Some apps or some use cases don't need to clear the stage on immediate
rendering GPUs. A media player playing a fullscreen video or a
tile-based game, for instance.
These apps are redrawing the whole screen, so we can avoid clearing the
color buffer when preparing to paint the stage, since there is no
blending with the stage color being performed.
We can add an private set of hints to ClutterStage, and expose accessors
for each potential hint; the first hint is the 'no-clear' one.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2058
* wip/deform-effect:
docs: Add DeformEffect and PageTurnEffect to the API reference
effect: Add PageTurnEffect
effect: Add DeformEffect
offscreen-effect: Traslate the modelview with the offsets
docs: Fix Effect subclassing section
It is often useful to determine if one actor is an ancestor of
another. Add a method to do that.
http://bugzilla.openedhand.com/show_bug.cgi?id=2162
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
By default, ShaderEffect creates a fragment shader; in order to be able
to deprecate ClutterShader we need a way for ShaderEffect sub-classes to
create a vertex shader if needed - By using a write-only, constructor
only property.
ClutterShader has, internally, a ClutterShaderType enumeration that can
be used exactly for this. We just need to expose it and create a GObject
property for ClutterShaderEffect.
ClutterInterval.compute_value() computes the new value given a progress
and copies it to a given GValue. Since most of the time we want to pass
that very same value to another function that copies it again, we should
have a compute_value() variant that stores that computed value inside
ClutterInterval and returns a pointer to it. This way we initialize the
result GValue just once and we never copy it, as long as the Interval
instance is valid.
The ClutterActor API should have modifier methods for adding, removing
and retrieving Actions and Constraints using the ClutterActorMeta:name
property - mostly, for convenience.
Add clutter_actor_has_allocation(), a method meant to be used when
deciding whether to call clutter_actor_get_allocation_box() or any
of its wrappers.
The get_allocation_box() method will, in case the allocation is invalid,
perform a costly re-allocation cycle to ensure that the returned box
is valid. The has_allocation() method is meant to be used if we have an
actor calling get_allocation_box() from outside the place where the
allocation is always guaranteed to be valid.
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
It is conceivable that Container implementations might add children
outside of the Container::add() implementation - e.g. for packing at
a specific index. Since the addition (and removal) might happen outside
the common path we need to expose all the API that is implicitly called
by ClutterContainer when adding and removing a child - namely the
ChildMeta creation and destruction.
Embedding toolkits most likely will disable the event handling, so all
the input device code will not be executed. Unfortunately, the newly
added synthetic event generation of ENTER and LEAVE event pairs depends
on having input devices.
In order to unbreak things without reintroducing the madness of the
previous code we should allow embedding toolkits to just update the
state of an InputDevice by using the data contained inside the
ClutterEvent. This strategy has two obvious reasons:
• the embedding toolkit is creating a ClutterEvent by translating
a toolkit-native event anyway
• this is exactly what ClutterStage does when processing events
We are, essentially, deferring input device handling to the embedding
toolkits, just like we're deferring event handling to them.
* origin/cwiiis-stage-resize:
[stage-x11] Set the default size differently
[stage] Set default size correctly
Revert "[x11] Don't set actor size on ConfigureNotify"
[x11] Don't set actor size on ConfigureNotify
[stage] Now that get_geometry works, use it
[stage-x11] make get_geometry always get geometry
[stage] Get the current size correctly
[stage] Set minimum width/height to 1x1
[stage] Add set/get_minumum_size
ClutterAnimator is a class for managing the animation of multiple
properties of multiple actors over time with keyframing of values.
The Animator class is meant to be used to effectively describe
animations using the ClutterScript definition format, and to construct
complex implicit animations from the ground up.
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
High level toolkits might wish to construct a PangoFontDescription and
then set it directly on a ClutterText actor proxy or sub-class.
ClutterText should have a :font-description property to set (and get)
the PangoFontDescription.
http://bugzilla.openedhand.com/show_bug.cgi?id=1960
Allow the user of the ClutterMedia interface to specify a Pango font
description to display subtitles. Even if the underlying implementation
of the interface does not natively use Pange, it must be capable of
parsing the grammar that pango_font_description_from_string() accepts.
Since asking for ARGB by default is still somewhat experimental on X11
and not every toolkit or complex widgets (like WebKit) still do not like
dealing with ARGB visuals, we should switch back to RGB by default - now
that at least we know it works.
For applications (and toolkit integration libraries) that want to enable
the ClutterStage:use-alpha property there is a new function:
void clutter_x11_set_use_argb_visual (gboolean use_argb);
which needs to be called before clutter_init().
The CLUTTER_DISABLE_ARGB_VISUAL environment variable can still be used
to force this value off at run-time.
At first, those symbols were called {get,set}_subtitles_uri() but were
renamed to {get,set}_subtitle_uri() without updating the
clutter-section.txt file.
This fix makes gtk-doc document those symbols again.
Allow the user of the ClutterMedia interface to specify an external (as
in not multiplexed with the audio/video streams) location of a subtitle
stream.
* animate-layout-manager:
layout-manager: Document the animation support
layout-manager: Rewind the timeline in begin_animation()
box-layout: Remove the allocations hash table
docs: Clean up the README file
layout: Let begin_animation() return the Alpha
box-layout: Add knobs for controlling animations
box-layout: Animate layout properties
layout: Add animation support to LayoutManager
Add ActorBox animation methods
* stage-use-alpha:
tests: Use accessor methods for :use-alpha
stage: Add accessors for :use-alpha
tests: Allow setting the stage opacity in test-paint-wrapper
stage: Premultiply the stage color
stage: Composite the opacity with the alpha channel
glx: Always request an ARGB visual
stage: Add :use-alpha property
materials: Get the right blend function for alpha
ClutterActor checks, when destroying and reparenting, if the parent
actor implements the Container interface, and automatically calls the
remove() method to perform a clean removal.
Actors implementing Container, though, might have internal children;
that is, children that are not added through the Container API. It is
already possible to iterate through them using the Container API to
avoid breaking invariants - but calling clutter_actor_destroy() on
these children (even from the Container implementation, and thus outside
of Clutter's control) will either lead to leaks or to segmentation
faults.
Clutter needs a way to distinguish a clutter_actor_set_parent() done on
an internal child from one done on a "public" child; for this reason, a
push/pop pair of functions should be available to Actor implementations
to mark the section where they wish to add internal children:
➔ clutter_actor_push_internal ();
...
clutter_actor_set_parent (child1, parent);
clutter_actor_set_parent (child2, parent);
...
➔ clutter_actor_pop_internal ();
The set_parent() call will automatically set the newly added
INTERNAL_CHILD private flag on each child, and both
clutter_actor_destroy() and clutter_actor_unparent() will check for the
flag before deciding whether to call the Container's remove method.
ClutterLayoutManager does not have any state associated with it, and
defers all the state to its sub-classes.
The BoxLayout is thus in charge of controlling:
• whether or not animations should be used
• the duration of the animation
• the easing mode of the animation
By adding three new properties:
• ClutterBoxLayout:use-animations
• ClutterBoxLayout:easing-duration
• ClutterBoxLayout:easing-mode
And their relative accessors pairs we can make BoxLayout decide whether
or not, and with which parameters, call the begin_animation() method of
ClutterLayoutManager.
The test-box-layout has been modified to reflect this new functionality,
by checking the key-press event for the 'a' key symbol to toggle the use
of animations.
In order to animate a fluid layout we cannot use the common animation
code paths as they will override the size request and allocation paths
that are handled by the layout manager itself.
One way to introduce animations in the allocation sequence is to use a
Timeline and an Alpha to compute a progress value and then use that
value to interpolate an ActorBox between the initial and final states of
the animation - with the initial state being the last allocation of the
child prior to the animation start, and the final state the allocation
of the child at the end; for every frame of the Timeline we then queue a
relayout on the layout manager's container, which will result in an
animation.
ClutterLayoutManager is the most likely place to add a generic API for
beginning and ending an animation, as well as the place to provide a
default code path to create the ancillary Timeline and Alpha instances
needed to drive the animation.
A LayoutManager sub-class will need to:
• call clutter_layout_manager_begin_animation() whenever it should
animate between two states, for instance: whenever a layout property
changes value;
• eventually override begin_animation() and end_animation() in case
further state needs to be set up, and then chain up to the default
implementation provided by LayoutManager;
• if a completely different implementation is required, the layout
manager sub-class should override begin_animation(), end_animation()
and get_animation_progress().
Inside the allocate() implementation the sub-class should also
interpolate between the last known allocation of a child and the newly
computed allocation.