Without an associated actor, or explicit frame clock set, in the future
a timeline will not know how to progress, as there will be no singe
frame clock to assume is the main one. Thus, deprecate the construction
of timelines without either an actor or frame clock set.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
The association is inactive, as in it doesn't do anything yet, but it
will later be used to determine what frame clock should be driving the
timeline by looking at what stage view the actor is currently on.
This also adapts sub types (ClutterPropertyTransition) to have
constuctors that takes an actor just as the new ClutterTimeline
constructor.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
This is so something outside of clutter-stage.c (i.e.
clutter-stage-view.c) can eventually do various things
_clutter_stage_do_update() does now while not redrawing the whole stage.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
Devices are updated (repicked) as part of the stage update phase, as
their stacking, position and transform might have changed since since
the last update.
The redraw clip was used to avoid unnecessary updating of devices, if
the device in question had it's position outside of the redraw clip. If
the device coordinate was outside of the redraw clip, what was
underneith the device couldn't have changed.
What it failed to do, however, was to update devices if a relayout had
happened in the same update, as it checked the state whether a layout
had happened before attempting to do a relayout, effectively delaying
the device updating to the next update.
This commit changes the behavior to always update the device given the
complete redraw clip caused by all possible relayouts of the same update
as the device update happens in.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
We'd check if there was any queued redraw on the stage, but this is
inappropriate for two reasons:
1) A monitor and area screen cast source only cares about damage on a
subset of the stage.
2) The global pending-redraw is going away when paint scheduling will be
more view centric.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
This will allow anyone to finish any queued redraws making their
corresponding damage end up being posted to the stage views. This will
allow units to check whether, so far, any updates are queued on a
particular stage view.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
Add API to add and remove ClutterTimeline objects to the frame clock.
Just as the legacy master clock, having a timeline added to the frame
clock causes the frame clock to continuously reschedule updates until
the timeline is removed.
ClutterTimeline is adapted to be able to be driven by a
ClutterFrameClock. This is done by adding a 'frame-clock' property, and
if set, the timeline will add and remove itself to the frame clock
instead of the master clock.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
The timestamp comes from the GSource, meaning it's a more accurate
representation of when the frame started to be dispatched compared to
getting the current time in any callback.
Currently unused.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
In certain scenarios, the frame clock needs to handle present feedback
long before the assumed presentation time happens. To avoid scheduling
the next frame to soon, avoid scheduling one if we were presented half a
frame interval within the last expected presentation time.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
This adds a current unused, apart from tests, frame clock. It just
reschedules given a refresh rate, based on presentation time feedback.
The aiming for it is to be used with a single frame listener (stage
views) that will notify when a frame is presented. It does not aim to
handle multiple frame listeners, instead, it's assumed that different
frame listeners will use their own frame clocks.
Also add a test that verifies that the basic functionality works.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
When a transition is created for the allocation change, it will delay
the new allocation box getting set depending on transition details.
This, however, means that e.g. the 'needs_allocation' flag never gets
cleared if a transition is created, causing other parts of the code to
get confused thinking it didn't pass through a layout step before paint.
Fix this by calling clutter_actor_allocate_internal() with the current
allocation box if a transition was created, so that we'll properly clear
'needs_allocation' flag.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1345
Since we now have the neccessary infrastructure to get notified about
changes to the absolute transformation matrix, we can also invalidate
the stage-views list on updates to this matrix.
So rename absolute_allocation_changed() to absolute_geometry_changed()
to make it clear this function is not only about allocations, and call
that function recursively for all children on changes to the
transformation matrix, too.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1343
If we want to invalidate the stage-views list reliably on changes to the
actors transformation matrices, we also need to get notified about
changes to the custom transformations applied using the
apply_transform() vfunc.
So provide a new API that allows invalidating the transformation matrix
for actors implementing custom transformations, too. This in turn allows
us to cache the matrix applied using the apply_transform() vfunc by
moving responsibility of keeping track of the caching from
clutter_actor_real_apply_transform() to
_clutter_actor_apply_modelview_transform().
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1343
For ClutterText, the resource scale the text is drawn with affects the
size of the allocation: ClutterText will choose a font scale based on
the resource scale, and that font scale can lead to a slight difference
in size compared to the unscaled font.
We currently handle that by queuing a relayout inside the
"resource-scale-changed" signal handler. This solution is a bit
problematic though since it will take one more allocation cycle until
the allocation is actually updated after a scale-change, so the actor is
painted using the wrong allocation for one frame.
Also the current solution can lead to relayout loops in a few cases, for
example if a ClutterText is located near the edge on a 1x scaled monitor
and is moved to intersect a 2x scaled monitor: Now the resource scale
will change to 2 and a new allocation box is calculated; if this
allocation box is slightly smaller than the old one because of the new
font scale, the allocation won't intersect the 2x scaled monitor again
and the resource scale switches back to 1. Now the allocation gets
larger again and intersects the 2x scaled monitor again.
This commit introduces a way to properly support those actors: In case
an actors resource scale might affect its allocation, it should call the
private function clutter_actor_queue_immediate_relayout(). This will
make sure the actor gets a relayout before the upcoming paint happens
afte every resource scale change. Also potential relayout loops can
be handled by the actors themselves using a "phase" argument that's
passed to implementations of the calculate_resource_scale() vfunc.
The new API is private because resource scales are not meant to be used
in a way where the scale affects the allocation. With ClutterText and
the current behavior of Pango, that can't be avoid though, so we need it
anyway.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1276
Since we now always return a resource scale, we can remove the boolean
return value from clutter_actor_get_resource_scale() and
_clutter_actor_get_real_resource_scale(), and instead simply return the
scale.
While at it, also remove the underscore from the
_clutter_actor_get_real_resource_scale() private API.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1276
Now that ClutterActor has a convenient API for getting the stage views
an actor is presented on, we can remove a large part of the code for
resource-scale calculation and instead rely on the stage-views list.
The way this works is a bit different from the old resource scales:
clutter_actor_get_resource_scale() always returns a scale, but this
value is only guaranteed to be correct when called from a vfunc_paint()
implementation, in all other cases the value is guessed using the scale
of the parent actor or the last valid scale. Now in case the value
previously reported by clutter_actor_get_resource_scale() turns out to
be wrong, "resource-scale-changed" will be emitted before the next paint
and the actor has a chance to update its resources.
The general idea behind this new implementation is for actors which only
need the scale during painting to continue using
clutter_actor_get_resource_scale() as they do right now, and for actors
which need the resource scale on other occasions, like during size
negotiation, to use the scale reported by
clutter_actor_get_resource_scale() but also listen to the
"resource-scale-changed" signal to eventually redo the work using the
correct scale.
The "guessing" of the scale is done with the intention of always giving
actors a scale to work with so they don't have to fall back to a scale
value the actor itself has to define, and also with the intention of
emitting the "resource-scale-changed" signal as rarely as possible, so
that when an actor is newly created, it won't have to load its resources
multiple times.
The big advantage this has over the old resource scales is that it's now
safe to call clutter_actor_get_resource_scale() from everywhere (before,
calling it from size negotiation functions would usually fail). It will
also make it a lot easier to use the resource scale for complex cases
like ClutterText without risking to get into relayout loops.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1276
Add private API to ClutterBackend to set a fallback resource scale
available to Clutter. This API will be used for "guessing" the
resource-scale of ClutterActors in case the actor is not attached to a
stage or not properly positioned yet.
We set this value from inside mutters MetaRenderer while creating new
stage-views for each logical monitor. This makes it possible to set the
fallback scale to the scale of the primary monitor, which is the monitor
where most ClutterActors are going to be positioned.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1276
We're going to refactor resource scales, making the notification of
changes to the resource scale a lot more important than it is right now
(we won't guarantee queried scales are correct outside the paint cycle
anymore).
Having a separate signal/vfunc for this will make the difference between
the new clutter_actor_get_resource_scale() API (which can return a
guessed value) and the notification of changes to the resource scale
(which will be guaranteed to return an up-to-date value) more obvious.
So replace the "resource-scale" property of ClutterActor with a
"resource-scale-changed" signal that's emitted when the resource scale
is recalculated.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1276
ClutterBoxLayout calculates the preferred size of the opposite
orientation (so for example the height if the orientation is horizontal)
by getting the preferred size of the real orientation first, and then
the preferred size of the opposite orientation, using the other size as
for_width/height when doing the request.
Right now, for non-homogeneous layouts this for_width/height does not
adjust for the spacing set on the box layout. This leads to children
being passed a slightly larger for_width/height, which in case of
ClutterText might cause the line to not wrap when it actually should.
This in turn means we can end up with an incorrect preferred size for
the opposite orientation, leading to a wrong allocation.
So fix that and adjust for the spacing just as we do for homogeneous
layouts by subtracting the total spacing from the available size that is
distributed between children.
This fixes the wrong height of the checkbox label reported in
https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/2574.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1333
The property is deprecated and the current implementation simply
redirects it to ClutterActor::background-color, so remove it.
Also update the tests to set the background color directly.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1332
ClutterStage is the one and only subclass of ClutterGroup, but
it overrides basically everything specific to ClutterGroup to
mimic a ClutterActor. What a waste!
Subclass ClutterActor directly and remove all the now useless
vfunc overrides from ClutterStage. Adapt CallyStage to subclass
CallyActor as well.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1332