* dummy */
typedef struct _ClutterChildMeta ClutterChildMeta;
typedef struct _ClutterLayoutMeta ClutterLayoutMeta;
typedef struct _ClutterActorMeta ClutterActorMeta;
typedef struct _ClutterLayoutManager ClutterLayoutManager;
typedef struct _ClutterActorIter ClutterActorIter;
typedef struct _ClutterPaintNode ClutterPaintNode;
typedef struct _ClutterContent ClutterContent; /* dummy */
typedef struct _ClutterScrollActor ClutterScrollActor;
typedef struct _ClutterInterval ClutterInterval;
typedef struct _ClutterAnimatable ClutterAnimatable; /* dummy */
typedef struct _ClutterTimeline ClutterTimeline;
typedef struct _ClutterTransition ClutterTransition;
2012-03-15 11:08:38 +00:00
typedef struct _ClutterPropertyTransition ClutterPropertyTransition;
typedef struct _ClutterKeyframeTransition ClutterKeyframeTransition;
typedef struct _ClutterTransitionGroup ClutterTransitionGroup;
typedef struct _ClutterAction ClutterAction;
typedef struct _ClutterConstraint ClutterConstraint;
typedef struct _ClutterEffect ClutterEffect;
typedef struct _ClutterPath ClutterPath;
typedef struct _ClutterPathNode ClutterPathNode;
typedef struct _ClutterActorBox ClutterActorBox;
typedef struct _ClutterColor ClutterColor;
typedef struct _ClutterKnot ClutterKnot;
typedef struct _ClutterMargin ClutterMargin;
typedef struct _ClutterPerspective ClutterPerspective;
typedef struct _ClutterPoint ClutterPoint;
typedef struct _ClutterRect ClutterRect;
typedef struct _ClutterSize ClutterSize;
typedef struct _ClutterVertex ClutterVertex;
typedef struct _ClutterInputDevice ClutterInputDevice;
typedef CoglMatrix ClutterMatrix;
typedef union _ClutterEvent ClutterEvent;
/**
* ClutterEventSequence:
*
* The <structname>ClutterEventSequence</structname> structure is an opaque
* type used to denote the event sequence of a touch event.
*
*
*/
typedef struct _ClutterEventSequence ClutterEventSequence;
paint volumes: another pass at the design This is a fairly extensive second pass at exposing paint volumes for actors. The API has changed to allow clutter_actor_get_paint_volume to fail since there are times - such as when an actor isn't a descendent of the stage - when the volume can't be determined. Another example is when something has connected to the "paint" signal of the actor and we simply have no way of knowing what might be drawn in that handler. The API has also be changed to return a const ClutterPaintVolume pointer (transfer none) so we can avoid having to dynamically allocate the volumes in the most common/performance critical code paths. Profiling was showing the slice allocation of volumes taking about 1% of an apps time, for some fairly basic tests. Most volumes can now simply be allocated on the stack; for clutter_actor_get_paint_volume we return a pointer to &priv->paint_volume and if we need a more dynamic allocation there is now a _clutter_stage_paint_volume_stack_allocate() mechanism which lets us allocate data which expires at the start of the next frame. The API has been extended to make it easier to implement get_paint_volume for containers by using clutter_actor_get_transformed_paint_volume and clutter_paint_volume_union. The first allows you to query the paint volume of a child but transformed into parent actor coordinates. The second lets you combine volumes together so you can union all the volumes for a container's children and report that as the container's own volume. The representation of paint volumes has been updated to consider that 2D actors are the most common. The effect apis, clutter-texture and clutter-group have been update accordingly.
2010-09-07 17:04:19 +00:00
/**
* ClutterPaintVolume:
*
* <structname>ClutterPaintVolume</structname> is an opaque structure
* whose members cannot be directly accessed.
*
* A <structname>ClutterPaintVolume</structname> represents an
* a bounding volume whose internal representation isn't defined but
paint volumes: another pass at the design This is a fairly extensive second pass at exposing paint volumes for actors. The API has changed to allow clutter_actor_get_paint_volume to fail since there are times - such as when an actor isn't a descendent of the stage - when the volume can't be determined. Another example is when something has connected to the "paint" signal of the actor and we simply have no way of knowing what might be drawn in that handler. The API has also be changed to return a const ClutterPaintVolume pointer (transfer none) so we can avoid having to dynamically allocate the volumes in the most common/performance critical code paths. Profiling was showing the slice allocation of volumes taking about 1% of an apps time, for some fairly basic tests. Most volumes can now simply be allocated on the stack; for clutter_actor_get_paint_volume we return a pointer to &priv->paint_volume and if we need a more dynamic allocation there is now a _clutter_stage_paint_volume_stack_allocate() mechanism which lets us allocate data which expires at the start of the next frame. The API has been extended to make it easier to implement get_paint_volume for containers by using clutter_actor_get_transformed_paint_volume and clutter_paint_volume_union. The first allows you to query the paint volume of a child but transformed into parent actor coordinates. The second lets you combine volumes together so you can union all the volumes for a container's children and report that as the container's own volume. The representation of paint volumes has been updated to consider that 2D actors are the most common. The effect apis, clutter-texture and clutter-group have been update accordingly.
2010-09-07 17:04:19 +00:00
* can be set and queried in terms of an axis aligned bounding box.
*
* A <structname>ClutterPaintVolume</structname> for a #ClutterActor
* is defined to be relative from the current actor modelview matrix.
*
paint volumes: another pass at the design This is a fairly extensive second pass at exposing paint volumes for actors. The API has changed to allow clutter_actor_get_paint_volume to fail since there are times - such as when an actor isn't a descendent of the stage - when the volume can't be determined. Another example is when something has connected to the "paint" signal of the actor and we simply have no way of knowing what might be drawn in that handler. The API has also be changed to return a const ClutterPaintVolume pointer (transfer none) so we can avoid having to dynamically allocate the volumes in the most common/performance critical code paths. Profiling was showing the slice allocation of volumes taking about 1% of an apps time, for some fairly basic tests. Most volumes can now simply be allocated on the stack; for clutter_actor_get_paint_volume we return a pointer to &priv->paint_volume and if we need a more dynamic allocation there is now a _clutter_stage_paint_volume_stack_allocate() mechanism which lets us allocate data which expires at the start of the next frame. The API has been extended to make it easier to implement get_paint_volume for containers by using clutter_actor_get_transformed_paint_volume and clutter_paint_volume_union. The first allows you to query the paint volume of a child but transformed into parent actor coordinates. The second lets you combine volumes together so you can union all the volumes for a container's children and report that as the container's own volume. The representation of paint volumes has been updated to consider that 2D actors are the most common. The effect apis, clutter-texture and clutter-group have been update accordingly.
2010-09-07 17:04:19 +00:00
* Other internal representation and methods for describing the
* bounding volume may be added in the future.
*
*
paint volumes: another pass at the design This is a fairly extensive second pass at exposing paint volumes for actors. The API has changed to allow clutter_actor_get_paint_volume to fail since there are times - such as when an actor isn't a descendent of the stage - when the volume can't be determined. Another example is when something has connected to the "paint" signal of the actor and we simply have no way of knowing what might be drawn in that handler. The API has also be changed to return a const ClutterPaintVolume pointer (transfer none) so we can avoid having to dynamically allocate the volumes in the most common/performance critical code paths. Profiling was showing the slice allocation of volumes taking about 1% of an apps time, for some fairly basic tests. Most volumes can now simply be allocated on the stack; for clutter_actor_get_paint_volume we return a pointer to &priv->paint_volume and if we need a more dynamic allocation there is now a _clutter_stage_paint_volume_stack_allocate() mechanism which lets us allocate data which expires at the start of the next frame. The API has been extended to make it easier to implement get_paint_volume for containers by using clutter_actor_get_transformed_paint_volume and clutter_paint_volume_union. The first allows you to query the paint volume of a child but transformed into parent actor coordinates. The second lets you combine volumes together so you can union all the volumes for a container's children and report that as the container's own volume. The representation of paint volumes has been updated to consider that 2D actors are the most common. The effect apis, clutter-texture and clutter-group have been update accordingly.
2010-09-07 17:04:19 +00:00
*/
typedef struct _ClutterPaintVolume ClutterPaintVolume;
/**
* ClutterPoint:
* @x: X coordinate, in pixels
* @y: Y coordinate, in pixels
*
* A point in 2D space.
*
*
*/
struct _ClutterPoint
{
float x;
float y;
};
/**
* CLUTTER_POINT_INIT:
* @x: X coordinate
* @y: Y coordinate
*
* A simple macro for initializing a #ClutterPoint when declaring it, e.g.:
*
* |[
* ClutterPoint p = CLUTTER_POINT_INIT (100, 100);
* ]|
*
*
*/
#define CLUTTER_POINT_INIT(x,y) { (x), (y) }
/**
* CLUTTER_POINT_INIT_ZERO:
*
* A simple macro for initializing a #ClutterPoint to (0, 0) when
* declaring it.
*
*
*/
#define CLUTTER_POINT_INIT_ZERO CLUTTER_POINT_INIT (0.f, 0.f)
GType clutter_point_get_type (void) G_GNUC_CONST;
const ClutterPoint * clutter_point_zero (void);
ClutterPoint * clutter_point_alloc (void);
ClutterPoint * clutter_point_init (ClutterPoint *point,
float x,
float y);
ClutterPoint * clutter_point_copy (const ClutterPoint *point);
void clutter_point_free (ClutterPoint *point);
gboolean clutter_point_equals (const ClutterPoint *a,
const ClutterPoint *b);
float clutter_point_distance (const ClutterPoint *a,
const ClutterPoint *b,
float *x_distance,
float *y_distance);
/**
* ClutterSize:
* @width: the width, in pixels
* @height: the height, in pixels
*
* A size, in 2D space.
*
*
*/
struct _ClutterSize
{
float width;
float height;
};
/**
* CLUTTER_SIZE_INIT:
* @width: the width
* @height: the height
*
* A simple macro for initializing a #ClutterSize when declaring it, e.g.:
*
* |[
* ClutterSize s = CLUTTER_SIZE_INIT (200, 200);
* ]|
*
*
*/
#define CLUTTER_SIZE_INIT(width,height) { (width), (height) }
/**
* CLUTTER_SIZE_INIT_ZERO:
*
* A simple macro for initializing a #ClutterSize to (0, 0) when
* declaring it.
*
*
*/
#define CLUTTER_SIZE_INIT_ZERO CLUTTER_SIZE_INIT (0.f, 0.f)
GType clutter_size_get_type (void) G_GNUC_CONST;
ClutterSize * clutter_size_alloc (void);
ClutterSize * clutter_size_init (ClutterSize *size,
float width,
float height);
ClutterSize * clutter_size_copy (const ClutterSize *size);
void clutter_size_free (ClutterSize *size);
gboolean clutter_size_equals (const ClutterSize *a,
const ClutterSize *b);
/**
* ClutterRect:
* @origin: the origin of the rectangle
* @size: the size of the rectangle
*
* The location and size of a rectangle.
*
* The width and height of a #ClutterRect can be negative; Clutter considers
* a rectangle with an origin of [ 0.0, 0.0 ] and a size of [ 10.0, 10.0 ] to
* be equivalent to a rectangle with origin of [ 10.0, 10.0 ] and size of
* [ -10.0, -10.0 ].
*
* Application code can normalize rectangles using clutter_rect_normalize():
* this function will ensure that the width and height of a #ClutterRect are
* positive values. All functions taking a #ClutterRect as an argument will
* implicitly normalize it before computing eventual results. For this reason
* it is safer to access the contents of a #ClutterRect by using the provided
* API at all times, instead of directly accessing the structure members.
*
*
*/
struct _ClutterRect
{
ClutterPoint origin;
ClutterSize size;
};
/**
* CLUTTER_RECT_INIT:
* @x: the X coordinate
* @y: the Y coordinate
* @width: the width
* @height: the height
*
* A simple macro for initializing a #ClutterRect when declaring it, e.g.:
*
* |[
* ClutterRect r = CLUTTER_RECT_INIT (100, 100, 200, 200);
* ]|
*
*
*/
#define CLUTTER_RECT_INIT(x,y,width,height) { { (x), (y) }, { (width), (height) } }
/**
* CLUTTER_RECT_INIT_ZERO:
*
* A simple macro for initializing a #ClutterRect to (0, 0, 0, 0) when
* declaring it.
*
*
*/
#define CLUTTER_RECT_INIT_ZERO CLUTTER_RECT_INIT (0.f, 0.f, 0.f, 0.f)
GType clutter_rect_get_type (void) G_GNUC_CONST;
const ClutterRect * clutter_rect_zero (void);
ClutterRect * clutter_rect_alloc (void);
ClutterRect * clutter_rect_init (ClutterRect *rect,
float x,
float y,
float width,
float height);
ClutterRect * clutter_rect_copy (const ClutterRect *rect);
void clutter_rect_free (ClutterRect *rect);
gboolean clutter_rect_equals (ClutterRect *a,
ClutterRect *b);
ClutterRect * clutter_rect_normalize (ClutterRect *rect);
void clutter_rect_get_center (ClutterRect *rect,
ClutterPoint *center);
gboolean clutter_rect_contains_point (ClutterRect *rect,
ClutterPoint *point);
gboolean clutter_rect_contains_rect (ClutterRect *a,
ClutterRect *b);
void clutter_rect_union (ClutterRect *a,
ClutterRect *b,
ClutterRect *res);
gboolean clutter_rect_intersection (ClutterRect *a,
ClutterRect *b,
ClutterRect *res);
void clutter_rect_offset (ClutterRect *rect,
float d_x,
float d_y);
void clutter_rect_inset (ClutterRect *rect,
float d_x,
float d_y);
void clutter_rect_clamp_to_pixel (ClutterRect *rect);
float clutter_rect_get_x (ClutterRect *rect);
float clutter_rect_get_y (ClutterRect *rect);
float clutter_rect_get_width (ClutterRect *rect);
float clutter_rect_get_height (ClutterRect *rect);
/**
* ClutterVertex:
* @x: X coordinate of the vertex
* @y: Y coordinate of the vertex
* @z: Z coordinate of the vertex
*
* A point in 3D space, expressed in pixels
*
*
*/
struct _ClutterVertex
{
gfloat x;
gfloat y;
gfloat z;
};
/**
* CLUTTER_VERTEX_INIT:
* @x: the X coordinate of the vertex
* @y: the Y coordinate of the vertex
* @z: the Z coordinate of the vertex
*
* A simple macro for initializing a #ClutterVertex when declaring it, e.g.:
*
* |[
* ClutterVertex v = CLUTTER_VERTEX_INIT (x, y, z);
* ]|
*
*
*/
#define CLUTTER_VERTEX_INIT(x,y,z) { (x), (y), (z) }
/**
* CLUTTER_VERTEX_INIT_ZERO:
*
* A simple macro for initializing a #ClutterVertex to (0, 0, 0).
*
*
*/
#define CLUTTER_VERTEX_INIT_ZERO CLUTTER_VERTEX_INIT (0.f, 0.f, 0.f)
GType clutter_vertex_get_type (void) G_GNUC_CONST;
ClutterVertex *clutter_vertex_new (gfloat x,
gfloat y,
gfloat z);
ClutterVertex *clutter_vertex_alloc (void);
ClutterVertex *clutter_vertex_init (ClutterVertex *vertex,
gfloat x,
gfloat y,
gfloat z);
ClutterVertex *clutter_vertex_copy (const ClutterVertex *vertex);
void clutter_vertex_free (ClutterVertex *vertex);
gboolean clutter_vertex_equal (const ClutterVertex *vertex_a,
const ClutterVertex *vertex_b);
/**
* ClutterActorBox:
* @x1: X coordinate of the top left corner
* @y1: Y coordinate of the top left corner
* @x2: X coordinate of the bottom right corner
* @y2: Y coordinate of the bottom right corner
*
* Bounding box of an actor. The coordinates of the top left and right bottom
* corners of an actor. The coordinates of the two points are expressed in
* pixels with sub-pixel precision
*/
struct _ClutterActorBox
{
gfloat x1;
gfloat y1;
gfloat x2;
gfloat y2;
};
/**
* CLUTTER_ACTOR_BOX_INIT:
* @x_1: the X coordinate of the top left corner
* @y_1: the Y coordinate of the top left corner
* @x_2: the X coordinate of the bottom right corner
* @y_2: the Y coordinate of the bottom right corner
*
* A simple macro for initializing a #ClutterActorBox when declaring
* it, e.g.:
*
* |[
* ClutterActorBox box = CLUTTER_ACTOR_BOX_INIT (0, 0, 400, 600);
* ]|
*
*
*/
#define CLUTTER_ACTOR_BOX_INIT(x_1,y_1,x_2,y_2) { (x_1), (y_1), (x_2), (y_2) }
/**
* CLUTTER_ACTOR_BOX_INIT_ZERO:
*
* A simple macro for initializing a #ClutterActorBox to 0 when
* declaring it, e.g.:
*
* |[
* ClutterActorBox box = CLUTTER_ACTOR_BOX_INIT_ZERO;
* ]|
*
*
*/
#define CLUTTER_ACTOR_BOX_INIT_ZERO CLUTTER_ACTOR_BOX_INIT (0.f, 0.f, 0.f, 0.f)
GType clutter_actor_box_get_type (void) G_GNUC_CONST;
ClutterActorBox *clutter_actor_box_new (gfloat x_1,
gfloat y_1,
gfloat x_2,
gfloat y_2);
ClutterActorBox *clutter_actor_box_alloc (void);
ClutterActorBox *clutter_actor_box_init (ClutterActorBox *box,
gfloat x_1,
gfloat y_1,
gfloat x_2,
gfloat y_2);
void clutter_actor_box_init_rect (ClutterActorBox *box,
gfloat x,
gfloat y,
gfloat width,
gfloat height);
ClutterActorBox *clutter_actor_box_copy (const ClutterActorBox *box);
void clutter_actor_box_free (ClutterActorBox *box);
gboolean clutter_actor_box_equal (const ClutterActorBox *box_a,
const ClutterActorBox *box_b);
gfloat clutter_actor_box_get_x (const ClutterActorBox *box);
gfloat clutter_actor_box_get_y (const ClutterActorBox *box);
gfloat clutter_actor_box_get_width (const ClutterActorBox *box);
gfloat clutter_actor_box_get_height (const ClutterActorBox *box);
void clutter_actor_box_get_origin (const ClutterActorBox *box,
gfloat *x,
gfloat *y);
void clutter_actor_box_get_size (const ClutterActorBox *box,
gfloat *width,
gfloat *height);
gfloat clutter_actor_box_get_area (const ClutterActorBox *box);
gboolean clutter_actor_box_contains (const ClutterActorBox *box,
gfloat x,
gfloat y);
void clutter_actor_box_from_vertices (ClutterActorBox *box,
const ClutterVertex verts[]);
void clutter_actor_box_interpolate (const ClutterActorBox *initial,
const ClutterActorBox *final,
gdouble progress,
ClutterActorBox *result);
void clutter_actor_box_clamp_to_pixel (ClutterActorBox *box);
void clutter_actor_box_union (const ClutterActorBox *a,
const ClutterActorBox *b,
ClutterActorBox *result);
void clutter_actor_box_set_origin (ClutterActorBox *box,
gfloat x,
gfloat y);
void clutter_actor_box_set_size (ClutterActorBox *box,
gfloat width,
gfloat height);
/**
* ClutterKnot:
* @x: X coordinate of the knot
* @y: Y coordinate of the knot
*
* Point in a path behaviour.
*
*
*/
struct _ClutterKnot
{
gint x;
gint y;
};
GType clutter_knot_get_type (void) G_GNUC_CONST;
ClutterKnot *clutter_knot_copy (const ClutterKnot *knot);
void clutter_knot_free (ClutterKnot *knot);
gboolean clutter_knot_equal (const ClutterKnot *knot_a,
const ClutterKnot *knot_b);
/**
* ClutterPathNode:
* @type: the node's type
* @points: the coordinates of the node
*
* Represents a single node of a #ClutterPath.
*
* Some of the coordinates in @points may be unused for some node
* types. %CLUTTER_PATH_MOVE_TO and %CLUTTER_PATH_LINE_TO use only one
* pair of coordinates, %CLUTTER_PATH_CURVE_TO uses all three and
* %CLUTTER_PATH_CLOSE uses none.
*
*
*/
struct _ClutterPathNode
{
ClutterPathNodeType type;
ClutterKnot points[3];
};
GType clutter_path_node_get_type (void) G_GNUC_CONST;
ClutterPathNode *clutter_path_node_copy (const ClutterPathNode *node);
void clutter_path_node_free (ClutterPathNode *node);
gboolean clutter_path_node_equal (const ClutterPathNode *node_a,
const ClutterPathNode *node_b);
/*
* ClutterPaintVolume
*/
GType clutter_paint_volume_get_type (void) G_GNUC_CONST;
ClutterPaintVolume *clutter_paint_volume_copy (const ClutterPaintVolume *pv);
void clutter_paint_volume_free (ClutterPaintVolume *pv);
void clutter_paint_volume_set_origin (ClutterPaintVolume *pv,
const ClutterVertex *origin);
void clutter_paint_volume_get_origin (const ClutterPaintVolume *pv,
ClutterVertex *vertex);
void clutter_paint_volume_set_width (ClutterPaintVolume *pv,
gfloat width);
gfloat clutter_paint_volume_get_width (const ClutterPaintVolume *pv);
void clutter_paint_volume_set_height (ClutterPaintVolume *pv,
gfloat height);
gfloat clutter_paint_volume_get_height (const ClutterPaintVolume *pv);
void clutter_paint_volume_set_depth (ClutterPaintVolume *pv,
gfloat depth);
gfloat clutter_paint_volume_get_depth (const ClutterPaintVolume *pv);
void clutter_paint_volume_union (ClutterPaintVolume *pv,
const ClutterPaintVolume *another_pv);
void clutter_paint_volume_union_box (ClutterPaintVolume *pv,
const ClutterActorBox *box);
gboolean clutter_paint_volume_set_from_allocation (ClutterPaintVolume *pv,
ClutterActor *actor);
/**
* ClutterMargin:
* @left: the margin from the left
* @right: the margin from the right
* @top: the margin from the top
* @bottom: the margin from the bottom
*
* A representation of the components of a margin.
*
*
*/
struct _ClutterMargin
{
float left;
float right;
float top;
float bottom;
};
GType clutter_margin_get_type (void) G_GNUC_CONST;
ClutterMargin * clutter_margin_new (void) G_GNUC_MALLOC;
ClutterMargin * clutter_margin_copy (const ClutterMargin *margin_);
void clutter_margin_free (ClutterMargin *margin_);
/**
* ClutterProgressFunc:
* @a: the initial value of an interval
* @b: the final value of an interval
* @progress: the progress factor, between 0 and 1
* @retval: the value used to store the progress
*
* Prototype of the progress function used to compute the value
* between the two ends @a and @b of an interval depending on
* the value of @progress.
*
* The #GValue in @retval is already initialized with the same
* type as @a and @b.
*
* This function will be called by #ClutterInterval if the
* type of the values of the interval was registered using
* clutter_interval_register_progress_func().
*
* Return value: %TRUE if the function successfully computed
* the value and stored it inside @retval
*
*
*/
typedef gboolean (* ClutterProgressFunc) (const GValue *a,
const GValue *b,
gdouble progress,
GValue *retval);
void clutter_interval_register_progress_func (GType value_type,
ClutterProgressFunc func);
GType clutter_matrix_get_type (void) G_GNUC_CONST;
ClutterMatrix * clutter_matrix_alloc (void);
ClutterMatrix * clutter_matrix_init_identity (ClutterMatrix *matrix);
ClutterMatrix * clutter_matrix_init_from_array (ClutterMatrix *matrix,
const float values[16]);
ClutterMatrix * clutter_matrix_init_from_matrix (ClutterMatrix *a,
const ClutterMatrix *b);
void clutter_matrix_free (ClutterMatrix *matrix);
G_END_DECLS
#endif /* __CLUTTER_TYPES_H__ */