The convenience constructors for the builtin vertex structs were
creating the primitive and then immediately destroying it and
returning the pointer. I think the intention was to unref the
attributes instead. This adds an internal wrapper around the
new_with_attributes_array constructor which unrefs the attributes
instead of the primitive. The convenience constructors now use that.
The convenience constructors for the builtin vertex structs were
creating the primitive and then immediately destroying it and
returning the pointer. I think the intention was to unref the
attributes instead. This adds an internal wrapper around the
new_with_attributes_array constructor which unrefs the attributes
instead of the primitive. The convenience constructors now use that.
The GLES2 wrapper was referring to COGL_MATERIAL_PROGRAM_TYPE_GLSL but
this has since been renamed to COGL_PIPELINE_PROGRAM_TYPE_GLSL so the
GLES2 backend wouldn't compile.
The GLES2 wrapper was referring to COGL_MATERIAL_PROGRAM_TYPE_GLSL but
this has since been renamed to COGL_PIPELINE_PROGRAM_TYPE_GLSL so the
GLES2 backend wouldn't compile.
The size_request vfunc is going to be dropped in GTK3; replace
the usage in MetaAccelLabel and MetaPreview with
get_preferred_width/get_preferred_height vfuncs.
https://bugzilla.gnome.org/show_bug.cgi?id=633352
The gles2 wrapper functions don't understand about the CoglBuffer API so
they don't support attributes stored in a CoglVertexArray. Instead of
teaching the backend about buffers we are going to wait until we have
overhauled the GLES 2 backend. We are currently making progress
consolidating the GLES 2 backend with a new GLSL backend for
CoglMaterial. This will hugely simplify the GLES 2 support and share
code with the OpenGL backend. In the end it's hoped that this problem
will simply go away so it doesn't make much sense to solve it with the
current design.
The gles2 wrapper functions don't understand about the CoglBuffer API so
they don't support attributes stored in a CoglVertexArray. Instead of
teaching the backend about buffers we are going to wait until we have
overhauled the GLES 2 backend. We are currently making progress
consolidating the GLES 2 backend with a new GLSL backend for
CoglMaterial. This will hugely simplify the GLES 2 support and share
code with the OpenGL backend. In the end it's hoped that this problem
will simply go away so it doesn't make much sense to solve it with the
current design.
This applies an API naming change that's been deliberated over for a
while now which is to rename CoglMaterial to CoglPipeline.
For now the new pipeline API is marked as experimental and public
headers continue to talk about materials not pipelines. The CoglMaterial
API is now maintained in terms of the cogl_pipeline API internally.
Currently this API is targeting Cogl 2.0 so we will have time to
integrate it properly with other upcoming Cogl 2.0 work.
The basic reasons for the rename are:
- That the term "material" implies to many people that they are
constrained to fragment processing; perhaps as some kind of high-level
texture abstraction.
- In Clutter they get exposed by ClutterTexture actors which may be
re-inforcing this misconception.
- When comparing how other frameworks use the term material, a material
sometimes describes a multi-pass fragment processing technique which
isn't the case in Cogl.
- In code, "CoglPipeline" will hopefully be a much more self documenting
summary of what these objects represent; a full GPU pipeline
configuration including, for example, vertex processing, fragment
processing and blending.
- When considering the API documentation story, at some point we need a
document introducing developers to how the "GPU pipeline" works so it
should become intuitive that CoglPipeline maps back to that
description of the GPU pipeline.
- This is consistent in terminology and concept to OpenGL 4's new
pipeline object which is a container for program objects.
Note: The cogl-material.[ch] files have been renamed to
cogl-material-compat.[ch] because otherwise git doesn't seem to treat
the change as a moving the old cogl-material.c->cogl-pipeline.c and so
we loose all our git-blame history.
This applies an API naming change that's been deliberated over for a
while now which is to rename CoglMaterial to CoglPipeline.
For now the new pipeline API is marked as experimental and public
headers continue to talk about materials not pipelines. The CoglMaterial
API is now maintained in terms of the cogl_pipeline API internally.
Currently this API is targeting Cogl 2.0 so we will have time to
integrate it properly with other upcoming Cogl 2.0 work.
The basic reasons for the rename are:
- That the term "material" implies to many people that they are
constrained to fragment processing; perhaps as some kind of high-level
texture abstraction.
- In Clutter they get exposed by ClutterTexture actors which may be
re-inforcing this misconception.
- When comparing how other frameworks use the term material, a material
sometimes describes a multi-pass fragment processing technique which
isn't the case in Cogl.
- In code, "CoglPipeline" will hopefully be a much more self documenting
summary of what these objects represent; a full GPU pipeline
configuration including, for example, vertex processing, fragment
processing and blending.
- When considering the API documentation story, at some point we need a
document introducing developers to how the "GPU pipeline" works so it
should become intuitive that CoglPipeline maps back to that
description of the GPU pipeline.
- This is consistent in terminology and concept to OpenGL 4's new
pipeline object which is a container for program objects.
Note: The cogl-material.[ch] files have been renamed to
cogl-material-compat.[ch] because otherwise git doesn't seem to treat
the change as a moving the old cogl-material.c->cogl-pipeline.c and so
we loose all our git-blame history.
Instead of using the CoglHandle type for material variables this updates
the pango code to use CoglMaterial * instead. CoglHandle is the old
typename which is being phased out of the API.
Instead of using the CoglHandle type for material variables this updates
the pango code to use CoglMaterial * instead. CoglHandle is the old
typename which is being phased out of the API.
The pango-display-list code was calling cogl_set_source in numerous
places and it didn't appear to be saving the users source to restore
later. This could result in the user inadvertantly drawing a primitive
with one of these internally managed materials instead of one that they
chose. To rectify this the code now uses cogl_{push,pop}_source to save
and restore the users source.
The pango-display-list code was calling cogl_set_source in numerous
places and it didn't appear to be saving the users source to restore
later. This could result in the user inadvertantly drawing a primitive
with one of these internally managed materials instead of one that they
chose. To rectify this the code now uses cogl_{push,pop}_source to save
and restore the users source.
This updates the implementation of cogl_polygon so it sits on the new
CoglVertexArray and CoglVertexAttribute apis. This lets us minimize the
number of different drawing paths we have to maintain in Cogl.
Since the sliced texture support for cogl_polygon has been broken for a
long time now and no one has complained this patch also greatly
simplifies the code by not doing any special material validation so
cogl_polygon will be restricted in the same way as
cogl_draw_vertex_attributes. (i.e. sliced textures not supported).
This updates the implementation of cogl_polygon so it sits on the new
CoglVertexArray and CoglVertexAttribute apis. This lets us minimize the
number of different drawing paths we have to maintain in Cogl.
Since the sliced texture support for cogl_polygon has been broken for a
long time now and no one has complained this patch also greatly
simplifies the code by not doing any special material validation so
cogl_polygon will be restricted in the same way as
cogl_draw_vertex_attributes. (i.e. sliced textures not supported).
Instead of using raw OpenGL in the journal we now use the vertex
attributes API instead. This is part of an ongoing effort to reduce the
number of drawing paths we maintain in Cogl.
Instead of using raw OpenGL in the journal we now use the vertex
attributes API instead. This is part of an ongoing effort to reduce the
number of drawing paths we maintain in Cogl.
The functionality of cogl_vertex_buffer_indices_get_for_quads is now
provided by cogl_get_rectangle_indices so this reworks the former to now
work in terms of the latter so we don't have duplicated logic.
The functionality of cogl_vertex_buffer_indices_get_for_quads is now
provided by cogl_get_rectangle_indices so this reworks the former to now
work in terms of the latter so we don't have duplicated logic.
As part of an ongoing effort to reduce the number of draw paths we have
in Cogl this re-works CoglVertexBuffer to use the CoglVertexAttribute
and CoglPrimitive APIs instead of using raw GL.
As part of an ongoing effort to reduce the number of draw paths we have
in Cogl this re-works CoglVertexBuffer to use the CoglVertexAttribute
and CoglPrimitive APIs instead of using raw GL.
This adds a way to mark that a primitive is in use so that modifications
will generate a warning. The plan is to use this mechanism when batching
primitives in the journal to warn users that mid-scene modifications of
primitives is not allowed.
This adds a way to mark that a primitive is in use so that modifications
will generate a warning. The plan is to use this mechanism when batching
primitives in the journal to warn users that mid-scene modifications of
primitives is not allowed.
This adds convenience primitive constructors named like:
cogl_primitive_new_p3 or
cogl_primitive_new_p3c4 or
cogl_primitive_new_p3t2c4
where the letters correspond to the interleved vertex attributes layouts
such as CoglP3Vertex which is a struct with 3 float x,y,z members for
the [p]osition, or CoglP3T2C4Vertex which is a struct with 3 float x,y,z
members for the [p]osition, 2 float s,t members for the [t]exture
coordinates and 4 unsigned byte r,g,b,a members for the [c]olor.
The hope is that people will find these convenient enough to replace
cogl_polygon.
This adds convenience primitive constructors named like:
cogl_primitive_new_p3 or
cogl_primitive_new_p3c4 or
cogl_primitive_new_p3t2c4
where the letters correspond to the interleved vertex attributes layouts
such as CoglP3Vertex which is a struct with 3 float x,y,z members for
the [p]osition, or CoglP3T2C4Vertex which is a struct with 3 float x,y,z
members for the [p]osition, 2 float s,t members for the [t]exture
coordinates and 4 unsigned byte r,g,b,a members for the [c]olor.
The hope is that people will find these convenient enough to replace
cogl_polygon.
A CoglPrimitive is a retainable object for drawing a single primitive,
such as a triangle strip, fan or list.
CoglPrimitives build on CoglVertexAttributes and CoglIndices which
themselves build on CoglVertexArrays and CoglIndexArrays respectively.
A CoglPrimitive encapsulates enough information such that it can be
retained in a queue (e.g. the Cogl Journal, or renderlists in the
future) and drawn at some later time.
A CoglPrimitive is a retainable object for drawing a single primitive,
such as a triangle strip, fan or list.
CoglPrimitives build on CoglVertexAttributes and CoglIndices which
themselves build on CoglVertexArrays and CoglIndexArrays respectively.
A CoglPrimitive encapsulates enough information such that it can be
retained in a queue (e.g. the Cogl Journal, or renderlists in the
future) and drawn at some later time.
A CoglVertexAttribute defines a single attribute contained in a
CoglVertexArray. I.e. a CoglVertexArray is simply a buffer of N bytes
intended for containing a collection of attributes (position, color,
normals etc) and a CoglVertexAttribute defines one such attribute by
specifying its start offset in the array, its type, the number of
components and the stride etc.
A CoglVertexAttribute defines a single attribute contained in a
CoglVertexArray. I.e. a CoglVertexArray is simply a buffer of N bytes
intended for containing a collection of attributes (position, color,
normals etc) and a CoglVertexAttribute defines one such attribute by
specifying its start offset in the array, its type, the number of
components and the stride etc.
CoglIndices define a range of indices inside a CoglIndexArray. I.e. a
CoglIndexArray is simply a buffer of N bytes and you can then
instantiate multiple CoglIndices collections that define a sub-region of
a CoglIndexArray by specifying a start offset and an index data type.
CoglIndices define a range of indices inside a CoglIndexArray. I.e. a
CoglIndexArray is simply a buffer of N bytes and you can then
instantiate multiple CoglIndices collections that define a sub-region of
a CoglIndexArray by specifying a start offset and an index data type.
This adds a new CoglVertexArray object which is a subclass of CoglBuffer
used to hold vertex attributes. A later commit will add a
CoglVertexAttribute API which will be used to describe the attributes
inside a CoglVertexArray.
This adds a new CoglVertexArray object which is a subclass of CoglBuffer
used to hold vertex attributes. A later commit will add a
CoglVertexAttribute API which will be used to describe the attributes
inside a CoglVertexArray.
A CoglIndexArray is a subclass of CoglBuffer and will be used to hold
vertex indices. A later commit will add a CoglIndices API which will
allow describing a range of indices inside a CoglIndexArray.
A CoglIndexArray is a subclass of CoglBuffer and will be used to hold
vertex indices. A later commit will add a CoglIndices API which will
allow describing a range of indices inside a CoglIndexArray.
This adds an internal mechanism to mark that a buffer is in-use so that
a warning can be generated if the user attempts to modify the buffer.
The plans is for the journal to use this mechanism so that we can warn
users about mid-scene modifications of buffers.
This adds an internal mechanism to mark that a buffer is in-use so that
a warning can be generated if the user attempts to modify the buffer.
The plans is for the journal to use this mechanism so that we can warn
users about mid-scene modifications of buffers.
We now make _cogl_buffer_bind return a base pointer for the bound buffer
which can be used with OpenGL. The pointer will be NULL for GPU based
buffers or may point to an malloc'd buffer. Since OpenGL expects an
offset instead of a pointer when dealing with buffer objects this means
we can handle fallback malloc buffers and GPU buffers in a consistent
way.
We now make _cogl_buffer_bind return a base pointer for the bound buffer
which can be used with OpenGL. The pointer will be NULL for GPU based
buffers or may point to an malloc'd buffer. Since OpenGL expects an
offset instead of a pointer when dealing with buffer objects this means
we can handle fallback malloc buffers and GPU buffers in a consistent
way.
This allows _cogl_material_flush_gl_state to bail out faster if
repeatedly asked to flush the same material and we can see the material
hasn't changed.
Since we can rely on the material age incrementing when any material
property changes or any associated layer property changes then we can
track the age of the material after flushing so it can be compared with
the age of the material if it is subsequently re-flushed. If the age is
the same we only have to re-assert the texture object state.
This allows _cogl_material_flush_gl_state to bail out faster if
repeatedly asked to flush the same material and we can see the material
hasn't changed.
Since we can rely on the material age incrementing when any material
property changes or any associated layer property changes then we can
track the age of the material after flushing so it can be compared with
the age of the material if it is subsequently re-flushed. If the age is
the same we only have to re-assert the texture object state.
MaterialNodes are used for the sparse graph of material state and layer
state. In the case of materials there is the idea of weak materials that
don't take a reference on their parent and in that case we need to be
careful not to unref our parent during
_cogl_material_node_unparent_real. This adds a has_parent_reference
member to the CoglMaterialNode struct so we now know when to skip the
unref.
MaterialNodes are used for the sparse graph of material state and layer
state. In the case of materials there is the idea of weak materials that
don't take a reference on their parent and in that case we need to be
careful not to unref our parent during
_cogl_material_node_unparent_real. This adds a has_parent_reference
member to the CoglMaterialNode struct so we now know when to skip the
unref.
If there is private data associated with a CoglObject then there may be
a user_data_array that needs to be freed. The code was mistakenly
freeing the array inside the loop that was actually iterating over the
user data array notifying the objects destruction instead of waiting
until all the data entries had been destroyed.
If there is private data associated with a CoglObject then there may be
a user_data_array that needs to be freed. The code was mistakenly
freeing the array inside the loop that was actually iterating over the
user data array notifying the objects destruction instead of waiting
until all the data entries had been destroyed.
Once an actor had _clutter_stage_queue_redraw_entry_invalidate()
called on it once, then priv->queue_redraw_entry would point to
an entry with entry->actor NULL. _clutter_stage_queue_actor_redraw()
doesn't handle this case and no further redraws would be queued.
To fix this, NULL out priv->queue_redraw_entry() and then make sure
we free the invalidated entry in
_clutter_stage_maybe_finish_queue_redraws() just as we do for
still valid entries.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2389