This adds much more comprehensive support for gobject-introspection
based bindings by registering all objects as fundamental types that
inherit from CoglObject, and all structs as boxed types.
Co-Author: Robert Bragg <robert@linux.intel.com>
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Since the Cogl 1.18 branch is actively maintained in parallel with the
master branch; this is a counter part to commit 1b83ef938fc16b which
re-licensed the master branch to use the MIT license.
This re-licensing is a follow up to the proposal that was sent to the
Cogl mailing list:
http://lists.freedesktop.org/archives/cogl/2013-December/001465.html
Note: there was a copyright assignment policy in place for Clutter (and
therefore Cogl which was part of Clutter at the time) until the 11th of
June 2010 and so we only checked the details after that point (commit
0bbf50f905)
For each file, authors were identified via this Git command:
$ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD
We received blanket approvals for re-licensing all Red Hat and Collabora
contributions which reduced how many people needed to be contacted
individually:
- http://lists.freedesktop.org/archives/cogl/2013-December/001470.html
- http://lists.freedesktop.org/archives/cogl/2014-January/001536.html
Individual approval requests were sent to all the other identified authors
who all confirmed the re-license on the Cogl mailinglist:
http://lists.freedesktop.org/archives/cogl/2014-January
As well as updating the copyright header in all sources files, the
COPYING file has been updated to reflect the license change and also
document the other licenses used in Cogl such as the SGI Free Software
License B, version 2.0 and the 3-clause BSD license.
This patch was not simply cherry-picked from master; but the same
methodology was used to check the source files.
When splitting out the CoglPath api we saw that we would be left with
inconsistent drawing apis if the drawing apis in core Cogl were lumped
into the cogl_framebuffer_ api considering other Cogl sub-libraries or
that others will want to create higher level drawing apis outside of
Cogl but can't use the same namespace.
So that we can aim for a more consistent style this adds a
cogl_primitive_draw() api, comparable to cogl_path_fill() or
cogl_pango_show_layout() that's intended to replace
cogl_framebuffer_draw_primitive()
Note: the attribute and rectangle drawing apis are still in the
cogl_framebuffer_ namespace and this might potentially change but in
these cases there is no single object representing the thing being drawn
so it seems a more reasonable they they live in the framebuffer
namespace for now.
Note: the cogl_framebuffer_draw_primitive() api isn't removed by this
patch so it can more conveniently be cherry picked to the 1.16 branch so
we can mark it deprecated for a short while. Even though it's marked as
experimental api we know that there are people using the api so we'd
like to give them a chance to switch to the new api.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 418912b93ff81a47f9b38114d05335ab76277c48)
Conflicts:
cogl-pango/cogl-pango-display-list.c
cogl/Makefile.am
cogl/cogl-framebuffer.c
cogl/cogl-pipeline-layer-state.h
cogl/cogl2-path.c
cogl/driver/gl/cogl-clip-stack-gl.c
If a CoglPrimitive is associated with a set of indices then we must
unref those indices when freeing the primitive to avoid a leak.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 45cac786b55c953e44f98b864add952b9e398b13)
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
All CoglBuffer constructors now take an explicit CoglContext
constructor. This is part of the on going effort to adapt to Cogl API so
it no longer depends on a global, default context.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds cogl_framebuffer_ apis for drawing attributes and primitives
that replace corresponding apis that depend on the default CoglContext.
This is part of the on going effort to adapt the Cogl api so it no
longer depends on a global context variable.
All the new drawing functions also take an explicit pipeline argument
since we are also aiming to avoid being a stateful api like Cairo and
OpenGL. Being stateless makes it easier for orthogonal components to
share access to the GPU. Being stateless should also minimize any
impedance miss-match for those wanting to build higher level stateless
apis on top of Cogl.
Note: none of the legacy, global state options such as
cogl_set_depth_test_enabled(), cogl_set_backface_culling_enabled() or
cogl_program_use() are supported by these new drawing apis and if set
will simply be silently ignored.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds a public function to iterate the attributes of a
CoglPrimitive. Previously there was no way to query back the
attributes but there was methods to query back all of the other
properties.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This adds a public function to make a copy of a primitive. The copy is
shallow which means it will share the same attributes and attribute
buffers. This could be useful for code that wants to have multiple
similar primitives with slightly modified properties.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
When associating indices with a CoglPrimitive you are now forced to
specify the number of indices that should be read when drawing.
It's easy to forget to call cogl_primitive_set_n_vertices() after
associating indices with a primitive (and anyway you can see that someone
could be led to believe Cogl can determine that implicitly somewhow) so
this should avoid a lot of mistakes with using the API.
We'd expect that setting indices and updating the n_vertices property
would go hand in hand 99% of the time anyway so this change should
be more convenient as well as less error prone.
This patch adds some documentation for cogl_primitive_set_indices and
cogl_primitive_get/set_n_vertices. It also tries to clarify how the
CoglPrimitive:n_vertices property is updated and what that property
means in relation to other functions too.
https://bugzilla.gnome.org/show_bug.cgi?id=661019
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Since we've had several developers from admirable projects say they
would like to use Cogl but would really prefer not to pull in
gobject,gmodule and glib as extra dependencies we are investigating if
we can get to the point where glib is only an optional dependency.
Actually we feel like we only make minimal use of glib anyway, so it may
well be quite straightforward to achieve this.
This adds a --disable-glib configure option that can be used to disable
features that depend on glib.
Actually --disable-glib doesn't strictly disable glib at this point
because it's more helpful if cogl continues to build as we make
incremental progress towards this.
The first use of glib that this patch tackles is the use of
g_return_val_if_fail and g_return_if_fail which have been replaced with
equivalent _COGL_RETURN_VAL_IF_FAIL and _COGL_RETURN_IF_FAIL macros.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds an internal _cogl_primitive_draw API that takes CoglDrawFlags
like _cogl_draw_attributes does which allows us to draw a primitive but
skip things like flushing journals, flushing framebuffer state and avoid
validating the current pipeline. This allows us to draw primitives in
places that could otherwise cause recursion.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
We've started seeing cases where we want to allocate lots of one-shot
primitives per-frame and the cost of allocating primitives becomes
important in this case since it can start being noticeable in profiles.
The main cost for allocating primitives was the GArray allocation
and appending the attributes to the array. This updates the code to
simply over allocate the primitive storage so we can embed the list
of attributes directly in that allocation.
If the user later sets new attributes and there isn't enough embedded
space then a separate slice allocation for the new attributes is made
but still this should be far less costly than using a GArray as before.
Most of the time we would expect when setting new attributes there will
still be the same number of attributes, so the embedded space can simple
be reused.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Commit 3c1e83c7 changed uses of arrays of CoglAttributes to take a
length instead of being NULL terminated. In cogl_primitive_new it was
still adding the NULL terminator to the array it passes to
cogl_primitive_new_with_attributes but then it was also including this
terminator in the count so it would just segfault when it tries to ref
the NULL pointer. Also _cogl_primitive_new_with_attributes_unref was
still trying to detect the NULL terminator so it would also crash.
For the first iteration of the CoglAttribute API several of the new
functions accepted a pointer to a NULL terminated list of CoglAttribute
pointers - probably as a way to reduce the number of arguments required.
This style isn't consistent with existing Cogl APIs though and so we now
explicitly pass n_attributes arguments and don't require the NULL
termination.
This is part of a broader cleanup of some of the experimental Cogl API.
One of the reasons for this particular rename is to switch away from
using the term "Array" which implies a regular, indexable layout which
isn't the case. We also want to have a strongly implied relationship
between CoglAttributes and CoglAttributeBuffers.
This is part of a broader cleanup of some of the experimental Cogl API.
One of the reasons for this particular rename is to reduce the verbosity
of using the API. Another reason is that CoglVertexArray is going to be
renamed CoglAttributeBuffer and we want to help emphasize the
relationship between CoglAttributes and CoglAttributeBuffers.
We have a bunch of experimental convenience functions like
cogl_primitive_p2/p2t2 that have corresponding vertex structures but it
seemed a bit odd to have the vertex annotation e.g. "P2T2" be an infix
of the type like CoglP2T2Vertex instead of be a postfix like
CoglVertexP2T2. This switches them all to follow the postfix naming
style.
This adds an optional data argument for cogl_vertex_array_new() since it
seems that mostly every case where we use this API we follow up with a
cogl_buffer_set_data() matching the size of the new array. This
simplifies all those cases and whenever we want to delay uploading of
data then NULL can simply be passed.
Unless the CoglBuffer is being used for texture data then it's
relatively unlikely that the data will contain an array of bytes. For
example if it's used as a vertex array then it's more likely to be
floats or some vertex struct. In that case it's much more convenient
if set_data and map use void* pointers so that we can avoid a cast.
The convenience constructors for the builtin vertex structs were
creating the primitive and then immediately destroying it and
returning the pointer. I think the intention was to unref the
attributes instead. This adds an internal wrapper around the
new_with_attributes_array constructor which unrefs the attributes
instead of the primitive. The convenience constructors now use that.
This adds a way to mark that a primitive is in use so that modifications
will generate a warning. The plan is to use this mechanism when batching
primitives in the journal to warn users that mid-scene modifications of
primitives is not allowed.
This adds convenience primitive constructors named like:
cogl_primitive_new_p3 or
cogl_primitive_new_p3c4 or
cogl_primitive_new_p3t2c4
where the letters correspond to the interleved vertex attributes layouts
such as CoglP3Vertex which is a struct with 3 float x,y,z members for
the [p]osition, or CoglP3T2C4Vertex which is a struct with 3 float x,y,z
members for the [p]osition, 2 float s,t members for the [t]exture
coordinates and 4 unsigned byte r,g,b,a members for the [c]olor.
The hope is that people will find these convenient enough to replace
cogl_polygon.
A CoglPrimitive is a retainable object for drawing a single primitive,
such as a triangle strip, fan or list.
CoglPrimitives build on CoglVertexAttributes and CoglIndices which
themselves build on CoglVertexArrays and CoglIndexArrays respectively.
A CoglPrimitive encapsulates enough information such that it can be
retained in a queue (e.g. the Cogl Journal, or renderlists in the
future) and drawn at some later time.