This is already taken care of in meta_backend_monitors_changed(), called
from the same code paths that emit ::monitors-changed-internal. It is
better to leave this up to backend internals.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1448
We only did this if we weren't currently doing an interactive resize,
but since the finish_move_resize() is not the actual interactive resize
but the acknowledgment of the configure event that was emitted as a
result, we shouldn't limit ourself to the same flags used during resize.
This fixes temporarly "stuck" position of attached modal dialogs while
they are being resized.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1163https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1446
In X, buttons 1, 2, 3 are left, middle, right. In evdev, the order is
BTN_LEFT, BTN_RIGHT, BTN_MIDDLE. So setting a scroll button to 2 gave us a
middle button in the X session and a right button in a wayland session.
Fix that by hard-coding the LMR buttons handling.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1433
Even when a direct client buffer has a compatible format, stride and
modifier for direct scanout, drmModePageFlip() may still fail sometimes.
From testing, it has been observed that it may seemingly randomly fail
with ENOSPC, where all subsequent attempts later on the same CRTC
failing with EBUSY.
Handle this by falling back to flipping after having composited a full
frame again.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1410
If there is no laptop panel (for example on a desktop PC or a virtual
machine), attempting to put a NULL monitor in the list of matches
will just make mapping_helper_apply() crash.
Mitigates: https://gitlab.gnome.org/GNOME/mutter/-/issues/1414
Signed-off-by: Simon McVittie <smcv@debian.org>
It's enabled by default when using the i915 driver, but disabled
everywhere else until it can be made reliably an improvement. Until
then, for anyone want to force-enable it, add the string
'dma-buf-screen-sharing' to the experimental features list in GSettings.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1442
Seems DMA buffer based interprocess buffer sharing is more broken than
not, so for now only enable it when using the i915 driver.
For example vmwgfx, qxl and radeon, it results in mmap() failing to mmap the
memory region. Other drivers, e.g. amdgpu will function, but may hit
very slow memory download paths, resulting in worse performance.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1442
We only want the panel autorotation to happen if the laptop has an
accelerometer, and is in tablet mode. Regular laptop mode should
lock the orientation, and let it be configured manually.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1311
So far, we've expected this signal to not happen whenever autorotation
shouldn't apply (no accelerometer is a strong reason). In future commits
we'll add further checks to this policy, so prevent autorotation to
change the display configuration if the MetaOrientationManager signal
happens but it should be ignored.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1311
Instead of having everyone check net.hadess.SensorProxy themselves, have
this all controlled by the MetaOrientationManager, and proxied everywhere
else via a readonly property in org.gnome.Mutter.DisplayConfig.
We want to attach more complex policies here, and it seems better to
centralize the handling of the autorotation feature rather than
implementing policy changes all over the place.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1311
We used to pick the "best" output for each builtin/size/edid categories,
and then pick the "best" (in that order) of those for each input device.
This is most often enough, but is prone to wrong results in some corner
cases (eg. 2 outputs with the exact same dimensions).
Change this to a score mechanism that doesn't leave outputs out. The
weights are the same, but the score is accumulated if an output matches
multiple categories. All outputs are evaluated and sorted by score, and
input devices with the best matches are applied first (as they already
did).
This should break the tie if eg. there's 2 outputs with similar dimensions,
but one of them has some EDID match in addition. The output with multiple
matches will score higher up, while it might have been entirely discarded
with the previous implementation.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1175https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1202
The work at https://gitlab.gnome.org/GNOME/gnome-control-center/issues/239
intended to make integrated devices optionally mappable to other outputs
(in order to allow fix mishandling from our heuristics, or to quickly reach
things in other monitor without changing devices).
This was missed in that plan, we do allow cycling outputs, but we still did
prevent it from doing anything for integrated devices. Fix that, and change
output cycling so we don't allow a "NULL" EDID for integrated devices, this
makes those go through the MetaInputMapper (resulting in one output listed
twice), instead of mapping to the full stage.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1186https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1201
The cursor tracker may give us a valid position, and a
valid cursor sprite, and yet the cursor can be hidden,
meaning we must hide the cursor on the stream as well.
Remove cursor from stream buffer if it's hidden.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1421
Scanouts are taken away after painting. However, when we're
streaming, what we actually want is to capture whatever is
going to end up on screen - and that includes the scanout
if there's any.
Add a before-paint watch that only records new frames if a
scanout is set.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1421
When there's a direct scanout set in the stage view, we
have to use it instead of the view's regular onscreen
framebuffer.
Use the new CoglScanout API to implement blitting to the
stream framebuffer.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1421
This will be used when screencasting monitors so that if
there's scanout in place, it'll still be possible to blit
it to a PipeWire-owned framebuffer, and stream it.
Add a new 'blit_to_framebuffer' vfunc to CoglScanout, and
implement it in MetaDrmBufferGbm.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1421
Just because X11/XI uses a particular terminology doesn't mean we
have to use the same terms in our own API. The replacement terms
are in line with gtk@1c856a208, which seems a better precedent
for consistency.
Follow-up to commit 17417a82a5.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1425
Using opaque painting paths can have a big impact on painting performance.
In order to easily validate whether we use the opaque paths, add a opaque
(green) or blended (purple) overlay over painted areas if the
`META_DEBUG_PAINT_OPAQUE_REGION` `MetaDebugPaintFlag` is set.
You can do so in `lg` via:
`Meta.add_debug_paint_flag(Meta.DebugPaintFlag.OPAQUE_REGION)`
This can be helpful for application developers, as previously it was not
trivial to check whether e.g. Wayland or X11 opaque regions where
properly set.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1372
Analogous to `ClutterDrawDebugFlag` but intended for concepts that
are not present in Clutter, such as Wayland/X11 opaque regions.
Also add the first flag for the later.
To set the flag, run:
`Meta.add_debug_paint_flag(Meta.DebugPaintFlag.OPAQUE_REGION)`
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1372
This is no longer directly related to DBus messages, but our own event
queue. Change the wording and use CLUTTER_PRIORITY_EVENTS to make it
bolder, even though it's the same than G_PRIORITY_DEFAULT.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1286
We set an idle to coalesce multiple IM events together, as the protocol
requires us to send them in one frame, and unfortunately there is no
idea about whether more IM events are upcoming.
One good hint though are key events generated from the IM, we want to
apply all IM changes before the key event is processed, so make it sure
that the .done event is flushed before the key event is handled.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1286
The clutter_input_focus_filter_key_event() function has been made
a more generic filter_event(). Besides its old role about letting
key events go through the IM, it will also process the IM events
that are possibly injected as a result.
Users have been updated to these changes.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1286
When in the overview culling via `self->clip_region` is unavailable.
The region is `NULL` because the paint call has not originated from a
`WindowGroup`, because the overview does not use `WindowGroup`.
So the main wallpaper was being painted in full while in the overview.
That's a waste of effort because `redraw_clip` is going to be used to
stencil/scissor out only the parts that are changing. We don't need to
paint *most* of the wallpaper, only the parts behind anything changing.
For the overview this reduces GPU power usage (intel_gpu_top) roughly
10% and reduces render times almost as much.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1363
`meta_background_content_paint_content` was mixing two different
coordinate systems in `actor_pixel_rect`. It was initialized with
actor-local coordinates and then `if (self->clip_region)` would be
treated as stage coordinates. This worked because `self->clip_region`
was only non-NULL outside of the overview where both coordinate systems
were the same. So it always got the right answer, possibly by accident.
In order to enhance the function however we will need to know which
coordinate system we're working in, so now we make it explicit.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1363
There's no need to update the outputs recursively in case the actor gets
mapped or unmapped. That's because mapping happens recursively itself,
so if a window with multiple subsurfaces is shown, all subsurfaces will
receive a "notify::mapped" signal.
Since this was the only remaining user of
meta_wayland_surface_update_outputs_recursively(), we can now remove
that function.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1358
Since we now listen to the "stage-views-on-changed" signal (which
"catches" all the changes we want) on MetaWaylandActorSurfaces for
updating the wl_outputs the surface is on, we no longer need to call
meta_wayland_surface_update_outputs_recursively() on all geometry
changes, so remove that signal handler.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1358
ClutterActors new "stage-views-changed" signal fits pretty well for the
updating of wl_outputs a MetaWaylandActorSurface is on: With that signal
we get notified if the surface moved to a different CRTC, of which every
output has at least one.
So start listening to that signal, which fixes a bug where the wl_output
of a surface changes, but its allocation remains the same (which means
no signals triggering an update of the outputs will be emitted) and no
enter/leave events for the new wl_outputs are sent to the client. This
can happen when a monitor is hotplugged but the new allocation is
exactly the same as the old one even though it's on a different monitor.
Since the "stage-views-on-changed" signal will also get emitted when a
parent actor of the surface is moved, this means we can now remove the
call to meta_wayland_surface_update_outputs_recursively() on window
position changes or the completion of window-effects.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1358
QXL doesn't support mmap():ing a DMA buffer allocated in mutter inside
the PipeWire stream consumer process. To make screen casting work again
on QXL, disable DMA buffer based screen casting for QXL.
Eventually, it should be the client that renegotiates the supported
buffer types, but until then we need this list.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1318
The X server, including Xwayland, can be compiled with different X11
extensions enabled at build time.
When an X11 extension is built in the X server, it's usually also
enabled at run time. Users can chose to disable those extensions at run
time using the X server command line option "-extension".
However, in the case of Xwayland, it is spawned automatically by the
Wayland compositor, and the command line options are not configurable
by users.
Add a new setting to disable a selected set of X extension in Xwayland
at startup, without needing to rebuild Xwayland.
Of course, if Xwayland is not built with a given extension support in
the first place (which is the default for the security extension for
example), that option has no effect.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1405
Delay the addition and removal of devices using ClutterDeviceEvent's so that
they are processed following the libinput event order, and that we don't
have to flush the events on removal.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1371
When a device is removed from the seat the events that this device may have
emitted just before being removed might still be in the stage events queue,
this may lead a to a crash because:
Once the device is removed, we dispose it and the staling event is
kept in queue and sent for processing at next loop.
During event processing we ask the backend to update the last device
with the disposed device
The device is disposed once the events referencing it, are free'd
The actual last device emission happens in an idle, but at this point
the device may have been free'd, and in any case will be still disposed
and so not providing useful informations.
To avoid this, once a device has been added/removed from the seat, we queue
ClutterDeviceEvent events to inform the stack that the device state has
changed, preserving the order with the other actual generated device events.
In this way it can't happen that we emit another event before that the
device has been added or after that it has been removed.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1345
When removing a device that has been just marked as the last in use, we may
try to notify that a NULL device is the last one.
This is not supported, as both update_last_device() and the clients of the
"::last-device-changed" signal are assuming that the last device is always
a valid ClutterInputDevice.
So let's avoid erroring, and stop the idle when clearing the current device.
Related to: https://gitlab.gnome.org/GNOME/mutter/-/issues/1345https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1371
A GAppInfo is not guaranteed to have a filename or an application (or
rather a desktop ID). Add a check for application_id to be non-NULL
before trying to call sn_launcher_set_application_id, which would crash
otherwise.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1392
PipeWire reuses buffers, and buffer metadatas, when streaming. When
the cursor is moved to outside the stream, the cursor meta also needs
to be updated, otherwise it'll use the cursor position of whatever is
in the buffer.
Don't bail out when cursor is outside the stream, and ensure to record
a metadata-only frame. This only applies to metadata streams.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1417
If we returned early in one of the checks but already assigned the
surface role, we'd later run into a double-free and crash. Just do
the checks at the beginning.
Also add a missing return statement that was left out in commit
88ff196fe3 and tighten the parent surface check.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1415
The spec allows `parent_resource` to be `NULL`, requiring the parent
surface to get specified by some other protocol. Send a protocol error
with some meaningful explanation instead of crashing.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1408
Currently, the maximum size for a mouse pointer bitmap for screen
casting is 64x64 pixels.
However, this limit is hit way too often as it is way too low and
results in crashes in either gnome-remote-desktop or mutter.
For example: The a11y settings in g-c-c allow setting a larger pointer
bitmap in order to increase the visibility of the mouse pointer.
With the current limit of 64x64 pixels it is not possible to use the
larger variants of the default mouse pointer bitmap, without
experiencing any crash.
Another way to hit the limit is when display scaling is used or some
game uses a custom (large) mouse pointer bitmap.
The VNC backend in gnome-remote-desktop does not seem to have a maximum
pointer bitmap size.
The RDP backend on the other hand has a maximum pointer bitmap size at
384x384.
Use this size (384x384) as maximum size instead of the current 64x64
size for mouse pointer bitmaps to avoid crashes in mutter and
gnome-remote-desktop and to ensure that bigger mouse pointer bitmaps
can be used.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1414
It is linear config manager created when ensuring configuration.
However, the switch config is not set as LINEAR, but left as UNKNOWN.
This leads switch mode OSD always shows "Join Displays" icon, rather
than the next icon which is "External Only" after connect an external
display and press Super+P once at first time since mutter starts.
This patch moves switch config setting into
meta_monitor_config_manager_create_linear() (and the sibling functions)
to well prepare the monitors config and avoid missing settings.
This is a regression introduced by 149e4d6934.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1362
Clients can set minimum and maximum to identical values to indicate a
fixed-size window. A compositor can ignore these requests and thus a client
has to ensure these limits.
To support clients that do not ensure these size limits by themselves and
to skip unnecessary function calls, we will prevent resizing requests by
the client if a fixed-size has been requested.
https://gitlab.gnome.org/GNOME/mutter/-/issues/1331
We're moving towards not supporting stand-alone application style
clutter stages, meaning the stage tests use will be reused instead of
recreated. To make this feasable, tests must clean up after themself.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1364
meta_run() is still left intact and does the same as before; the new
functions are only intended to be used by tests, as they may need to set
things up after starting up. Doing so linearly in the test case is much
easier than adding callbacks, so meta_run() is split up to make this
possible.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1364
The delete event was used for signalling the close button was clicked on
clutter windows. Being a compositor we should never see these, unless
we're running nested. Remove the plumbing of the DELETE event and just
directly call meta_quit() when we see it, if we're running nested.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1364
We checked if we were using the usig the X11 backend to decide when to
deal with a11y event posting - in order to make the clutter code less
windowing system dependent, make this check a check whether we're a
display server or not, in contrast to a window/compositing manager
client. This is made into a vfunc ot ClutterBackendClass, implemented by
MetaClutterBackendNative and MetaClutterBackendX11.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1364
Test that if a timeline got its frame clock from a parent of the
associated actor, if that actor moves across the stage so that the stage
views changes and thus the would be picked frame clock too, this is
noticed by the timeline so that it also changes to the correct frame
clock.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1404
Timelines where the frame clock was picked from a parent of the
associated actor didn't get notified about any stage views changes, as
it only listened on the associated actor. If that actor didn't actually
get its stage views changed (because it went from empty to empty), we'd
end up with a stale frame clock, leading to crashes.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1404
Flip flop resize, which is the result of respecting ConfigureNotify
makes test annoyingly racy, as one cannot do
clutter_actor_set_size (stage, 1024, 768);
wait_for_paint (stage);
g_assert_assert (clutter_actor_get_width (stage) == 1024);
The reason for this is any lingering ConfigureNotify event that might
arrive in an inconvenient time in response to some earlier resize.
In order to not risk breaking any current behavior in the X11 CM case
(running as a compositing window manager), only avoid changing the stage
size in response to ConfigureNotify when running nested.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1404
This aims to make sure a view and its resources are destroyed when it
should. Using references might keep certain components (e.g frame clock)
alive for too long.
We currently don't take any long lived references to the stage view
anywhere, so this doesn't matter in practice, but this may change, and
will be used by a to be added test case.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1404
Just as wl_shm, hook up the Wayland DMA-BUF protocol to the 64 bit half
point pixel formats too. This makes it possible for Wayland EGL clients
to use 64 bit pixel EGL configurations.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/804
Now that cogl understands them, hook wl_shm up so they can be used.
This also bumps the wayland-server version dependency to 1.17.90, which
corresponds to the master branch of wayland. The new formats will be
available in 1.18.0.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/804
Without doing this, we'd use the same sprite that was last set by
mutter, most likely a leftptr cursor, and fail to update when e.g.
moving the pointer above a text entry and the displayed cursor updated
to a cursor position marker.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1391
The displayed cursor is the one displayed on the screen, e.g. via the
hardware cursor plane, by Xorg, or using the stage overlay.
When screen recording under X11, we don't get a stream of pointer and
cursor updates, as they might be grabbed by some other client. Because
of this, the cursor tracker or cursor renderer are not kept up to date
with positional and cursor state.
To be able to use the stage overlays when recording, we need to be able
to update the overlay without updating the displayed cursor, as we
shouldn't update the X server with cursor state we just retrieved from
it.
Thus, to achieve this, create a separate overlay cursor pointer. When
being a display server, they are always the same, but when using X11,
during screen recording, the overlay one will be polled at a fixed
interval to get a somewhat up to date state.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1391
Always force-track the cursor position (so that the X11 backend can keep
it up to date), and if the cursor wasn't part of the sampled
framebuffer when reading pixels into CPU memory, draw it in an extra
pass using cairo after the fact. The cairo based cursor painting only
happens on the X11 backend, as we otherwise inhibit the hw cursor.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1391
On X11 we won't always receive cursor positions, as some other client
might have grabbed the pointer (e.g. for implementing a popup menu). To
make screen casting show a somewhat correct cursor position, we need to
actively poll the X server about the current cursor position.
We only really want to do this when screen casting or taking a
screenshot, so add an API that forces the cursor tracker to track the
cursor position.
On the native backend this is a no-op as we by default always track the
cursor position anyway.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1391
Only when the cursor isn't handled by the backend is the overlay made
visible. This is intended to be used when painting the stage to an
offscreen using clutter_stage_paint_to_(frame)buffer() in a way where
the cursor is always included.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1391
Detect displays marked as 'non-desktop' by the kernel and skip them when
creating the outputs. Mutter is not able to render images that are shown
properly on those devices anyway.
This avoids lighting up attached VR HMDs and showing the GDM login
screen between the eyes in a VR HMD instead of on the monitor.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1393
Allowing code from inside mutter to create a child process and
delegate on it some of its tasks is something very useful. This can
be done easily with the g_subprocess and g_subprocess_launcher classes
already available in GLib and GObject.
Unfortunately, although the child process can be a graphical program,
currently it is not possible for the inner code to identify the
windows created by the child in a secure manner (this is: being able
to ensure that a malicious program won't be able to trick the inner
code into thinking it is a child process launched by it).
Under X11 this is not a problem because any program has full control
over their windows, but under Wayland it is a different story: a
program can't neither force their window to be kept at the top (like a
docker program does) or at the bottom (like a program for desktop icons
does), nor hide it from the list of windows. This means that it is not
possible for a "classic", non-priviledged program, to fulfill these
tasks, and it can be done only from code inside mutter (like a
gnome-shell extension).
This is a non desirable situation, because an extension runs in the
same main loop than the whole desktop itself, which means that a
complex extension can need to do too much work inside the main loop,
and freeze the whole desktop for too much time. Also, it is important
to note that javascript doesn't have access to fork(), or threads,
which means that, at most, all the parallel computing that can do is
those available in the _async calls in GLib/GObject.
Also, having to create an extension for any priviledged graphical
element is an stopper for a lot of programmers who already know
GTK+ but doesn't know Clutter.
This patch wants to offer a solution to this problem, by offering a
new class that allows to launch a trusted child process from inside
mutter, and make it to use an specific UNIX socket to communicate
with the compositor. It also allows to check whether an specific
MetaWindow was created by one of this trusted child processes or not.
This allows to create extensions that launch a child process, and
when that process creates a window, the extension can confirm in a
secure way that the window really belongs to that process
launched by it, so it can give to that window "superpowers" like
being kept at the bottom of the desktop, not being listed in the
list of windows or shown in the Activities panel... Also, in future
versions, it could easily implement protocol extensions that only
could be used by these trusted child processes.
Several examples of the usefulness of this are that, with it, it
is possible to write programs that implements:
- desktop icons
- a dock
- a top or bottom bar
...
all in a secure manner, avoiding insecure programs to do the same.
In fact, even if the same code is launched manually, it won't have
those privileges, only the specific process launched from inside
mutter.
Since this is only needed under Wayland, it won't work under X11.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/741
Intended to be used to pass state from screen cast clients down the
line. The first use case will be a boolean whether a screen cast is a
plain recording or not, e.g. letting the Shell decide whether to use a
red dot as the icon, or the generic "sharing" symbol.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1377
GLib will now be linking against sysprof-capture-4.a. To support that,
sysprof had to remove the GLib dependency from sysprof-capture-4 which
had the side-effect of breaking ABi.
This bumps the dependency and includes a fallback to compile just the
libsysprof-capture-4.a using a subproject wrap.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1352
Commit 510cbef15a changed the logic in `handle_update()` for X11 window
actors to return early if the surface is not an X11 surface.
That works fine for plain Xorg, but on Xwayland, the surface is actually
a Wayland surface, therefore the function returns early before updating
the drop shadows of server-side decorations for X11 windows.
Change the test logic to restore drops shadows with Xwayland windows.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1384
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1358
The memory selection source was only providing the "text/plain" or the
"text/plain;charset=utf-8" mimetype, but not "STRING" or "UTF8_STRING",
which some X11 clients, like wine, are looking for. This was breaking
pasting from the clipboard in wine applications.
Fix this by adding those targets when they are missing and the selection
source provides the corresponding mimetypes.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1369
Wine destroys its old selection window immediately before creating a new
selection. This would trigger restoring the clipboard, which would
overwrite the new selection with the old one. The selection window
however can also be destroyed as part of the shutdown process of
applications, such as Chromium for example. In those cases we want the
clipboard to be restored after the selection window has been destroyed.
Solve this by not immediately restoring the clipboard but instead using
a timeout which can be canceled by any new selection owner, such as in
the Wine case.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1338https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1369
The new "id" properties for the MetaCrtc* and MetaOuput* objects are 64-bit
values, so take care to pass 64-bit values when calling g_object_new.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1343.
When using its EGLStream-based presentation path with the proprietary NVIDIA
driver, mutter will use a different function to process page flips -
custom_egl_stream_page_flip. If that fails due to an EBUSY error, it will
attempt to retry the flip. However, when retrying, it unconditionally uses the
libdrm-based path. In practice, this causes a segfault when attempting to
access plane_assignments->fb_id, since plane_assignments will be NULL in the
EGLStream case. The issue can be reproduced reliably by VT-switching away from
GNOME and back again while an EGL application is running.
This patch has mutter also use the custom page flip function when retrying the
failed flip.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1375
Instead of blindly hoping that `$INCLUDE` contains the parent directory
of `gsettings-desktop-schemas`.
Because `gsettings-desktop-schemas.pc` says:
```
Cflags: -I/SOME/DIRECTORY/gsettings-desktop-schemas
```
Which means to include the version that Meson has configured you need
to drop the directory prefix and only `#include <gdesktop-enums.h>`.
This fixes a build failure with local installs triggered by 775ec67a44
but it's also the right thing to do™.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1370
During animation or other things that cause multiple frames in a row
being painted, we might skip recording frames if the max framerate is
reached.
Doing so means we might end up skipping the last frame in a series,
ending with the last frame we sent was not the last one, making things
appear to get stuck sometimes.
Handle this by creating a timeout if we ever throttle, and at the time
the timeout callback is triggered, make sure we eventually send an up to
date frame.
This is handle differently depending on the source type. A monitor
source type reports 1x1 pixel damage on each view its monitor overlaps,
while a window source type simply records a frame from the surface
directly, except without recording a timestamp, so that timestamps
always refer to when damage actually happened.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1361
Now that we don't use the record function to early out depending on
implicit state (don't record pixels if only cursor moved for example),
let it simply report an error when it fails, as we should no longer ever
return without pixels if nothing failed.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1361
Both do more or less the same but with different methods - one puts
pixels into a buffer using the CPU, the other puts pixels into a buffer
using the GPU.
However, they are behaving slightly different, which they shouldn't.
Lets first address the misleading disconnect in naming, and later we'll
make them behave more similarly.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1361
That was obviously always the intention, but it didn't work when the
display was scaled. My 3840x2160 monitor with a 3840x2160 texture was
being rendered with LINEAR filtering.
It seems the `force_bilinear` flag was TRUE when it should be FALSE.
Because a texture area that's an integer fraction of the texture
resolution is still a perfect match when that integer is the monitor
scale. We were also getting:
`meta_actor_painting_untransformed (fb, W, H, W, H, NULL, NULL) == FALSE`
when the display was scaled. Because the second W,H was not the real
sampling resolution. So with both of those issues fixed we now get
NEAREST filtering when the texture resolution matches the resolution it's
physically being rendered at.
Note: The background texture actually wasn't equal to the physical monitor
resolution prior to January 2020 (76240e24f7). So it wasn't possible to do
this before then. Since then however, the texture resolution is always
equal to the physical monitor resolution.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1346
It doesn't take all children - subsurfaces in this case - into
account, thus creating glitches if subsurfaces extend outside
of the toplevel surface.
Further more it doesn't seem to serve any special purpose - it was
added in f7315c9a36, a pretty big commit, and no discussion was
started about the code in question. So it was likely just overlooked
in the review process.
Closes https://gitlab.gnome.org/GNOME/mutter/-/issues/873
Closes https://gitlab.gnome.org/GNOME/mutter/-/issues/1316
gnome-shell displays workspace previews at one tenth scale. That's a
few binary orders of magnitude so even using a LINEAR filter was
resulting in visible jaggies. Now we apply mipmapping so they appear
smooth.
As an added bonus, the mipmaps used occupy roughly 1% the memory of
the original image (0.1 x 0.1 = 0.01) so they actually fit into GPU/CPU
caches now and rendering performance is improved. There's no need to
traverse the original texture which at 4K resolution occupies 33MB,
only a 331KB mipmap.
In my case this reduces the render time for the overview by ~10%.
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/1416https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1347
The frame clock owner should be able to explicitly destroy (i.e. make
defunct) a frame clock, e.g. when a stage view is destructed. This is so
that other objects can keep reference to its without it being left
around even after stopped being usable.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
Currently there is a point in between hot plug, and when the stage view
list is up to date. The check also tests for this behaviour; would this
ever change, the test should be adapted to deal with this too.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
Replace the default master clock with multiple frame clocks, each
driving its own stage view. As each stage view represents one CRTC, this
means we draw each CRTC with its own designated frame clock,
disconnected from all the others.
For example this means we when using the native backend will never need
to wait for one monitor to vsync before painting another, so e.g. having
a 144 Hz monitor next to a 60 Hz monitor, things including both Wayland
and X11 applications and shell UI will be able to render at the
corresponding monitor refresh rate.
This also changes a warning about missed frames when sending
_NETWM_FRAME_TIMINGS messages to a debug log entry, as it's expected
that we'll start missing frames e.g. when a X11 window (via Xwayland) is
exclusively within a stage view that was not painted, while another one
was, still increasing the global frame clock.
Addititonally, this also requires the X11 window actor to schedule
timeouts for _NET_WM_FRAME_DRAWN/_NET_WM_FRAME_TIMINGS event emitting,
if the actor wasn't on any stage views, as now we'll only get the frame
callbacks on actors when they actually were painted, while in the past,
we'd invoke that vfunc when anything was painted.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/903
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/3https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
This also changes the view construction path used by the renderer view
to use the new 'add_view()' function, meaning we have a common entry
point for views into the renderer, which will be useful later on.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
Before we'd create the view in init(), then continue poking at it in
realize(). Move all of the screen stage view initialization to
realize(), as that's when we have all the dependent state available.
This is possible since there is nothing needing it until realizing.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285