This adds Xlib and Win32 typesafe replacements for
cogl_renderer_handle_native_event, cogl_renderer_add_native_filter,
cogl_renderer_remove_native_filter. The old functions are kept as an
implementation detail so we can share code.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This does some minor gardening in cogl-sections.txt, tweaking some of
the section titles and removing some stale api references.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This adds the cogl_swap_chain and cogl_onscreen_template symbols to the
experimental 2.0 reference manual.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This lists the cogl_renderer symbols in the cogl-sections.txt for the
experimental 2.0 reference manual.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
The recommended command to check for differences from master to the
remote master was using git log with a range from the local master to
the remote master but this wouldn't work if the local master is ahead
of the remote master because the range is backwards. This patch
changes it to recommend git diff --stat instead because then the
command would work even if the two branches have diverged.
Since gtk-doc is an optional dependency for Cogl then we need to special
case how EXTRA_DIST is initialized. It shouldn't be set when using
gtk-doc since gtk-doc.make expects to initialize EXTRA_DIST. If we
aren't using gtk-doc then it should be initialized to an empty value
instead of including gtk-doc.make so that the later lines that append
various extra png files to EXTRA_DIST won't fail.
This explicitly renames the cogl-2.0 reference manual to
cogl-2.0-experimental and renames the cogl-2.0 pkg-config file to
cogl-2.0-experimental.pc. Hopefully this should avoid
miss-understandings.
This exposes a CoglTexture2D typedef and adds the following experimental
API:
cogl_is_texture_2d
cogl_texture_2d_new_with_size
cogl_texture_2d_new_from_data
cogl_texture_2d_new_from_foreign
Since this is experimental API you need to define
COGL_ENABLE_EXPERIMENTAL_API before including cogl.h.
Note: With these new entrypoints we now expect a CoglContext pointer to
be passed in, instead of assuming there is a default context. The aim is
that for Cogl 2.0 we won't have a default context so this is a step in
that direction.
Automake seems a bit fragile when trying to do cunning things like
including a file with "-include". It does not recurse into that file (if
it exists) to generate the final Makefiles.
Let's add a if BUILD_GTK_DOC guard around the gtk-doc.make inclusion
instead, hopefully should work as intended.
Instead of simply extending the cogl_pipeline_ namespace to add api for
controlling the depth testing state we now break the api out. This adds
a CoglDepthState type that can be stack allocated. The members of the
structure are private but we have the following API to setup the state:
cogl_depth_state_init
cogl_depth_state_set_test_enabled
cogl_depth_state_get_test_enabled
cogl_depth_state_set_test_function
cogl_depth_state_get_test_function
cogl_depth_state_set_writing_enabled
cogl_depth_state_get_writing_enabled
cogl_depth_state_set_range
cogl_depth_state_get_range
This removes the following experimental API which is now superseded:
cogl_material_set_depth_test_enabled
cogl_material_get_depth_test_enabled
cogl_material_set_depth_test_function
cogl_material_get_depth_test_function
cogl_material_set_depth_writing_enabled
cogl_material_get_depth_writing_enabled
cogl_material_set_depth_range
cogl_material_get_depth_range
Once a CoglDepthState structure is setup it can be set on a pipeline
using cogl_pipeline_set_depth_state().
This is part of a broader cleanup of some of the experimental Cogl API.
One of the reasons for this particular rename is to switch away from
using the term "Array" which implies a regular, indexable layout which
isn't the case. We also want to strongly imply a relationship between
CoglBuffers and CoglIndexBuffers and be consistent with the
CoglAttributeBuffer and CoglPixelBuffer APIs.
This is part of a broader cleanup of some of the experimental Cogl API.
One of the reasons for this particular rename is to switch away from
using the term "Array" which implies a regular, indexable layout which
isn't the case. We also want to strongly imply a relationship between
CoglBuffers and CoglPixelBuffers and be consistent with the
CoglAttributeBuffer and CoglIndexBuffer APIs.
This adds an experimental CoglEuler data type and the following new
functions:
cogl_euler_init
cogl_euler_init_from_matrix
cogl_euler_init_from_quaternion
cogl_euler_equal
cogl_euler_copy
cogl_euler_free
cogl_quaternion_init_from_euler
Since this is experimental API you need to define
COGL_ENABLE_EXPERIMENTAL_API before including cogl.h
This adds an experimental quaternion utility API. It's not yet fully
documented but it's complete enough that people can start to experiment
with using it. It adds the following functions:
cogl_quaternion_init_identity
cogl_quaternion_init
cogl_quaternion_init_from_angle_vector
cogl_quaternion_init_from_array
cogl_quaternion_init_from_x_rotation
cogl_quaternion_init_from_y_rotation
cogl_quaternion_init_from_z_rotation
cogl_quaternion_equal
cogl_quaternion_copy
cogl_quaternion_free
cogl_quaternion_get_rotation_angle
cogl_quaternion_get_rotation_axis
cogl_quaternion_normalize
cogl_quaternion_dot_product
cogl_quaternion_invert
cogl_quaternion_multiply
cogl_quaternion_pow
cogl_quaternion_slerp
cogl_quaternion_nlerp
cogl_quaternion_squad
cogl_get_static_identity_quaternion
cogl_get_static_zero_quaternion
Since it's experimental API you'll need to define
COGL_ENABLE_EXPERIMENTAL_API before including cogl.h.
Gtk-doc can be hard to install on Windows. This patch enables people wanting to
hack on Cogl itself from a Windows system to do so without the hassle to get
gtk-doc installed first.
This pulls in the experimental cogl 2.0 reference manual from the
clutter repository since it wasn't included in the filter-branch when we
split cogl out.
To allow us to have gobject properties that accept a CoglMatrix value we
need to register a GType. This adds a cogl_gtype_matrix_get_type function
that will register a static boxed type called "CoglMatrix".
This adds a new section to the reference manual for GType integration
functions.
This add two new function that allows us to transform or project an
array of points instead of only transforming one point at a time. Recent
benchmarking has shown cogl_matrix_transform_point to be a bottleneck
sometimes, so this should allow us to reduce the overhead when
transforming lots of vertices at the same time, and also reduce the cost
of 3 component, non-projective transforms.
For now they are marked as experimental (you have to define
COGL_ENABLE_EXPERIMENTAL_API) because there is some concern that it
introduces some inconsistent naming. cogl_matrix_transform_point would
have to be renamed cogl_matrix_project_point to be consistent, but that
would be an API break.
This exposes the idea of a stack of source materials instead of just
having a single current material. This allows the writing of orthogonal
code that can change the current source material and restore it to its
previous state. It also allows the implementation of new composite
primitives that may want to validate the current source material and
possibly make override changes in a derived material.
This adds a "Cogl deprecated API" chapter to the Cogl reference manual
so we can group all the documentation for deprecated symbols together
instead of having them clutter up the documentation of symbols we would
rather developers used.
The CoglTexture3D API is only available when defining
COGL_ENABLE_EXPERIMENTAL_API so it should be listed in the experimental
section of the API reference.
Instead of exposing an API that provides an OpenGL state machine style
where you first have to bind the program to the context using
cogl_program_use() followed by updating uniforms using
cogl_program_uniform_xyz we now have uniform setter methods that take an
explicit CoglHandle for the program.
This deprecates cogl_program_use and all the cogl_program_uniform
variants and provides the following replacements:
cogl_program_set_uniform_1i
cogl_program_set_uniform_1f
cogl_program_set_uniform_int
cogl_program_set_uniform_float
cogl_program_set_uniform_matrix
This adds a publicly exposed experimental API for a 3D texture
backend. There is a feature flag which can be checked for whether 3D
textures are supported. Although we require OpenGL 1.2 which has 3D
textures in core, GLES only provides them through an extension so the
feature can be used to detect that.
The textures can be created with one of two new API functions :-
cogl_texture_3d_new_with_size
and
cogl_texture_3d_new_from_data
There is also internally a new_from_bitmap function. new_from_data is
implemented in terms of this function.
The two constructors are effectively the only way to upload data to a
3D texture. It does not work to call glTexImage2D with the
GL_TEXTURE_3D target so the virtual for cogl_texture_set_region does
nothing. It would be possible to make cogl_texture_get_data do
something sensible like returning all of the images as a single long
image but this is not currently implemented and instead the virtual
just always fails. We may want to add API specific to the 3D texture
backend to get and set a sub region of the texture.
All of those three functions can throw a GError. This will happen if
the GPU does not support 3D textures or it does not support NPOTs and
an NPOT size is requested. It will also fail if the FBO extension is
not supported and the COGL_TEXTURE_NO_AUTO_MIPMAP flag is not
given. This could be avoided by copying the code for the
GL_GENERATE_MIPMAP TexParameter fallback, but in the interests of
keeping the code simple this is not yet done.
This adds a couple of functions to cogl-texture-driver for uploading
3D data and querying the 3D proxy
texture. prep_gl_for_pixels_upload_full now also takes sets the
GL_UNPACK_IMAGE_HEIGHT parameter so that 3D textures can have padding
between the images. Whenever 3D texture is uploading, both the height
of the images and the height of all of the data is specified (either
explicitly or implicilty from the CoglBitmap) so that the image height
can be deduced by dividing by the depth.
There are many places in the texture backend that need to do
conversion using the CoglBitmap code. Currently none of these
functions can throw an error but they do return a value to indicate
failure. In future it would make sense if new texture functions could
throw an error and in that case they would want to use a CoglBitmap
error if the failure was due to the conversion. This moves the
internal CoglBitmap error from the quartz backend to be public in
cogl-bitmap.h so that it can be used in this way.
This adds a new API call to enable point sprite coordinate generation
for a material layer:
void
cogl_material_set_layer_point_sprite_coords_enabled (CoglHandle material,
int layer_index,
gboolean enable);
There is also a corresponding get function.
Enabling point sprite coords simply sets the GL_COORD_REPLACE of the
GL_POINT_SPRITE glTexEnv when flusing the material. There is no
separate application control for glEnable(GL_POINT_SPRITE). Instead it
is left permanently enabled under the assumption that it has no affect
unless GL_COORD_REPLACE is enabled for a texture unit.
http://bugzilla.openedhand.com/show_bug.cgi?id=2047
The documentation for cogl_vertex_buffer_indices_get_for_quads was
using ugly ASCII art to draw the diagrams. These have now been
replaced with PNG figures.
CoglMaterialWrapMode was missing from the cogl-sections.txt file so it
wasn't getting displayed. There were also no documented return values
from the getters.
This adds two new API calls- cogl_path_set_fill_rule and
cogl_path_get_fill_rule. This allows modifying the fill rule of the
current path. In addition to the previous default fill rule of
'even-odd' it now supports the 'non-zero' rule. The fill rule is a
property of the path (not the Cogl context) so creating a new path or
preserving a path with cogl_path_get_handle affects the fill rule.
cogl_ortho is one of those APIs whos style was, for better or worse,
copied from OpenGL and for some inexplicable reason the near and far
arguments are inconsistent with the left, right, top, bottom arguments
because they don't take z coordinates they take a "distance" which
should be negative for a plane behind the viewer.
This updates the documentation to explain this.
We only had getters for the red, green, blue and alpha channels of a
color. This meant that, if you wanted to change, say, the alpha
component of a color, one would need to query the red, green and blue
channels and use set_from_4ub() or set_from_4f().
Instead of this, just provide some setters for CoglColor, using the same
naming scheme than the existing getters.
For some operations on pre-multiplied colors (say, replace the alpha
value), you need to unpremultiply the color.
This patch provides the counterpart to cogl_color_premultiply().
• 3 general fixes (typos, copy/paste),
• ignore cogl-object-private.h,
• cogl_fixed_atani() was in reality cogl_fixed_atan(), fixed in commit
43564f05.
• Fix the cogl-vector section: sections must have a </SECTION> tag at
the end. Also the cogl-vector section was added in the middle of the
cogl-buffer one. Let's shiffle it out and add that </SECTION> tag.
This provides a mechanism for associating private data with any
CoglObject. We expect Clutter will use this to associate weak materials
with normal materials.
This adds a math utility API for handling 3 component, single precision
float vectors with the following; mostly self explanatory functions:
cogl_vector3_init
cogl_vector3_init_zero
cogl_vector3_equal
cogl_vector3_equal_with_epsilon
cogl_vector3_copy
cogl_vector3_free
cogl_vector3_invert
cogl_vector3_add
cogl_vector3_subtract
cogl_vector3_multiply_scalar
cogl_vector3_divide_scalar
cogl_vector3_normalize
cogl_vector3_magnitude
cogl_vector3_cross_product
cogl_vector3_dot_product
cogl_vector3_distance
Since the API is experimental you will need to define
COGL_ENABLE_EXPERIMENTAL_API before including cogl.h if you want to use
the API.
Previously, Cogl's texture coordinate system was effectively always
GL_REPEAT so that if an application specifies coordinates outside the
range 0→1 it would get repeated copies of the texture. It would
however change the mode to GL_CLAMP_TO_EDGE if all of the coordinates
are in the range 0→1 so that in the common case that the whole texture
is being drawn with linear filtering it will not blend in edge pixels
from the opposite sides.
This patch adds the option for applications to change the wrap mode
per layer. There are now three wrap modes: 'repeat', 'clamp-to-edge'
and 'automatic'. The automatic map mode is the default and it
implements the previous behaviour. The wrap mode can be changed for
the s and t coordinates independently. I've tried to make the
internals support setting the r coordinate but as we don't support 3D
textures yet I haven't exposed any public API for it.
The texture backends still have a set_wrap_mode virtual but this value
is intended to be transitory and it will be changed whenever the
material is flushed (although the backends are expected to cache it so
that it won't use too many GL calls). In my understanding this value
was always meant to be transitory and all primitives were meant to set
the value before drawing. However there were comments suggesting that
this is not the expected behaviour. In particular the vertex buffer
drawing code never set a wrap mode so it would end up with whatever
the texture was previously used for. These issues are now fixed
because the material will always set the wrap modes.
There is code to manually implement clamp-to-edge for textures that
can't be hardware repeated. However this doesn't fully work because it
relies on being able to draw the stretched parts using quads with the
same values for tx1 and tx2. The texture iteration code doesn't
support this so it breaks. This is a separate bug and it isn't
trivially solved.
When flushing a material there are now extra options to set wrap mode
overrides. The overrides are an array of values for each layer that
specifies an override for the s, t or r coordinates. The primitives
use this to implement the automatic wrap mode. cogl_polygon also uses
it to set GL_CLAMP_TO_BORDER mode for its trick to render sliced
textures. Although this code has been added it looks like the sliced
trick has been broken for a while and I haven't attempted to fix it
here.
I've added a constant to represent the maximum number of layers that a
material supports so that I can size the overrides array. I've set it
to 32 because as far as I can tell we have that limit imposed anyway
because the other flush options use a guint32 to store a flag about
each layer. The overrides array ends up adding 32 bytes to each flush
options struct which may be a concern.
http://bugzilla.openedhand.com/show_bug.cgi?id=2063
This adds three new API calls:
CoglHandle cogl_path_get()
void cogl_path_set(CoglHandle path)
CoglHandle cogl_path_copy(CoglHandle path)
All of the fields relating to the path have been moved from the Cogl
context to a new CoglPath handle type. The cogl context now just
contains a CoglPath handle. All of the existing path commands
manipulate the data in the current path handle. cogl_path_new now just
creates a new path handle and unrefs the old one.
The path handle can be stored for later with cogl_path_get. The path
can then be copied with cogl_path_copy. Internally it implements
copy-on-write semantics with an extra optimisation that it will only
copy the data if the new path is modified, but not if the original
path is modified. It can do this because the only way to modify a path
is by appending to it so the copied path is able to store its own path
length and only render the nodes up to that length. For this to work
the copied path also needs to keep its own copies of the path extents
because the parent path may change these by adding nodes.
The clip stack now uses the cogl_path_copy mechanism to store paths in
the stack instead of directly copying the data. This should save some
memory and processing time.
Although cogl_multiply_matrix was consistent with OpenGL, after further
consideration it was agreed that cogl_transform is a better name. Given
that it's in the global cogl_ namespace cogl_transform seems more self
documenting.
We've had complaints that our Cogl code/headers are a bit "special" so
this is a first pass at tidying things up by giving them some
consistency. These changes are all consistent with how new code in Cogl
is being written, but the style isn't consistently applied across all
code yet.
There are two parts to this patch; but since each one required a large
amount of effort to maintain tidy indenting it made sense to combine the
changes to reduce the time spent re indenting the same lines.
The first change is to use a consistent style for declaring function
prototypes in headers. Cogl headers now consistently use this style for
prototypes:
return_type
cogl_function_name (CoglType arg0,
CoglType arg1);
Not everyone likes this style, but it seems that most of the currently
active Cogl developers agree on it.
The second change is to constrain the use of redundant glib data types
in Cogl. Uses of gint, guint, gfloat, glong, gulong and gchar have all
been replaced with int, unsigned int, float, long, unsigned long and char
respectively. When talking about pixel data; use of guchar has been
replaced with guint8, otherwise unsigned char can be used.
The glib types that we continue to use for portability are gboolean,
gint{8,16,32,64}, guint{8,16,32,64} and gsize.
The general intention is that Cogl should look palatable to the widest
range of C programmers including those outside the Gnome community so
- especially for the public API - we want to minimize the number of
foreign looking typedefs.
Gtk-doc is reporting a lot of false positives in the unused text file,
mostly because of new private files that have been added to Cogl but not
to the gtk-doc ignore list for the Cogl API reference.
Once the false positives have been removed we have a couple of really
missing symbols that should be added to the cogl-sections.txt file.
The PixelFormat bit and mask #defines should not be used and are there
mostly for convenience, so we can push them to the "private" sub-section
of the API reference.
This pushed Cogl's API reference coverage to 100%.
The only goal of using COGL buffers is to use them to create
textures. cogl_texture_new_from_buffer() is the new symbol to create
textures out of buffers.
This subclass of CoglBuffer aims at wrapping PBOs or other system
surfaces like DRM buffer objects. Two constructors are available:
cogl_pixel_buffer_new() with a size when you only care about the size of
the buffer (such a buffer can be used to store several texture data such
as the three planes of a I420 frame).
cogl_pixel_buffer_new_full() is more a 1:1 mapping between the data and
an underlying surface, with the possibility of having access to a low
level memory buffer that may have a stride.
Buffer objects are cool! This abstracts the buffer API first introduced
by GL_ARB_vertex_buffer_object and then extended to other objects.
The coglBuffer abstract class is intended to be the base class of all
the buffer objects, letting the user map() buffers. If the underlying
implementation does not support buffer objects (or only support VBO but
not FBO for instance), fallback paths should be provided.
This adds three new texture backends.
- CoglTexture2D: This is a trimmed down version of CoglTexture2DSliced
which only supports a single texture and only works with the
GL_TEXTURE_2D target. The code is a lot simpler so it has a less
overheads than dealing with slices. Cogl will use this wherever
possible.
- CoglSubTexture: This is used to get a CoglHandle to represent a
subregion of another texture. The texture can be used as if it was a
standalone texture but it does not need to copy the resources.
- CoglAtlasTexture: This collects RGB and RGBA textures into a single
GL texture with the aim of reducing texture state changes and
increasing batching. The backend will try to manage the atlas and
may move the textures around to close gaps in the texture. By
default all textures will be placed in the atlas.
An example of what could be the equivalent of
"RBG = REPLACE(TEXTURE)
A = MODULATE(PREVIOUS,TEXTURE)"
using the ARB_texture_env_combine extension was given, but it seems that
a few typo were left:
* remove a spurius GL_COMBINE_ALPHA
* use the _ALPHA variant of SRCN and OPERANDN when setting up the
alpha combiner
This adds a new texture backend which represents a sub texture of a
larger texture. The texture is created with a reference to the full
texture and a set of coordinates describing the region. The backend
simply defers to the full texture for all operations and maps the
coordinates to the other range. You can also use coordinates outside
the range [0,1] to create a repeated version of the full texture.
A new public API function called cogl_texture_new_from_sub_texture is
available to create the sub texture.
cogl_push_draw_buffer, cogl_set_draw_buffer and cogl_pop_draw_buffer are now
deprecated and new code should use the new cogl_framebuffer_* API instead.
Code that previously did:
cogl_push_draw_buffer ();
cogl_set_draw_buffer (COGL_OFFSCREEN_BUFFER, buffer);
/* draw */
cogl_pop_draw_buffer ();
should now be re-written as:
cogl_push_framebuffer (buffer);
/* draw */
cogl_pop_framebuffer ();
As can be seen from the example above the rename has been used as an
opportunity to remove the redundant target argument from
cogl_set_draw_buffer; it now only takes one call to redirect to an offscreen
buffer, and finally the term framebuffer may be a bit more familiar to
anyone coming from an OpenGL background.
This function was #if 0'd before we released Clutter 1.0 so there's no
implementation of it. At some point we thought it might assist with
developers breaking out into raw OpenGL. Breaking out to raw GL is a
difficult problem though so we decided instead we will wait for a specific
use case to arrise before trying to support it.
The Clutter API reference has an index of the symbols for each minor
version, and a list of deprecated symbols. The Cogl API reference
should have the same layout.
cogl_clip_push() which accepts a rectangle in model space shouldn't have
been defined to take x,y,width,height arguments because this isn't consistant
with other Cogl API dealing with model space rectangles. If you are using a
coordinate system with the origin at the center and the y+ extending up,
then x,y,width,height isn't as natural as (x0,y0)(x1,y1). This API has
now been replace with cogl_clip_push_rectangle()
(As a general note: the Cogl API should only use the x,y,width,height style
when the appropriate coordinate space is defined by Cogl to have a top left
origin. E.g. window coordinates, or potentially texture coordinates)
cogl_clip_push_window_rect() shouldn't have been defined to take float
arguments since we only clip with integral pixel precision. We also
shouldn't have abbreviated "rectangle". This API has been replaced with
cogl_clip_push_window_rectangle()
cogl_clip_ensure() wasn't documented at all in Clutter 1.0 and probably
no one even knew it existed. This API isn't useful, and so it's now
deprecated. If no one complains we may remove the API altogether for
Clutter 1.2.
cogl_clip_stack_save() and cogl_clip_stack_restore() were originally added
to allow us to save/restore the clip when switching to/from offscreen
rendering. Now that offscreen draw buffers are defined to own their clip
state and the state will be automatically saved and restored this API is now
redundant and so deprecated.
The indirection through this API isn't necessary since we no longer
arbitrate between the OpenGL matrix API and Cogl's client side API. Also it
doesn't help to maintain an OpenGL style matrix mode API for internal use
since it's awkward to keep restoring the MODELVIEW mode and easy enough to
directly work with the matrix stacks of interest.
This replaces use of the _cogl_current_matrix API with direct use of the
_cogl_matrix_stack API. All the unused cogl_current_matrix API is removed
and the matrix utility code left in cogl-current-matrix.c was moved to
cogl.c.
As part of an incremental process to have Cogl be a standalone project we
want to re-consider how we organise the Cogl source code.
Currently this is the structure I'm aiming for:
cogl/
cogl/
<put common source here>
winsys/
cogl-glx.c
cogl-wgl.c
driver/
gl/
gles/
os/ ?
utils/
cogl-fixed
cogl-matrix-stack?
cogl-journal?
cogl-primitives?
pango/
The new winsys component is a starting point for migrating window system
code (i.e. x11,glx,wgl,osx,egl etc) from Clutter to Cogl.
The utils/ and pango/ directories aren't added by this commit, but they are
noted because I plan to add them soon.
Overview of the planned structure:
* The winsys/ API is the API that binds OpenGL to a specific window system,
be that X11 or win32 etc. Example are glx, wgl and egl. Much of the logic
under clutter/{glx,osx,win32 etc} should migrate here.
* Note there is also the idea of a winsys-base that may represent a window
system for which there are multiple winsys APIs. An example of this is
x11, since glx and egl may both be used with x11. (currently only Clutter
has the idea of a winsys-base)
* The driver/ represents a specific varient of OpenGL. Currently we have "gl"
representing OpenGL 1.4-2.1 (mostly fixed function) and "gles" representing
GLES 1.1 (fixed funciton) and 2.0 (fully shader based)
* Everything under cogl/ should fundamentally be supporting access to the
GPU. Essentially Cogl's most basic requirement is to provide a nice GPU
Graphics API and drawing a line between this and the utility functionality
we add to support Clutter should help keep this lean and maintainable.
* Code under utils/ as suggested builds on cogl/ adding more convenient
APIs or mechanism to optimize special cases. Broadly speaking you can
compare cogl/ to OpenGL and utils/ to GLU.
* clutter/pango will be moved to clutter/cogl/pango
How some of the internal configure.ac/pkg-config terminology has changed:
backendextra -> CLUTTER_WINSYS_BASE # e.g. "x11"
backendextralib -> CLUTTER_WINSYS_BASE_LIB # e.g. "x11/libclutter-x11.la"
clutterbackend -> {CLUTTER,COGL}_WINSYS # e.g. "glx"
CLUTTER_FLAVOUR -> {CLUTTER,COGL}_WINSYS
clutterbackendlib -> CLUTTER_WINSYS_LIB
CLUTTER_COGL -> COGL_DRIVER # e.g. "gl"
Note: The CLUTTER_FLAVOUR and CLUTTER_COGL defines are kept for apps
As the first thing to take advantage of the new winsys component in Cogl;
cogl_get_proc_address() has been moved from cogl/{gl,gles}/cogl.c into
cogl/common/cogl.c and this common implementation first trys
_cogl_winsys_get_proc_address() but if that fails then it falls back to
gmodule.
The version number in the title made sense when we were breaking
API with every minor release. Now that we're API stable we can
drop that and make the output in Devhelp and on the website slightly
more good looking.
Although we wouldn't recommend developers try and interleve OpenGL drawing
with Cogl drawing - we would prefer patches that improve Cogl to avoid this
if possible - we are providing a simple mechanism that will at least give
developers a fighting chance if they find it necissary.
Note: we aren't helping developers change OpenGL state to modify the
behaviour of Cogl drawing functions - it's unlikley that can ever be
reliably supported - but if they are trying to do something like:
- setup some OpenGL state.
- draw using OpenGL (e.g. glDrawArrays() )
- reset modified OpenGL state.
- continue using Cogl to draw
They should surround their blocks of raw OpenGL with cogl_begin_gl() and
cogl_end_gl():
cogl_begin_gl ();
- setup some OpenGL state.
- draw using OpenGL (e.g. glDrawArrays() )
- reset modified OpenGL state.
cogl_end_gl ();
- continue using Cogl to draw
Again; we aren't supporting code like this:
- setup some OpenGL state.
- use Cogl to draw
- reset modified OpenGL state.
When the internals of Cogl evolves, this is very liable to break.
cogl_begin_gl() will flush all internally batched Cogl primitives, and emit
all internal Cogl state to OpenGL as if it were going to draw something
itself.
The result is that the OpenGL modelview matrix will be setup; the state
corresponding to the current source material will be setup and other world
state such as backface culling, depth and fogging enabledness will be also
be sent to OpenGL.
Note: no special material state is flushed, so if developers want Cogl to setup
a simplified material state it is the their responsibility to set a simple
source material before calling cogl_begin_gl. E.g. by calling
cogl_set_source_color4ub().
Note: It is the developers responsibility to restore any OpenGL state that they
modify to how it was after calling cogl_begin_gl() if they don't do this then
the result of further Cogl calls is undefined.
This function should only need to be called in exceptional circumstances
since Cogl can normally determine internally when a flush is necessary.
As an optimization Cogl drawing functions may batch up primitives
internally, so if you are trying to use raw GL outside of Cogl you stand a
better chance of being successful if you ask Cogl to flush any batched
geometry before making your state changes.
cogl_flush() ensures that the underlying driver is issued all the commands
necessary to draw the batched primitives. It provides no guarantees about
when the driver will complete the rendering.
This provides no guarantees about the GL state upon returning and to avoid
confusing Cogl you should aim to restore any changes you make before
resuming use of Cogl.
If you are making state changes with the intention of affecting Cogl drawing
primitives you are 100% on your own since you stand a good chance of
conflicting with Cogl internals. For example clutter-gst which currently
uses direct GL calls to bind ARBfp programs will very likely break when Cogl
starts to use ARBfb programs internally for the material API, but for now it
can use cogl_flush() to at least ensure that the ARBfp program isn't applied
to additional primitives.
This does not provide a robust generalized solution supporting safe use of
raw GL, its use is very much discouraged.
To allow for flushing of batched geometry within Cogl we can't support users
directly calling glReadPixels. glReadPixels is also awkward, not least
because it returns upside down image data.
All the unit tests have been swithed over and clutter_stage_read_pixels now
sits on top of this too.
The texture filters are now a property of the material layer rather
than the texture object. Whenever a texture is painted with a material
it sets the filters on all of the GL textures in the Cogl texture. The
filter is cached so that it won't be changed unnecessarily.
The automatic mipmap generation has changed so that the mipmaps are
only generated when the texture is painted instead of every time the
data changes. Changing the texture sets a flag to mark that the
mipmaps are dirty. This works better if the FBO extension is available
because we can use glGenerateMipmap. If the extension is not available
it will temporarily enable automatic mipmap generation and reupload
the first pixel of each slice. This requires tracking the data for the
first pixel.
The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with
COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to
auto-mipmapping. The mipmap generation is now effectively free if you
are not using a mipmap filter mode so you would only want to disable
it if you had some special reason to generate your own mipmaps.
ClutterTexture no longer has to store its own copy of the filter
mode. Instead it stores it in the material and the property is
directly set and read from that. This fixes problems with the filters
getting out of sync when a cogl handle is set on the texture
directly. It also avoids the mess of having to rerealize the texture
if the filter quality changes to HIGH because Cogl will take of
generating the mipmaps if needed.
Clutter copies the gtk-doc from the usual gtk+ template, and
has a version.xml.in containing only:
@VERSION@
Without a newline at the end. Unfortunately, it appears that
autoconf has started adding a newline to the generated version.xml
which then is used as the payload for the "version" XML entity.
Instead of using a secondary file we can make configure generate
the whole clutter-docs.xml and cogl-docs.xml files from a template;
this way we also get the ability to substitute more autoconf variables
into the documentation -- if needs be.
This function can be used as an efficient way of drawing groups of
quads without using GL_QUADS. It generates a VBO containing the
indices needed to render using pairs of GL_TRIANGLES. The VBO is
globally cached so that it only needs to be uploaded whenever more
indices are requested than ever before.
cogl_enable_depth_test and cogl_enable_backface_culling have been renamed
and now have corresponding getters, the new functions are:
cogl_set_depth_test_enabled
cogl_get_depth_test_enabled
cogl_set_backface_culling_enabled
cogl_get_backface_culling_enabled
This adds cogl_matrix api for multiplying matrices either by a perspective
or ortho projective transform. The internal matrix stack and current-matrix
APIs also have corresponding support added.
New public API:
cogl_matrix_perspective
cogl_matrix_ortho
cogl_ortho
cogl_set_modelview_matrix
cogl_set_projection_matrix
cogl_create_context is dealt with internally when _cogl_get_default context
is called, and cogl_destroy_context is currently never called.
It might be nicer later to get an object back when creating a context so
Cogl can support multiple contexts, so these functions are being removed
from the API until we get a chance to address context management properly.
For now cogl_destroy_context is still exported as _cogl_destroy_context so
Clutter could at least install a library deinit handler to call it.
Originally cogl_vertex_buffer_add_indices let the user pass in their own unique
ID for the indices; now the Id is generated internally and returned to the
caller.
It's now possible to add arrays of indices to a Cogl vertex buffer and
they will be put into an OpenGL vertex buffer object. Since it's quite
common for index arrays to be static it saves the OpenGL driver from
having to validate them repeatedly.
This changes the cogl_vertex_buffer_draw_elements API: It's no longer
possible to provide a pointer to an index array at draw time. So
cogl_vertex_buffer_draw_elements now takes an indices identifier that
should correspond to an idendifier returned when calling
cogl_vertex_buffer_add_indices ()
There were a number of functions intended to support creating of new
primitives using materials, but at this point they aren't used outside of
Cogl so until someone has a usecase and we can get feedback on this
API, it's being removed before we release Clutter 1.0.
This removes the following API:
cogl_material_set_blend_factors
cogl_material_set_layer_combine_function
cogl_material_set_layer_combine_arg_src
cogl_material_set_layer_combine_arg_op
These were rather awkward to use, so since it's expected very few people are
using them at this point and it should be straight forward to switch over
to blend strings, the API is being removed before we release Clutter 1.0.
Setting up layer combine functions and blend modes is very awkward to do
programatically. This adds a parser for string based descriptions which are
more consise and readable.
E.g. a material layer combine function could now be given as:
"RGBA = ADD (TEXTURE[A], PREVIOUS[RGB])"
or
"RGB = REPLACE (PREVIOUS)"
"A = MODULATE (PREVIOUS, TEXTURE)"
The simple syntax and grammar are only designed to expose standard fixed
function hardware, more advanced combining must be done with shaders.
This includes standalone documentation of blend strings covering the aspects
that are common to blending and texture combining, and adds documentation
with examples specific to the new cogl_material_set_blend() and
cogl_material_layer_set_combine() functions.
Note: The hope is to remove the now redundant bits of the material API
before 1.0
COGLenum, COGLint and COGLuint which were simply typedefs for GL{enum,int,uint}
have been removed from the API and replaced with specialised enum typedefs, int
and unsigned int. These were causing problems for generating bindings and also
considered poor style.
The cogl texture filter defines CGL_NEAREST and CGL_LINEAR etc are now replaced
by a namespaced typedef 'CoglTextureFilter' so they should be replaced with
COGL_TEXTURE_FILTER_NEAREST and COGL_TEXTURE_FILTER_LINEAR etc.
The shader type defines CGL_VERTEX_SHADER and CGL_FRAGMENT_SHADER are handled by
a CoglShaderType typedef and should be replaced with COGL_SHADER_TYPE_VERTEX and
COGL_SHADER_TYPE_FRAGMENT.
cogl_shader_get_parameteriv has been replaced by cogl_shader_get_type and
cogl_shader_is_compiled. More getters can be added later if desired.
There were several functions I believe no one is currently using that were
only implemented in the GL backend (cogl_offscreen_blit_region and
cogl_offscreen_blit) that have simply been removed so we have a chance to
think about design later with a real use case.
There was one nonsense function (cogl_offscreen_new_multisample) that
sounded exciting but in all cases it just returned COGL_INVALID_HANDLE
(though at least for GL it checked for multisampling support first!?)
it has also been removed.
The MASK draw buffer type has been removed. If we want to expose color
masking later then I think it at least would be nicer to have the mask be a
property that can be set on any draw buffer.
The cogl_draw_buffer and cogl_{push,pop}_draw_buffer function prototypes
have been moved up into cogl.h since they are for managing global Cogl state
and not for modifying or creating the actual offscreen buffers.
This also documents the API so for example desiphering the semantics of
cogl_offscreen_new_to_texture() should be a bit easier now.
This function was renamed a while ago in the .c file from
cogl_vertex_buffer_draw_range_elements but the corresponding .h and
doc/reference/cogl changes weren't made.
In the future if we want to annotate matrices with internal flags, and add
caching of the inverse matrix then we need to ensure that all matrix
modifications are done by cogl_matrix API so we'd know when to dirty the
cache or update the flags.
This just adds documentation to that effect, and assuming the most likley
case where someone would try and directly write to matrix members would
probably be to load a constant matrix other than the identity matrix; I
renamed cogl_matrix_init_from_gl_matrix to cogl_matrix_init_from_array to
make it seem more general purpose.
The COGL_DEFINE_HANDLE macro generates a cogl_is_<type> function
as well, to check whether a CoglHandle opaque pointer is of type
<type>.
The handle for CoglMaterial does not export cogl_is_material() in
its installed header.
cogl_paint_init was a bit too miscellaneous; it mainly cleared the color, depth
and stencil buffers but arbitrarily it also disabled fogging and lighting.
It no longer disables lighting, since we know Cogl never enables lighting and
disabling of fog is now handled with a seperate function.
Since I noticed cogl_set_fog was taking a density argument documented as
"Ignored" I've also added a mode argument to cogl_set_fog which exposes the
exponential fog modes which can make use of the density.
This hides a number of internal structs and enums from the docs, and moves
some functions to more appropriate sections as well as misc description
updates (mostly for the vertex buffer api)
This better reflects the fact that the api manages sets of vertex attributes,
and the attributes really have no implied form. It is only when you use the
attributes to draw that they become mesh like; when you specify how they should
be interpreted, e.g. as triangle lists or fans etc. This rename frees up the
term "mesh", which can later be applied to a concept slightly more fitting.
E.g. at some point it would be nice to have a higher level abstraction that
sits on top of cogl vertex buffers that adds the concept of faces. (Somthing
like Blender's mesh objects.) There have also been some discussions over
particle engines, and these can be defined in terms of emitter faces; so some
other kind of mesh abstraction might be usefull here.
To deal with all the corner cases that couldn't be scripted a number of patches
were written for the remaining 10% of the effort.
Note: again no API changes were made in Clutter, only in Cogl.
* clutter/cogl/cogl-path.h:
* clutter/cogl/common/cogl-primitives.c:
* clutter/cogl/common/cogl-primitives.h:
* clutter/cogl/gl/cogl-primitives.c:
* clutter/cogl/gles/cogl-primitives.c: Changed the semantics of
cogl_path_move_to. Previously this always started a new path but
now it instead starts a new disjoint sub path. The path isn't
cleared until you call either cogl_path_stroke, cogl_path_fill or
cogl_path_new. There are also cogl_path_stroke_preserve and
cogl_path_fill_preserve functions.
* clutter/cogl/gl/cogl-context.c:
* clutter/cogl/gl/cogl-context.h:
* clutter/cogl/gles/cogl-context.c:
* clutter/cogl/gles/cogl-context.h: Convert the path nodes array
to a GArray.
* clutter/cogl/gl/cogl-texture.c:
* clutter/cogl/gles/cogl-texture.c: Call cogl_clip_ensure
* clutter/cogl/common/cogl-clip-stack.c:
* clutter/cogl/common/cogl-clip-stack.h: Simplified the clip
stack code quite a bit to make it more maintainable. Previously
whenever you added a new clip it would go through a separate route
to immediately intersect with the current clip and when you
removed it again it would immediately rebuild the entire clip. Now
when you add or remove a clip it doesn't do anything immediately
but just sets a dirty flag instead.
* clutter/cogl/gl/cogl.c:
* clutter/cogl/gles/cogl.c: Taken away the code to intersect
stencil clips when there is exactly one stencil bit. It won't work
with path clips and I don't know of any platform that doesn't have
eight or zero stencil bits. It needs at least three bits to
intersect a path with an existing clip. cogl_features_init now
just decides you don't have a stencil buffer at all if you have
less than three bits.
* clutter/cogl/cogl.h.in: New functions and documentation.
* tests/interactive/test-clip.c: Replaced with a different test
that lets you add and remove clips. The three different mouse
buttons add clips in different shapes. This makes it easier to
test multiple levels of clipping.
* tests/interactive/test-cogl-primitives.c: Use
cogl_path_stroke_preserve when using the same path again.
* doc/reference/cogl/cogl-sections.txt: Document the new
functions.
Bug 1049 - Clutter doesn't support most GLSL uniforms (patch
by Chris Lord and Neil Roberts)
* README: Update release notes.
* clutter/Makefile.am:
* clutter/clutter-shader-types.[ch]: Add GValue types for
shader values.
* clutter/clutter-actor.[ch]: Update the shader API to use
the newly added GValue support for GLSL shader uniform
setters.
* clutter/clutter-shader.[ch]: Add float and integer convenience
API for single value GLSL uniform setters.
* clutter/cogl/cogl-shader.h: Add new uniform setters.
* clutter/cogl/gl/cogl-context.c:
* clutter/cogl/gl/cogl-context.h:
* clutter/cogl/gl/cogl-defines.h.in:
* clutter/cogl/gl/cogl-program.c:
* clutter/cogl/gl/cogl.c: Update the GL implementation of COGL
to handle the GLSL uniform setters.
* clutter/cogl/gles/cogl-gles2-wrapper.c:
* clutter/cogl/gles/cogl-gles2-wrapper.h:
* clutter/cogl/gles/cogl-internal.h:
* clutter/cogl/gles/cogl-program.c: Update the GLES 2.0 implementation
of COGL to handle the GLSL uniform setters.
* doc/reference/clutter/clutter-sections.txt:
* doc/reference/cogl/cogl-sections.txt: Update the documentation.
* tests/interactive/test-fbo.c:
* tests/interactive/test-shader.c: Update the shader tests.
* clutter/cogl/cogl-color.h:
* clutter/cogl/cogl-path.h:
* clutter/cogl/cogl-types.h:
* clutter/cogl/common/cogl-color.c: Deprecated cogl_color()
in favour of cogl_set_source_color() and friends; store the
CoglColor components as unsigned bytes instead of fixed point
normalized values; add functions for allocating, copying and
freeing CoglColor, for use of language bindings.
* clutter/cogl/cogl.h.in:
* clutter/cogl/cogl-deprecated.h: Added cogl-deprecated.h,
an header file containing the deprecation symbols similar
to clutter-deprecated.h.
* clutter/cogl/gl/Makefile.am:
* clutter/cogl/gl/cogl-texture.c:
* clutter/cogl/gl/cogl.c:
* clutter/cogl/gles/Makefile.am:
* clutter/cogl/gles/cogl-texture.c:
* clutter/cogl/gles/cogl.c: Update the GL and GLES implementations
of COGL after the CoglColor changes.
* clutter/clutter-actor.c:
* clutter/clutter-clone-texture.c:
* clutter/clutter-entry.c:
* clutter/clutter-label.c:
* clutter/clutter-rectangle.c:
* clutter/clutter-texture.c: Do not use CoglColor whenever it
is possible, and use cogl_set_source_color4ub() instead.
* clutter/pango/cogl-pango-render.c: Ditto as above.
* doc/reference/clutter/subclassing-ClutterActor.xml:
* doc/reference/cogl/cogl-sections.txt: Update the documentation.
* tests/interactive/test-cogl-offscreen.c:
* tests/interactive/test-cogl-primitives.c:
* tests/interactive/test-cogl-tex-convert.c:
* tests/interactive/test-cogl-tex-foreign.c:
* tests/interactive/test-cogl-tex-getset.c:
* tests/interactive/test-cogl-tex-polygon.c:
* tests/interactive/test-cogl-tex-tile.c:
* tests/interactive/test-paint-wrapper.c: Drop the usage of
CoglColor whenever it is possible.
* clutter/cogl/cogl-mesh.h
* clutter/cogl/cogl-types.h
* clutter/cogl/cogl.h.in
* clutter/cogl/common/Makefile.am
* clutter/cogl/common/cogl-mesh-private.h
* clutter/cogl/common/cogl-mesh.c
* clutter/cogl/gl/cogl-context.c
* clutter/cogl/gl/cogl-context.h
* clutter/cogl/gl/cogl-defines.h.in
* clutter/cogl/gl/cogl.c
* clutter/cogl/gles/cogl-context.c
* clutter/cogl/gles/cogl-context.h
* doc/reference/cogl/cogl-docs.sgml
* doc/reference/cogl/cogl-sections.txt:
The Mesh API provides a means for submitting an extensible number of
per vertex attributes to OpenGL in a way that doesn't require format
conversions and so that the data can be mapped into the GPU (in vertex
buffer objects) for - hopefully - fast re-use.
There are a number of things we can potentially use this API for, but
right now this just provides a foundation to build on. Please read
the extensive list of TODO items in cogl-mesh.c for examples.
Please refer to the cogl-mesh section in the reference manual for
documentation of the API.
* tests/conform/Makefile.am
* tests/conform/test-conform-main.c
* tests/conform/test-mesh-contiguous.c
* tests/conform/test-mesh-interleved.c
* tests/conform/test-mesh-mutability.c:
Privides basic coverage testing for the mesh API.
Bug 1219 - Clean up cogl.h
* clutter/cogl/cogl.h.in:
* clutter/cogl/cogl-offscreen.h:
* clutter/cogl/cogl-path.h:
* clutter/cogl/cogl-shader.h:
* clutter/cogl/cogl-texture.h:
* clutter/cogl/cogl-types.h: Split up the massive cogl.h file
into sub-header for each section of the API.
* clutter/cogl/gl/*:
* clutter/cogl/gles/*: Update the GL and GLES implementations
of COGL to cope with the new header structure.
* doc/reference/cogl/Makefile.am: Fix symbol retrieval.
Bug 1210 - Add CoglColor API
* clutter/cogl/cogl-color.h:
* clutter/cogl/cogl.h.in:
* clutter/cogl/common/Makefile.am:
* clutter/cogl/common/cogl-color.c:
* clutter/cogl/gl/Makefile.am:
* clutter/cogl/gl/cogl.c:
* clutter/cogl/gles/Makefile.am:
* clutter/cogl/gles/cogl-texture.c:
* clutter/cogl/gles/cogl.c: Add a new color-type, to be used by
COGL. CoglColor is optimized to allow the minimum amount of
conversions possible for both GL and GLES implementations.
* clutter/clutter-actor.c:
* clutter/clutter-clone-texture.c:
* clutter/clutter-entry.c:
* clutter/clutter-main.c:
* clutter/clutter-rectangle.c:
* clutter/clutter-stage.c:
* clutter/clutter-texture.c: Use CoglColor when needed.
* clutter/pango/pangoclutter-render.c: Use CoglColor when needed.
* doc/reference/cogl/cogl-docs.sgml:
* doc/reference/cogl/cogl-sections.txt: Update the documentation.
* tests/test-cogl-offscreen.c:
* tests/test-cogl-primitives.c:
* tests/test-cogl-tex-convert.c:
* tests/test-cogl-tex-foreign.c:
* tests/test-cogl-tex-getset.c:
* tests/test-cogl-tex-polygon.c:
* tests/test-cogl-tex-tile.c:
* tests/test-paint-wrapper.c: Update the tests.
* README: Update release notes.
Bug 1209 - Move fixed point API in COGL
* clutter/cogl/cogl-fixed.h:
* clutter/cogl/cogl.h.in:
* clutter/cogl/common/Makefile.am:
* clutter/cogl/common/cogl-fixed.c: Add fixed point API, modelled
after the ClutterFixed. The CoglFixed API supercedes the ClutterFixed
one and avoids the dependency of COGL on Clutter's own API.
* clutter/cogl/common/cogl-clip-stack.c:
* clutter/cogl/common/cogl-primitives.c:
* clutter/cogl/common/cogl-primitives.h: Update internal usage of
ClutterFixed to CoglFixed.
* clutter/cogl/gl/Makefile.am:
* clutter/cogl/gl/cogl-primitives.c:
* clutter/cogl/gl/cogl-texture.c:
* clutter/cogl/gl/cogl.c: Ditto, in the GL implementation of the
COGL API.
* clutter/cogl/gles/Makefile.am:
* clutter/cogl/gles/cogl-fbo.c:
* clutter/cogl/gles/cogl-gles2-wrapper.c:
* clutter/cogl/gles/cogl-primitives.c:
* clutter/cogl/gles/cogl-texture.c:
* clutter/cogl/gles/cogl.c: Ditto, in the GLES implementation of
the COGL API.
* clutter/pango/pangoclutter-glyph-cache.c:
* clutter/pango/pangoclutter-glyph-cache.h: Ditto, in the Pango
renderer glyphs cache.
* clutter/clutter-fixed.c:
* clutter/clutter-fixed.h: ClutterFixed and related API becomes
a simple transition API for bindings and public Clutter API.
* clutter/clutter-actor.c:
* clutter/clutter-alpha.c:
* clutter/clutter-backend.c:
* clutter/clutter-behaviour-depth.c:
* clutter/clutter-behaviour-ellipse.c:
* clutter/clutter-behaviour-path.c:
* clutter/clutter-behaviour-rotate.c:
* clutter/clutter-behaviour-scale.c:
* clutter/clutter-clone-texture.c:
* clutter/clutter-color.c:
* clutter/clutter-entry.c:
* clutter/clutter-stage.c:
* clutter/clutter-texture.c:
* clutter/clutter-timeline.c:
* clutter/clutter-units.h: Move from the internal usage of
ClutterFixed to CoglFixed.
* doc/reference/clutter/clutter-sections.txt:
* doc/reference/cogl/cogl-docs.sgml:
* doc/reference/cogl/cogl-sections.txt: Update the documentation.
* tests/test-cogl-tex-tile.c:
* tests/test-project.c: Fix tests after the API change
* README: Add release notes.
* clutter/cogl/gl/cogl-texture.c (cogl_texture_polygon)
(_cogl_texture_quad_sw, _cogl_texture_quad_hw):
* clutter/cogl/gles/cogl-texture.c (cogl_texture_polygon)
(_cogl_texture_quad_sw, _cogl_texture_quad_hw): Enable backface
culling in GL if it is requested.
* clutter/cogl/gles/cogl-texture.c (_cogl_texture_quad_sw)
(_cogl_texture_quad_hw):
* clutter/cogl/gl/cogl-texture.c (_cogl_texture_quad_sw)
(_cogl_texture_quad_hw): Reorder the
vertices so that they are counter-clockwise.
* clutter/cogl/gles/cogl-context.h (CoglContext):
* clutter/cogl/gl/cogl-context.h (CoglContext): Added a flag to
store whether backface culling is currently enabled.
* clutter/cogl/gles/cogl.c (cogl_enable_backface_culling):
* clutter/cogl/gl/cogl.c (cogl_enable_backface_culling): New
function
* doc/reference/cogl/cogl-sections.txt: Add
cogl_enable_backface_culling
* clutter/cogl/gl/cogl.c:
* clutter/cogl/gles/cogl.c:
* clutter/cogl/cogl.h.in: Add cogl_clip_stack_save,
cogl_clip_stack_restore, cogl_viewport and cogl_frustum.
* clutter/cogl/gl/cogl-fbo.h:
* clutter/cogl/gl/cogl-fbo.c: Try to attach a stencil buffer when
creating an FBO.
* clutter/cogl/common/cogl-clip-stack.c: Add functions to save and
restore the whole state of the stack.
* clutter/clutter-texture.c (clutter_texture_paint): When
rendering the FBO source, setup a temporary asymmetric perspective
projection matrix to render it as it would appear on screen.
* clutter/clutter-private.h:
* clutter/clutter-actor.c
(_clutter_actor_apply_modelview_transform_recursive): No longer
static and exported in clutter-private.h
* cogl/Makefile.am:
* cogl/cogl-docs.sgml:
* cogl/version.xml.in
* clutter/version.xml.in
Add full version (including minor) to docs.
Add version to COGL docs
* doc/reference/cogl/Makefile.am: Ignore cogl/gl and cogl/gles
when building the documentation.
* clutter/cogl/cogl.h.in: Add sections in the header file.
wrapped in reference-counted CoglHandles instead.
* clutter/cogl/gl/cogl-shader.c:
* clutter/cogl/gl/cogl-shader.h:
* clutter/cogl/gl/cogl-program.c:
* clutter/cogl/gl/cogl-program.h:
New files to hold the shader and program functions.
* clutter/cogl/gl/cogl.c: Removed shader and program functions.
* clutter/cogl/common/cogl-handle.h: New header to define
COGL_HANDLE_DEFINE which helps build functions to create
reference-counted handles. This reduces the amount of duplicated
code.
* clutter/cogl/gl/cogl-texture.c:
* clutter/cogl/gles/cogl-texture.c:
* clutter/cogl/gl/cogl-fbo.c: Converted to use COGL_HANDLE_DEFINE
from cogl-handle.h to avoid duplicating some of the common code.
* clutter/cogl/gles/cogl-defines.h.in:
* clutter/cogl/gl/cogl-defines.h.in: Removed COGLhandle
* clutter/cogl/gl/cogl-context.h: Added handle arrays for programs
and shaders.
* clutter/cogl/gl/cogl-context.c (cogl_create_context): Added
initialisers for shader_handles and program_handles.
(cogl_destroy_context): Added calls to g_array_free for all handle
arrays.
* clutter/cogl/gl/Makefile.am (libclutter_cogl_la_SOURCES): Added
cogl-{program,shader}.{c,h}
* clutter/cogl/common/Makefile.am
(libclutter_cogl_common_la_SOURCES): Added cogl-handle.h
* clutter/cogl/gles/cogl.c:
* clutter/cogl/cogl.h.in: Programs and shaders are now wrapped in
CoglHandles instead of COGLhandles. cogl_program_destroy and
cogl_shader_destroy is now replaced with cogl_program_unref and
cogl_shader_unref. cogl_program_ref and cogl_shader_ref are also
added.
* clutter/clutter-shader.c: Converted to use CoglHandles for the
programs and shaders instead of COGLhandles.
* cogl/cogl-sections.txt: Added cogl_shader_ref,
cogl_shader_unref, cogl_is_shader, cogl_program_ref,
cogl_program_unref, cogl_is_program and cogl_is_offscreen.
* clutter/clutter-docs.sgml: Add index for the 0.8 symbols.
* clutter/Makefile.am:
* cogl/Makefile.am: Revert back, as EXTRA_DIST has been defined
by gtk-doc.make and automake-1.9 complains loudly about a
redefinition of EXTRA_DIST.