In profilers with a timeline or flame graph views it is a very common
scenario that a span name must be displayed in an area too short to fit
it. In this case, profilers may implement automatic shortening to show
the most important part of the span name in the available area. This
makes it easier to tell what's going on without having to zoom all the
way in.
The current trace span names in Mutter don't really follow any system
and cannot really be shortened automatically.
The Tracy profiler shortens with C++ in mind. Consider an example C++
name:
SomeNamespace::SomeClass::some_method(args)
The method name is the most important part, and the arguments with the
class name will be cut if necessary in the order of importance.
This logic makes sence for other languages too, like Rust. I can see it
being implemented in other profilers like Sysprof, since it's generally
useful.
Hence, this commit adjusts our trace names to look like C++ and arrange
the parts of the name in the respective order of importance.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3402>
Group all the three config files from clutter/cogl/meta into one
and also remove unnused configurations and replace duplicated ones
This also fixes Cogl usage of HAS_X11/HAS_XLIB to match the expected
build options
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3368>
We don't actually need the host to be a container, so simply work on
actors saving us a few casts.
This'll simplify dropping ClutterContainer entirely later, and
StViewport/ShellWindowPreviewLayout will also need to be updated for the
new signatures
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3384>
- Make Texture a parent GObject class and move the vtable funcs as vfuncs
instead of an interface as we would like to have dispose free the TextureLoader.
- Make the various texture sub-types inherit from it.
- Make all the sub-types constructors return a CoglTexture instead of their respective
specific type. As most of the times, the used functions accept a CoglTexture,
like all the GTK widgets constructors returning GtkWidget.
- Fix up the basics of gi-docgen for all these types.
- Remove CoglPrimitiveTexture as it is useless: It is just a texture underhood.
- Remove CoglMetaTexture: for the exact same reason as above.
- Switch various memory management functions to use g_ variant instead of the cogl_ one
Note we would still want to get rid of the _cogl_texture_init which is something
for the next commit
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3193>
This used to be the HW device that triggered the crossing (i.e.
the mouse moving the pointer, etc), or the logical device if the
crossing event happened through other means than input device
events, e.g. relayouts.
The move to ClutterEvent constructors went a bit too far in
the simplifications and broke these expectations for input-generated
crossing events.
Make this event constructor behave like the other events: receive
a source device, and figure out the corresponding logical device from
there. Also pass the source device as it'd be expected, in the
input-induced crossing event generation paths.
Fixes: a8c62251f8a ("clutter: Port stage crossing events to new constructors")
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2981
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3256>
The stage has the knowledge about input that is ongoing over it
(incl. things like styli and touchpoints). Add an iterator API
for these devices/touchpoints, so they can be used for calculations
and heuristics in other places of the code.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3059>
The assertion for !implicit_grab_cancelled in the
`grab_actor == old_grab_actor` case of
clutter_stage_notify_grab_on_pointer_entry() is meant to do a simple
sanity-check to ensure the grab machinery is working as intended: During a
seat grab, all input gets delivered to the tree inside the grab, and all
implicit grabs outside of that tree are cancelled.
When a new seat grab on the same actor as the existing one happens, we run
through the cancellation machinery for implicit grabs anyway, so we might as
well check that the assumption mentioned above holds true: By asserting that
no implicit grabs were cancelled, we know that no implicit grabs exist
outside of the existing seat grab tree.
This assertion is slightly over-eager though due to the way we set
implicit_grab_cancelled: We initialize it to TRUE in the
entry->press_count > 0 case and then only set it to FALSE once we find an
implicit grab that may remain active. If there are no implicit grabs though
(while entry->press_count is still >0), we never set implicit_grab_cancelled
to FALSE, triggering the assertion in question even though no implicit grabs
got cancelled.
There's two possible solutions for this: Either dropping the assertion, or
refactoring it so it observes the situation where the implicit grabs were
already undone. This commit implements the latter.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2700
Fixes: debbd88f8c8 ("clutter/stage: Cancel parts of implicit grabs when ClutterGrabs happen")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3216>
Adds va_marshallers to the ClutterStage signals. This allows for better
stack traces to be retrieved when profiling. Additionally, since the
generic marshaller was using GBoxedCopy/GBoxedFree functions for the
GValue usage, the previous code was acquiring a global reader/writer
lock in GObject via g_boxed_free() usage.
With G_SIGNAL_TYPE_STATIC_SCOPE, the generated marshallers can avoid
the additional copy/free on the instance.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3204>
The device/sequence may not currently have a set of coordinates to return.
We correctly leave the out values uninitialized, but don't tell the upper
layers in any way.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3183>
Add methods, and change the API of some rarely used methods, in order
to make all event info currently held/necessary accessible through
ClutterEvent getters, instead of direct field access.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3153>
This adds some plumbing to get the "default" paint flags for regular
stage painting, where one either wants to paint the overlay, or not.
If inhibited, the 'no-cursors' paint flag is used, otherwise the 'none'
flag. This will be used to allow having a per stage view hw cursor
state.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2777>
An input only grab is a ClutterGrab on the stage that doesn't have an
explicit actor associated with it. This is useful for cases where event
should be captured as if focus was stolen to some mysterious place that
doesn't have anything in the scene graph that represents it.
Internally, it's implemented using a 0x0 sized actor attached directly
to the stage, and a clutter action that consumes the events. An
input-only grab takes a handler, user data and a destroy function for
the user data. These are handed to the ClutterAction, which handles the
actual event handling.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2628>
The drag actors were practically unused, and became wholly
unused API with commit eb6e1f694a. There is no provision for
using this in the future, so drop this internal API.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3058>
This will consist of device-added events, meaning before init finishes,
we can derive some state that depends on the set of input devices
available on startup, such as cursor visibility.
This avoids cursor visibility switching between hidden and visibility
during startup.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3070>
We're using clutter_stage_schedule_update() now from ClutterActor to kick
off the stage updating machinery when a redraw needs to happen.
This introduced a bunch of unnecessary calls to
clutter_stage_schedule_update() and thus
clutter_stage_view_schedule_update() when multiple actors request redraws
during the same stage update cycle, which is a very common case.
Cut off all those unnecessary calls by bailing out in
clutter_stage_schedule_update() when updates are already queued.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2679>
So far our logic for queueing redraws goes like this: Actor notices that it
needs to redraw -> actor tells stage that it needs to redraw via
clutter_stage_queue_actor_redraw() -> stage collects more and more redraws
into a QueueRedrawList before the actual stage update happens -> when
that happens, the stage collects the actual redraw clips from the actors via
clutter_actor_get_redraw_clip().
The logic behind this QueueRedrawList was that by storing a list of
redraw entries on the stage, way we can avoid traversing the whole actor
tree one more time to build the redraw clip before the stage update.
These days we have clutter_actor_finish_layout() though, which is basically
exactly that, a whole actor tree traversal that happens before every stage
update.
Since we have that now, we might as well get rid of the whole dance back and
forth between ClutterStage and ClutterActor, and simply merge the logic to
queue redraws into the finish-layout step.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2679>
When building mutter with -Ddebug=false, a warning appears, that
`ClutterStagePrivate *priv` is unused.
Simply remove this variable and directly use `stage->priv` in
`CLUTTER_NOTE` to get rid of this warning.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3046>
For now, it goes the "easy" way of creating the root node and
immediately painting and destroying it. From now on, the main
root node is created only by ClutterStage itself.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3007>
This aims to reduce the amount of pixels that have to be redrawed on the
screen on a clipped actor redraw in case using the union of two
different clips in a surface will substantially increase the redrawn
area.
This should not result in excessive memory consumption as callers of
`clutter_actor_queue_redraw_with_clip` are expected to ensure that the
redraw clip rectangles are adequately deduplicated.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2965>
For motion-induced crossing events, this will be the device that generated
the motion. For code-induced crossing events (e.g. grabs or actors disappearing)
this will be none.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2828>
A ClutterGrab takes precedence over implicit grabs, so when one happens,
let's check which part of the implicit grab tree is inside the new
ClutterGrab. Cancel and remove the parts which aren't, and if nothing
is in there anymore, cancel the whole implicit grab.
Emitting crossing events correctly here is getting quite tricky:
- When the implicit grab didn't get cancelled by the ClutterGrab, we
simply want to emit all GRAB_NOTIFY crossings to the implicit grab, as
we do with all other crossings.
- When the implicit grab did get cancelled and the new ClutterGrab wants
to emit ENTER crossings, we want those to be emitted to the actual
targets, so cancel the implicit grab before emission.
- In the last case where the implicit grab did get cancelled and the new
ClutterGrab wants to emit LEAVE crossings, those should be emitted to
the implicit grab again, so we cancel the grab only after the emission
of those.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2342>
Now that we have two kinds of grabs, the intricacies of event delivery
got slightly more complicated. So this seems like a good point to
introduce a new GRABS debug flag that gives an overview of which grabs
are currently in effect.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2342>
We're almost there, everything is in place to notify ClutterActions
about a sequence getting pulled away under its feet.
The only thing that's missing is the actual notification to actions now,
so let's do that.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2342>
Another baby step just like the last commit: This commit takes care of
the opposite case: An action handling a sequence event stops further
emission of events to actors.
Since sequences remain around for longer than the context of just a
single event, it makes sense to provide a way to "claim" those sequences
even when outside of event handling context, so introduce API for that.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2342>
As soon as any event of a sequence is handles/stopped during emission,
all actors and actions that would have gotten to see it afterwards have
a big problem: If that event was a TOUCH_END event, the actor/action is
forever going to think that this touch is still active.
For ClutterActions, we're going to handle this by introducing a way to
send them a notification when stuff like this happens.
As a baby step towards all that, make event emission exclusive to actors
as soon as any actor stopped an event.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2342>
We'll soon introduce a new gesture tracking framework which heavily
depends on ClutterActions seeing all events of a sequence. For this to
work, a larger change to event delivery is needed: Implicit grabbing of
all events for button and touch press->motion->release sequences to
ensure ClutterActions continue receiving events for the whole sequence.
This commit takes care of that: At the start of an event sequence we
collect all the event-handling actors and actions to a GArray that lives
in the PointerDeviceEntry, and then deliver all events belonging to
that sequence to the same actors/actions until the sequence ends.
To avoid events getting pulled from under our feet when mutters event
filter returns CLUTTER_EVENT_STOP, this also introduces private API
(maybe_lost_implicit_grab()) on ClutterStage so that we can't end up
with stale sequences.
Note that this also slightly changes behavior when it comes to event
delivery to actions: Because we now store actions separated from their
actors, any action returning CLUTTER_EVENT_STOP now stops event
propagation immediately. That was different before, where we'd emit
events to all actions of the actor and only then stop propagation.
Note that this isn't handling ClutterGrabs correctly right now,
this will be a little tricky, so we'll take care of that in a future
commit.
To handle actors getting destroyed or unmapped during a grab, listen to
notify::grab on the deepmost actor in the implicit grab tree. This gives
us a notification when any actor inside the tree goes unmapped.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2342>