The input region currently only gets scaled by the surface
scale while ignoring the output scale, which causes input events to not get
delivered correctly for clients on hidpi screens. So take the output scale
into account when doing so.
https://bugzilla.gnome.org/show_bug.cgi?id=739161
This commit is wrong, it assumes that the scale only applies to the one
set by the client but its not. meta_surface_actor_wayland_scale_texture
also handles the output scale. Revert the commit to fix hidpi for wayland
clients like weston-terminal.
This reverts commit 0364ea9140.
https://bugzilla.gnome.org/show_bug.cgi?id=739161
The key event should be interpreted by clients with the modifier state
as it was before the event itself just as in X11 input events.
Achieving this in wayland is a matter of sending the key event first
and the modifiers after (if needed).
This isn't really specified in the wayland protocol but it matches
weston's behavior and should avoid corner cases in clients.
https://bugzilla.gnome.org/show_bug.cgi?id=738238
This reverts commit 33acb5fea0.
The issue here is that the pointer actor does not actually get reset
when the actor's reactivity changes, so we end up with stale picks after
actors are destroyed.
I have a local patch to Clutter for this, but I don't have time to
submit it upstream, so let's just use the ugly code for now.
This reverts commit e496ed50d6.
This was incorrect. wl_surface_destructor actually does the full repick
-- doing it here is dangerous, because the destroy listeners actually
run *before* the destructor, not after, so the surface is still alive.
We never want to send pressed keys to wayland clients on enter. The
protocol says that we should send them, presumably so that clients can
trigger their own key repeat routine in case they are given focus and
a key is physically pressed.
Unfortunately this causes some clients, in particular Xwayland, to
register key events that they really shouldn't handle, e.g. on an
Alt+Tab keybinding, where Alt is released before Tab, clients would
see Tab being pressed on enter followed by a key release event for
Tab, meaning that Tab would be processed by the client when it really
shouldn't.
Since the use case for the pressed keys array on enter seems weak to
us, we'll just fake that there are no pressed keys instead which
should be spec compliant even if it might not be true.
https://bugzilla.gnome.org/show_bug.cgi?id=727178
It only contained a pointer to a wl_resource, which isn't much of
value. Just replace it with the wl_resource instead. Any future private
data should be handled by our future role system.
The actor is updated on DnD grab motion events, properly notified
when dragging finishes, and destroyed if the client/surface disappear
below its feet.
Keeping track of the surface will be necessary in case it is destroyed
during DnD, and the coordinates will be useful when figuring out the
snap back coordinates.
When grabbing with DND, we need to leave the pointer alone and
under the client's control. The code here was a bit messy before about
when it unset the window cursor -- it did it whenever there was no
current surface after repicking, which is a bit wrong, since it will
fire during a drag grab.
Move the check for this to update_cursor_surface, which is our standard
"sync" API for this, and then call update_cursor_surface after we set
the focus.
During a DND grab, pointer->focus_surface is NULL, since the wl_pointer
doesn't have any focused surface (it's in drag mode). In this case, the
drag interface has control of the focus, and when dragging into a NULL
surface, drag_grab_focus won't get called, properly detaching it from
the previous surface.
Let the interface->focus implementation do the fizzling out.
In the future, we should split out wl_pointer's implementation
(pointer->focus_surface) from the Wayland side of the generic pointer
wrapper (pointer->current) and use our event routing system to determine
or similar whether it should go to wl_pointer or wl_data_device.
Some applications, like totem, create keyboard/pointer objects from the
same client, and expect it to work. We made this work a while ago, but
due to an oversight in the code, we increment the serial on button press
for every resource that we need to send events to.
Since operations like move/resize use the grab serial of the devices to
determine whether the operation is exact, we need to make sure the same
serial goes to all devices.
Restructure the code so that all that's in the resource loop is the
sending of the event -- all the calculation that's needed happens
outside.
This fixes moving / resizing the Totem window not working sometimes.
https://bugzilla.gnome.org/show_bug.cgi?id=736840
The fix in d61dde1 regressed the position of popup windows, since the
size was 0x0 when we wanted to do a sole move. Only fizzle out in the
path where we actually *do* resize.
https://bugzilla.gnome.org/show_bug.cgi?id=736812
We only broadcast input to the focus_resource_list, so we need to make
sure it's put in the proper list on startup.
This fixes input not working for windows when they first appear.
Argh. There's always more stuff to fix with keyboard/pointer. Every
single time I think I've fixed it, more stuff pops up.
GTK+ requests get_xdg_surface before attaching a buffer, and since it
might take a long time for GTK+ to get around to attaching a buffer and
committing it, our idle for MOVE_RESIZE will kick in beforehand.
And our idle will try to resize the 0x0 window that currently exists,
constrain it to 1x1, which will send a configure event of 1x1 to the
window while it boots up, causing it to awkwardly resize to the minimum
size of the window.
Make sure that in this case, our idle doesn't cause any problems, and
that we fizzle out any idles like this.
The "proper" way to do this would be to delay the creation of the
MetaWindow until a surface is committed, but that's difficult for a
variety of reasons, and might cause unintended issues with focus.
The last_sent size is effectively what size we should send in configure
requests where the size hasn't changed. Thus, if an app commits a new
size, we need to make sure we respect it and don't reconfigure it with
a size it wasn't expecting when the state changes.
This fixes apps being sent a configure event with 0, 0 on startup,
which was confusing Clutter into displaying a 0x0 viewport.
Windows can be freed at some point after they are unmanaged - because
there is an effect in progress, because a language binding is holding
a reference. Therefore, we need to clean up the later to associate
the xwayland and wayland windows deterministically in an "unamanaged"
handler.
https://bugzilla.gnome.org/show_bug.cgi?id=736694
g_idle_add() makes no guarantee about when it will be run - if Mutter
is busy drawing and blocking glXSwapBuffers() it could happen only
minutes later. Use meta_later_add (META_LATER_BEFORE_REDRAW) instead -
this will deterministically be run after the Wayland socket is read
from but before the next frame is painted.
https://bugzilla.gnome.org/show_bug.cgi?id=736694
Putting X windows and pointers to MetaWindows into a union had a number of
problems:
- It caused awkward initialization and conditionalization
- There was no way to refer to Wayland windows (represented by
MetaWindow *) in the past, which is necessary for the MetaStackTracker
algorithms
- We never even cleaned up old MetaStackWindow so there could be
records in MetaStackWindow pointing to freed MetaWindow.
Replace MetaStackWindow with a 64-bit "stack ID" which is:
- The XID for X Windows
- a "window stamp" for Wayland windows - window stamps are assigned
for all MetaWindow and are unique across the life of the process.
https://bugzilla.gnome.org/show_bug.cgi?id=736559
Add private functions for the test framework to use to find out the
wayland and x11 display names, so they can set up the environment for
children.
https://bugzilla.gnome.org/show_bug.cgi?id=736505
It's possible for a released pointer to have repick / set_focus on it as
part of sync_input_focus. When the pointer is actually re-init'd, it
will memset 0, which can cause corruption as our destroy listener has
already been added.
Released devices should be idempotent, so just make sure method calls on
them don't have any effect.
A wl_surface may have a wl_subsurface interface, but no buffers attached
yet, even though the geometry calculation code for surfaces/subsurfaces
assumes everything has already a buffer.
Just skip subsurfaces that don't have a buffer, those can't be set
a geometry yet, and right now it's crashing accessing the texture from
the NULL surface->buffer.
https://bugzilla.gnome.org/show_bug.cgi?id=735452
This makes it so that MetaSurfaceActorWayland is effectively just a
wrapper actor around MetaShapedTexture with some extra scaling. I think
the MetaSurfaceActor subclassing was a bad idea -- we really should have
these abstractions in much higher levels in the stack than the
compositor.
It doesn't make sense to update it in the surface actor. It's also
theoretically wrong to update the buffer's texture on surface commit,
too, because it's buffer state, not surface state, but I don't think
there's any place we use a wl_buffer without a wl_surface.
The initialization sequence before was quite icky, initializing Clutter
in a few different places depending on what was going on.
Put that all back into main.c
MetaGrabOp is painful and tedious to work with, because it's a
sequential series of values, meaning we have to use a giant unreadable
switch statement to figure out some basic things about the value.
To solve this, modify the encoding for MetaGrabOp and for the specific
window grab operations so that they're a set of bitflags that we can
easily check.
We've long used a switch statement on the grab operation to determine
where events should go. The issue with MetaGrabOp is that it's a mixture
of a few different things, including event routing, state management,
and the behavior to choose during operations.
This leads to poorly defined event routing and hard-to-follow logic,
since it's sometimes unclear what should point where, and our utility
methods for determining grab operations apart can be poorly named.
To fix this, establish the concept of a "event route", which describes
where events should be routed to.
Refuse to create a touch resource if we don't have the capability
(for misbehaving clients), and don't attempt to use touch data
structures that are not initialized.
This is a terrible hack. We need to figure out a better way to do
interactive resizes.
This fixes weird resizing from the left bugs when using GTK+, which is
really slow at acking configures.
This is an easy way to get into an infinite loop where we're constantly
re-sending stuff to the window. If it worked once, it probably won't
work again.
We assume in meta_window_wayland_move_resize that the next commit that
changes the geometry will always be for our next pending operation, so
if we have a move pending on a resize, the next commit will trigger the
move. This is, of course, fundamentally wrong.
We broke this assumption even more now that we don't fizzle out calls to
meta_window_move_resize_internal and now call it on every commit, which
means that a simple damage and then commit would complete a pending
move.
This was even broken by apps like weston-terminal, which, when clicking
on the maximize button, first redraws the terminal with the maximize
button state back on hover on press, and would only redraw when it got
the configure event with the coordinates.
To track the correct commit to apply the move for, we implement the
ack_configure request and ignore all move/resizes that happen before
that.
Right now, we actually fizzle out the entire move/resize if there's a
future pending configure we're waiting on.
The grabbing state is now checked for both pointer/touch devices
within the seat, and the grab start coordinates returned by
meta_wayland_seat_get_grab_info().
https://bugzilla.gnome.org/show_bug.cgi?id=733631
The capability flags are determined from the device types of the slave devices
that are currently attached. This also happens whenever a device is added or
removed, so the capabilities are kept up to date, and clients know about these.
On VT switch, all slave devices are temporarily removed, so the cascade of
signals will make the seat end up with capabililities=0 while input is suspended.
https://bugzilla.gnome.org/show_bug.cgi?id=733563
Anytime the keymap is changed, either directly, or indirectly through the
keyboard capability being released/initialized, there should be a
notification of the modifiers being changed too.
https://bugzilla.gnome.org/show_bug.cgi?id=733563
Otherwise the focus_surface_listener list element becomes stale, and then
mangled if the devices' data is initialized again, and the memory memset().
https://bugzilla.gnome.org/show_bug.cgi?id=733563
This doesn't match what Weston does. I don't know of any apps that this
fixes (we don't have any apps that even use non-zero dx/dy, I don't
think), but this is part of a cleanup for window geometry.
When frame extents change, we might not update the frame rect, but the
buffer rect still needs to be updated. Split out the check for this to
be independent of the check for the frame rect.
This fixes issues that could happen when the window was maximized while
it was in the top-left corner.
The output_id is more of an opaque identifier for the monitor, based on
its underlying ID from the windowing system. Since we also use the term
"output_id" for the output's index, rename our use of the opaque cookie
"output_id" to "winsys_id".
When we changed the setting of the buffer rect to be inside the moving
code to make sure it was updated in places we were moving directly
without any round-trip needed, I removed a code to set the buffer rect
without remembering that's where the size of it was updated.
Add back the code to update the buffer rect.
This fixes Wayland windows not appearing.
It returns FALSE when button_count is not 0. But grabbing for
move/resize is activated by clicking the button, so this condition
disallows the wayland clients to be moved/resized.
https://bugzilla.gnome.org/show_bug.cgi?id=731237
Rather than calculate it speculatively with the current properties
which may be too new or too out of date, make sure it always fits
with the proper definition. We update it when we update the toplevel
window for X11, and when a Wayland surface is committed with a newly
attached buffer.
There is no way this value will ever be read, because we set the
cursor_surface to NULL, this is set at the same time as cursor_surface,
and it's only read if cursor_surface is non-NULL.
Clutter touch events are translated into events being sent down
the interface resource, with the exception of FRAME/CANCEL events,
which are handled directly via an evdev event filter.
The seat now announces invariably the WL_SEAT_CAPABILITY_TOUCH
capability, this should be eventually updated as devices come and
go.
The creation of MetaWaylandTouchSurface structs is dynamic, attached
to the lifetime of first/last touch on the client surface, and only
if the surface requests the wl_touch interface. MetaWaylandTouchInfo
structs are created to track individual touches, and are locked to
a single MetaWaylandTouchSurface (the implicit grab surface) determined
on CLUTTER_TOUCH_BEGIN.
https://bugzilla.gnome.org/show_bug.cgi?id=724442
Smooth scroll event vectors from clutter have the same dimensions as the
ones from from Xi2, i.e. where 1.0 is 1 discrete scroll step. To scale
these to the coordinate space used by wl_pointer.axis
vertical/horizontal scroll events, multiply the vector by 10.
https://bugzilla.gnome.org/show_bug.cgi?id=729601
The last commit added support for the "appmenu" button in decorations,
but didn't actually implement it. Add a new MetaWindowMenuType parameter
to the show_window_menu () functions and use it to ask the compositor
to display the app menu when the new button is activated.
https://bugzilla.gnome.org/show_bug.cgi?id=730752
The requested_rect is a strange name for it, because it's not actually
the rect that the user or client requested all the time: in the case of
a simple move or a simple resize, we calculate some of the fields
ourselves.
To the MetaWindow subclass implementations, it just means "the rect
before we constrained it", so just use the name unconstrained_rect.
This also makes it match the name of the MetaWindow field.
Realistically, the user rect contains the unconstrained window
rectangle coordinates that we want to be displaying, in case
something in the constraints change.
Rename it to the "unconstrained_rect", and change the code to always
save it, regardless of current state.
When metacity was originally being built, the purpose of the user
rect was a lot less clear. The code only saved it on user actions,
with various other calls to save_user_window_placement() and a force
mechanism sprinkled in to avoid windows being snapped back to odd
places when constraints changed.
This could lead to odd bugs. For instance, if the user uses some
extension which automatically tiles windows and didn't pass
user_action=TRUE, and then the struts changed, the window would be
placed back at the last place a user moved it to, rather than where
the window was tiled to.
The META_IS_USER_ACTION flag is still used in the constraints code
to determine whether we should allow shoving windows offscreen, so
we can't remove it completely, but we should think about splitting
out the constrainment policies it commands for a bit more
fine-grained control.
https://bugzilla.gnome.org/show_bug.cgi?id=726714
The default focus interface uses the button count to determine
whether we should update the pointer focused surface. When releasing
an implicit grab, we need to send the button release events to the
implicitly grabbed surface, so we can't reset the focus surface too
soon. We already explicitly set the focus at the end of implicit
grabs, so counting the buttons after is perfectly fine.
If we send out a configure notify for a window and then have some
other kind of state change, we need to make sure that we continue
to send out that new size, rather than the last size the client
sent us a buffer for.
In particular, a client might give us a 250x250 buffer and then
immediately request fullscreen. We send out a configure for the
monitor size and a state that tells it it's full-screen, but then
it takes focus, and since the client hasn't sent us a buffer for
the new size, we tell it it's fullscreen at 250x250.
Fix this.
If we attach to a MetaWindow that disappears before the idle fires,
we'll notice that we can't associate the window properly again and
try to access data on the MetaWindow struct, which might crash.
Install a weak ref that ties the lifetime of the idle to the lifetime
of the MetaWindow.
It seems every GTK+ app does this for some reason at startup. This
is really unfortunate, since we'll have to create and destroy a new
MetaWindow really quickly.
Scale surfaces based on output scale and the buffer scale set by them.
We pick the scale factor of the monitor there are mostly on.
We only handle native i.e non xwayland / legacy clients yet.
https://bugzilla.gnome.org/show_bug.cgi?id=728902
Advertise the scale factor on the output and transform pointer and damage
events as well as input and opaque regions for clients
that scale up by themselves i.e use set_buffer_scale.
We do not scale any 'legacy' apps yet.
https://bugzilla.gnome.org/show_bug.cgi?id=728902
Ugh. So in the fullscreen case, we need to make sure to specify that
it's a MOVE_ACTION so that we move to the saved position, but we
can't do that in the resizing case since we need to use the resized
rectangle.
The flags are really hurting us here. Perhaps we should make it the
client's responsibility to specify a complete rectangle which we
could resize to; then the weird-o logic would be self-contained in
each front-end.
I'm not convinced this covers all cases, especially when we could have
a dangling weird state pointer, but it fixes our existing two testcases.
Restoring the position in our move_resize_internal implementation
is too late. We need to do it at ack-time, before we hand off the
new position to the constraints code.
For the server-initiated resize case, like unmaximize or some forms
of tiling, we dropped the x/y of the server-assigned rectangle on the
floor, which meant the surface didn't move to where it needed to be in
that case. Now, save it internally, and combine it with the dx/dy passed
in during attaches to figure out where we actually need to be.
Make sure to only use it for when we send out a configure notify. We
should use the passed in rectangle for other scenarios, like a
client-initiated resize.
This fixes incorrect surface placement after unmaximization.
For the server-initiated resize case, like unmaximize or some forms
of tiling, we dropped the x/y of the server-assigned rectangle on the
floor, which meant the surface didn't move to where it needed to be in
that case. Now, save it internally, and combine it with the dx/dy passed
in during attaches to figure out where we actually need to be.
This fixes incorrect surface placement after unmaximization.
Looking at the code paths where is_mouse / is_keyboard are used,
all of them should never be run when dealing with a COMPOSITOR
grab op, since they're filtered out above or the method is just
never run during that time.
It's confusing that COMPOSITOR is in here, and requires us to
be funny with other places in code, so just take it out.
pointer->current needs to always be the surface under the pointer,
even when we have a grab. We do need to make sure we keep the focus
surface the same even when we have a grab, though, so add logic
for that.
In order to correctly fix the issue to make sure we only set the
focused surface to NULL during a grab, but not the current surface,
we need to merge update_current_surface back into repick_for_event
so we have more control over the behavior here.
... not when we do an update.
We only repick when we handle events, not when we update. Perhaps
this is a mistake.
Since update runs before handle_event, this means that when we
drop a grab, update will notice the NULL surface, since we haven't
repicked after the event, and then we'll repick the correct surface.
The end result is that you see a root cursor after a grab ends,
rather than the correct window cursor.
This doesn't fix it, since the current surface becomes NULL when
we start the grab. But it does make the code here more correct when
we fix that bug.
I was talking with other people and they became confused at the
term "double-buffered", since we were also talking about
double-buffering in general, e.g. swapping between two buffers.
Instead, we'll adapt the "pending state" nomenclature that we
already use for the field / variable names.
If we have a focused surface, we need to eat up key events, not
just if we have a non-empty focus resource list. The latter would
happen if we have a focused client but it never called get_keyboard.
The latest Xorg / Xwayland has support for -displayfd being used
in conjunction with an explicit display number. Use that to know
when the X server is ready, rather than UNIX signals, because
they're UNIX signals.
If we're sending out a configure event, we can't immediately move the
window; we need to instead wait to apply the new position when the
client sends a new buffer.
dx/dy should be against the regular window's rect, and need to
be ignored when we're resizing. Instead, we use gravity to anchor
the window's new rectangle when resizing.
Sophisticated clients, like those using ClutterGtk, will have more
than one focused resource per client, as both Clutter and GDK will
ask for a wl_pointer / wl_keyboard. Support this naturally using
the same "hack" as Weston: multiple resource lists, where we move
elements from one to the other.
In order to support multiple pointers for the same client, we're
going to need to kill it.
This will cause crashes for now, but will be fixed by the next
commit.
default_grab_focus tries to add implicit grab semantics where
focus won't take effect if there's a pointer button down. This
is not what we want for popup grabs at all, as it's perfectly
valid to want to drag on a menu while there's a button down.
The idea here is that while we take a WM-side grab, like a compositor
grab or a resizing grab, we need to remove the focus from the Wayland
client.
We make a special exception for CLICKING operations, because these
are really an internal state machine while you're pressing on a button
inside a frame, and in this case, we need to not kill the focus.
Really, it is a special case. When the subsurface is synchronous,
commit changes meaning from being applied immediately to being
queued up for replay later. Handle this explicit special case
with an explicit special case in the code.
This means that in all other paths, we can unconditionally
apply the actor immediately.
Even when it doesn't have a role.
This fixes cursors not quite working right, as they're a "detached"
surface without a role since nobody called set_cursor on them yet.
Instead of using commit_attached_buffer / actor_surface_commit.
We want to kill the return values of these methods because we
really should always be calling them, even if the surface doesn't
have a role.
This is also something that we did upstream. Since we want to
introduce an explicit "xdg_transient" window type for tooltips
and popovers, and since "transient_for" is a confusing dumb
80s term lifted from the ICCCM spec, just rename it.
This was changed upstream a little while ago for C++ compatibility.
It's also the more common term for the operation: you close a window,
you don't delete one. In fact, a delete event might seem like it
would be about resource management instead.