cogl/cogl-pango.h can't be included unless the include directory for
Pango is given in the compiler flags. In an application, it is
expected that if they are using this header then they would pull in
cogl-pango-1.0.pc which would provide this. However when building Cogl
itself we might be building without Pango support so the Makefile
can't rely on PANGO_CFLAGS. This was breaking building the
introspection data because cogl-pango.h was listed as one of the files
to scan but it can't be included.
For the first iteration of the CoglAttribute API several of the new
functions accepted a pointer to a NULL terminated list of CoglAttribute
pointers - probably as a way to reduce the number of arguments required.
This style isn't consistent with existing Cogl APIs though and so we now
explicitly pass n_attributes arguments and don't require the NULL
termination.
This is part of a broader cleanup of some of the experimental Cogl API.
One of the reasons for this particular rename is to switch away from
using the term "Array" which implies a regular, indexable layout which
isn't the case. We also want to strongly imply a relationship between
CoglBuffers and CoglIndexBuffers and be consistent with the
CoglAttributeBuffer and CoglPixelBuffer APIs.
This is part of a broader cleanup of some of the experimental Cogl API.
One of the reasons for this particular rename is to switch away from
using the term "Array" which implies a regular, indexable layout which
isn't the case. We also want to strongly imply a relationship between
CoglBuffers and CoglPixelBuffers and be consistent with the
CoglAttributeBuffer and CoglIndexBuffer APIs.
This is part of a broader cleanup of some of the experimental Cogl API.
One of the reasons for this particular rename is to switch away from
using the term "Array" which implies a regular, indexable layout which
isn't the case. We also want to have a strongly implied relationship
between CoglAttributes and CoglAttributeBuffers.
To help catch accidental changes to the size of public structs that can
be allocated on the stack this patch adds compile time checks that our
struct sizes haven't changed.
This adds an experimental CoglEuler data type and the following new
functions:
cogl_euler_init
cogl_euler_init_from_matrix
cogl_euler_init_from_quaternion
cogl_euler_equal
cogl_euler_copy
cogl_euler_free
cogl_quaternion_init_from_euler
Since this is experimental API you need to define
COGL_ENABLE_EXPERIMENTAL_API before including cogl.h
This adds an experimental quaternion utility API. It's not yet fully
documented but it's complete enough that people can start to experiment
with using it. It adds the following functions:
cogl_quaternion_init_identity
cogl_quaternion_init
cogl_quaternion_init_from_angle_vector
cogl_quaternion_init_from_array
cogl_quaternion_init_from_x_rotation
cogl_quaternion_init_from_y_rotation
cogl_quaternion_init_from_z_rotation
cogl_quaternion_equal
cogl_quaternion_copy
cogl_quaternion_free
cogl_quaternion_get_rotation_angle
cogl_quaternion_get_rotation_axis
cogl_quaternion_normalize
cogl_quaternion_dot_product
cogl_quaternion_invert
cogl_quaternion_multiply
cogl_quaternion_pow
cogl_quaternion_slerp
cogl_quaternion_nlerp
cogl_quaternion_squad
cogl_get_static_identity_quaternion
cogl_get_static_zero_quaternion
Since it's experimental API you'll need to define
COGL_ENABLE_EXPERIMENTAL_API before including cogl.h.
cogl-pango is conceptually a separate library so it doesn't seem
appropriate to bundle the headers with all the other cogl headers. Also
in-tree the headers live in a cogl-pango directory so if we want
examples that can include cogl-pango consistently when built in or out
of tree using the convention #include <cogl-pango/cogl-pango.h> makes
that easy.
This adds a compatibility cogl/cogl-pango.h header that's will redirect
to cogl-pango/cogl-pango.h with a warning, or result in an error if
COGL_ENABLE_EXPERIMENTAL_2_0_API is defined.
When freeing a framebuffer stack it's possible to have entries with NULL
draw or read buffers so we should check that before calling
cogl_onscreen/offscreen_free. This fixes a crash with the wayland
backend when running conformance tests such as cogl-test-object which
never push a framebuffer.
To support toolkits targeting wayland and using Cogl we allow toolkits
to be responsible for connecting to a wayland display and asking Cogl to
use the toolkit owned display and compositor object. Note: eventually
the plan is that wayland will allow retrospective querying of objects so
we won't need the foreign compositor API when Cogl can simply query it
from the foreign display.
The EGL API doesn't provide for a way to explicitly select a platform
when the driver can support multiple. Mesa allows selection using an
EGL_PLATFORM environment variable though so we set that to "wayland"
when we know that's what we want.
Some places were using COGL_HAS_WIN32 but the only macro defined is
COGL_HAS_WIN32_SUPPORT. The similar macros such as COGL_HAS_XLIB are
only defined for compatibility with existing code but COGL_HAS_WIN32
was never defined so there's no need to support it.
One of the places was including the non-existant cogl-win32.h. This
has been removed because the file only temporarily existed during
development of the backend.
In update_primitive_attributes it tries to fill in an array of
pointers with a NULL terminator. However it was only allocating enough
space for a pointer for each of the attributes plus one byte instead
of plus enough bytes for another pointer.
Thomas Wood found this bug with static analysis.
All of the winsys backends didn't handle cleaning up the CoglOnscreen
properly so that they would assert in cogl_onscreen_free because the
winsys pointer is never freed. They also didn't cope if deinit is
called before init (which will be the case if an onscreen is created
and freed without being allocated).
When SetPixelFormat fails, the DC would get released but none of the
other resources would be freed. This patch makes it call
_cogl_winsys_onscreen_deinit on failure to clean up all of the
resources. The patch looks big because it moves the onscreen_deinit
and onscreen_bind functions.
Some of the virtual functions in CoglWinsysVtable only need to be
implemented for specific backends or when a specific feature is
advertised. This splits the vtable struct into two commented sections
marking which are optional and which are required. Wherever an
optional function is used there is now a g_return_if_fail to ensure
there is an implementation.
Wayland now supports integration via standard eglSurfaces which makes it
possible to share more code with other EGL platforms. (though at some
point cogl-winsys-egl.c really needs to gain a more formal
CoglEGLPlatform abstraction so we can rein back on the amount of #ifdefs
we have.)
This removes all the remnants from being able to build Cogl standalone
while it was part of the Clutter repository. Now that Cogl has been
split out then standalone builds are the only option.
We now install cogl-pango-1.0 and cogl-pango-2.0 pkg-config files that
applications should optionally depend on if they want to use the
cogl_pango API.
If a foreign xid has been set on a CoglOnscreen then
cogl_onscreen_x11_get_window_xid doesn't need to defer to the winsys to
get the underlying window xid. This also means it's possible to read
back the xid before the framebuffer is allocated which fixes a crash in
the x11-foreign example app.
Ideally we wouldn't have any private symbols exported, but for now there
are some APIs that coglpango needs access to that aren't public so we
have ensure they are exported. The aim is to get rid of this need at
some point.
When comparing the wrap modes of two pipeline layers it now considers
COGL_WRAP_MODE_AUTOMATIC to be equivalent to CLAMP_TO_EDGE. By the
time the pipeline is in the journal, the upper primitive code is
expected to have overridden this wrap mode with something else if it
wants any other behaviour. This is important for getting text to batch
together with textures because the text explicitly sets the wrap mode
to CLAMP_TO_EDGE on its pipeline.
This adds cogl_atlas_texture_* functions to register a callback that
will get invoked whenever any of the CoglAtlas's the textures use get
reorganized. The callback is global and is not tied to any particular
atlas texture.
This adds a new function called _cogl_atlas_texture_new_with_size. The
old new_from_bitmap function now just calls this and updates the
texture with the data.
This extends cogl_onscreen_x11_set_foreign_xid to take a callback to a
function that details the event mask the Cogl requires the application
to select on foreign windows. This is required because Cogl, for
example, needs to track size changes of a window and may also in the
future want other notifications such as map/unmap.
Most applications wont need to use the foreign xwindow apis, but those
that do are required to pass a valid callback and update the event mask
of their window according to Cogl's requirements.
This adds Cogl API to show and hide onscreen framebuffers. We don't want
to go too far down the road of abstracting window system APIs with Cogl
since that would be out of its scope but the previous idea that we would
automatically map framebuffers on allocation except for those made from
foreign windows wasn't good enough. The problem is that we don't want to
make Clutter always create stages from foreign windows but with the
automatic map semantics then Clutter doesn't get an opportunity to
select for all the events it requires before mapping. This meant that we
wouldn't be delivered a mouse enter event for windows mapped underneath
the cursor which would break Clutters handling of button press events.
When building on windows for example we need to ensure we pass
-no-undefined to the linker. Although we were substituting a
COGL_EXTRA_LDFLAGS variable from our configure.ac we forgot to
reference that when linking cogl.
Until Cogl gains native win32/OSX support this remove the osx and win32
winsys files and instead we'll just rely on the stub-winsys.c to handle
these platforms. Since the only thing the platform specific files were
providing anyway was a get_proc_address function; it was trivial to
simply update the clutter backend code to handle this directly for now.
This is a workaround for a bug on OSX for some radeon hardware that
we can't verify and the referenced bug link is no longer valid.
If this is really still a problem then a new bug should be opened and we
can look at putting the fix in some more appropriate place than
cogl-gl.c
For now we are going for the semantics that when a CoglOnscreen is first
allocated then it will automatically be mapped. This is for convenience
and if you don't want that behaviour then it is possible to instead
create an Onscreen from a foreign X window and in that case it wont be
mapped automatically.
This approach means that Cogl doesn't need onscreen_map/unmap functions
but it's possible we'll decide later that we can't avoid adding such
functions and we'll have to change these semantics.
This allows more detailed control over the driver and winsys features
that Cogl should have. Cogl is designed so it can support multiple
window systems simultaneously so we have enable/disable options for
the drivers (gl vs gles1 vs gles2) and options for the individual window
systems; currently glx and egl. Egl is broken down into an option
for each platform.
The GDL API is used for example on intel ce4100 (aka Sodaville) based
systems as a way to allocate memory that can be composited using the
platforms overlay hardware. This updates the Cogl EGL winsys and the
support in Clutter so we can continue to support these platforms.
So that we can dynamically select what winsys backend to use at runtime
we need to have some indirection to how code accesses the winsys instead
of simply calling _cogl_winsys* functions that would collide if we
wanted to compile more than one backend into Cogl.
This moves the GLX specific code from cogl-texture-pixmap-x11.c into
cogl-winsys-glx.c. If we want the winsys components to by dynamically
loadable then we can't have GLX code scattered outside of
cogl-winsys-glx.c. This also sets us up for supporting the
EGL_texture_from_pixmap extension which is almost identical to the
GLX_texture_from_pixmap extension.