The intel DRM driver is known for not being able to handle multi head
setups when KMS modifiers are enabled, due to the implicitly selected
modifiers, while being more suitable for single head setups, cause
bandwidth issues when a certain number of monitor times resolution and
refresh rate is configured.
We don't yet support automatically finding a combination of modifiers
that work, and have because of this disabled KMS modifiers unless the
driver actually needs it.
Lets flip this configuration the other way around, changing the current
udev rule to decide wen to *disable* KMS modifier support, as it so that
only the Intel driver has this problem, while on the other hand, there
several drivers that requires modifiers to function at all.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1792>
The input thread is in deep water doing the meta_is_*() check itself,
as that pokes the MetaMonitorManager managed by the main thread. Use
the getter from the MetaViewportInfo instead.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1793>
This eliminates the need for any render node or device nodes, thus can
be used without any graphics hardware available at all, or with a
graphics driver without any render node available.
The surfaceless mode currently requires EGL_KHR_no_config_context to
configure the initial EGL display.
This also means we can enable the native backend tests in CI, as it
should work without any additional privileges.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
Virtual monitors are monitors that isn't backed by any monitor like
hardware. It would typically be backed by e.g. a remote desktop service,
or a network display.
It is currently only supported by the native backend, and whether the
X11 backend will ever see virtual monitors is an open question. This
rest of this commit message describes how it works under the native
backend.
Each virutal monitor consists of virtualized mode setting components:
* A virtual CRTC mode (MetaCrtcModeVirtual)
* A virtual CRTC (MetaCrtcVirtual)
* A virtual connector (MetaOutputVirtual)
In difference to the corresponding mode setting objects that represents
KMS objects, the virtual ones isn't directly tied to a MetaGpu, other
than the CoglFramebuffer being part of the GPU context of the primary
GPU, which is the case for all monitors no matter what GPU they are
connected to. Part of the reason for this is that a MetaGpu in practice
represents a mode setting device, and its CRTCs and outputs, are all
backed by real mode setting objects, while a virtual monitor is only
backed by a framebuffer that is tied to the primary GPU. Maybe this will
be reevaluated in the future, but since a virtual monitor is not tied to
any GPU currently, so is the case for the virtual mode setting objects.
The native rendering backend, including the cursor renderer, is adapted
to handle the situation where a CRTC does not have a GPU associated with
it; this in practice means that it e.g. will not try to upload HW cursor
buffers when the cursor is only on a virtual monitor. The same applies
to the native renderer, which is made to avoid creating
MetaOnscreenNative for views that are backed by virtual CRTCs, as well
as to avoid trying to mode set on such views.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
With this commit, it's possible to run mutter without being DRM master.
It's not yet possible to add virtual monitors, but one can for example
already add virtual input devices.
This currently doesn't try to hook up to any logind session, thus will
not have a real seat assigned. Currently it's hard coded to "seat0".
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
Currently our only entry point for DRM devices is MetaKms*, but in order
to run without being DRM master, we cannot use /dev/dri/card*, nor can
we be either of the existing MetaKmsImplDevice implementation (legacy
KMS, and atomic KMS), as they both depend on being DRM master.
Thus to handle running without being DRM master (i.e. headless), add a
"dummy" MetaKmsImplDevice implementation, that doesn't do any mode
setting at all, and that switches to operate on the render node, instead
of the card node itself.
This means we still use the same GBM code paths as the regular native
backend paths, except we never make use of any CRTC backed onscreen
framebuffers.
Eventually, this "dummy" MetaKmsImplDevice will be replaced separating
"KMS" device objects from "render" device objects, but that will require
more significant changes. It will, however, be necessary for e.g. going
from being headless, only having access to a render node, to turning
into a real session, with a seat, being DRM master, and having access to
a card node.
This is currently not hooked up, but will be in a later commit.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
Add a flag to MetaSeatNative and MetaSeatImpl that tells it not to
attempt to create a libinput context. This is intended to be used when
mutter is to run headless, as in without any input devices other than
virtual ones.
Currently not hooked up.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
This leaves only the atomic mode setting cap check before creating the
impl device, aiming to make it possible to create a non-mode-setting
MetaKmsImplDevice implementation.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
Make it possible to pass --headless as a command line argument in order
to turn the native backend "headless". This currently doesn't do
anything, but the intention is that it should not use logind nor KMS,
and work completely headless with only virtual outputs.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
With commit 7d78768809 we switched to
storing pointer coordinates in MetaInputDeviceNative instead of
ClutterInputDevice, and while we had set the coordinates of the
ClutterInputDevice in ClutterStage when queueing an event, we now set
the MetaInputDeviceNative coordinates in new_absolute_motion_event().
Here a small mistake snuck in: new_absolute_motion_event() only
translates the coordinates of the event, but we call
meta_input_device_native_set_coords() using the x and y variables
(which remain untranslated), so now the input device coordinates are no
longer translated.
Fix that by translating the coordinates of the x and y variables in case
we're we handling a tablet/stylus event instead of only translating the
event coordinates.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1685
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1760>
With commit c985753442 the support for
multiple hardware cursors broke, but those were never properly supported
anyway as we usually assume there's only one hardware cursor around.
With the introduction of the KMS thread in the future, we'll only have
one KMS cursor that gets updated directly from the input thread. So
apart from the fact that it never really makes sense to have two cursors
visible, in this new model having multiple cursors won't work anyway.
So make the cursor we show for stylii a software cursor again.
Eventually the plan is to make the input device that's driving the KMS
cursor interchangeable, so that we can always use hardware cursors.
This reverts commit 165b7369c8.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1645
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1758>
This concerns only the cases when the presentation timestamp is received
directly from the device (from KMS or from GLX). In the majority of
cases this timestamp is already MONOTONIC. When it isn't, after this
commit, the current value of the MONOTONIC clock is sampled instead.
The alternative is to store the clock id alongside the timestamp, with
possible values of MONOTONIC, REALTIME (from KMS) and GETTIMEOFDAY (from
GLX; this might be the same as REALTIME, I'm not sure), and then
"convert" the timestamp to MONOTONIC when needed. An example of such a
conversion was done in compositor.c (removed in this commit). It would
also be needed for the presentation-time Wayland protocol. However, it
seems that the vast majority of up-to-date systems are using MONOTONIC
anyway, making this effort not justified.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1484>
KMS and GLX device timestamps have microsecond precision, and whenever
we sample the time ourselves it's not the real presentation time anyway,
so nanosecond precision for that case is unnecessary.
The presentation timestamp in ClutterFrameInfo is in microseconds, too,
so this commit makes them have the same precision.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1484>
A flag indicating whether the presentation timestamp was provided by the
display hardware (rather than sampled in user space).
It will be used for the presentation-time Wayland protocol.
This is definitely the case for page_flip_handler(), and I'm assuming
this is also the case for the two instances in the GLX code.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1484>
The old calculation was introduced to improve the precision
with commit c16a5ec1cf.
Here, I call the calculation as "revision 2", and the
calculation even older as "revision 1", and the new
calculation introduced with this commit as "reivion 3".
Revision 2 has two problems:
1. The calculation is mixed with fixed-point numbers and
floating-point numbers.
To overcome the precision loss of fixed-point numbers division,
it first "calculates refresh rate in milliHz first for extra
precision", but this requires converting the value back to Hz.
An extra calculation has performance and precision costs.
It is also hard to understand for programmers.
2. The calculation has a bias.
In the process, it does:
refresh += (drm_mode->vtotal / 2);
It prevents the value from being rounded to a smaller value in
a fixed-point integer arithmetics, but it only adds a small
bias (0.0005) and consumes some fraction bits for
floating point arithmetic.
Revision 3, introduced with this commit always uses
double-precision floating-point values for true precision and
to ease understanding of this code. It also removes the bias.
Another change is that it now has two internal values, numerator
and denominator. Revision 1 also calculated those two values
first, and later performed a division with them, which minimizes
the precision loss caused by divisions. This method has risks of
overflowing the two values and revision 1 caused problems due to
that, but revision 3 won't thanks to double-precision. Therefore,
revision 3 will theoretically have the result identical with
the calculation with infinite-precision.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1737>
This removes the responsibility of tracking these from the backend to
the base object. The backends are instead responsible for calling the
function to update the values.
For the native backend, it's important that this happens on the correct
thread, so each time either of these states may change, post a idle
callback on the main thread that sets the, at the time of queuing said
callback, up to date state. This means that things on the main thread
will always be able to get a "new enough but not too new" state when
listening on the 'notify::' signals and getting the property value
after.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1739>
Each next and current scanout buffer has a reference on them making sure
they stay alive. When dumb buffers were used on the secondary GPU state,
this didn't happen, leading to crashes due to unref:ing one time too
many, with backtraces such as
0) g_type_check_instance_is_fundamentally_a ()
1) g_object_unref ()
2) secondary_gpu_release_dumb ()
3) import_shared_framebuffer ()
4) update_secondary_gpu_state_post_swap_buffers ()
5) meta_onscreen_native_swap_buffers_with_damage ()
6) cogl_onscreen_swap_buffers_with_damage ()
7) swap_framebuffer ()
8) clutter_stage_cogl_redraw_view_primary ()
9) clutter_stage_cogl_redraw_view ()
10) _clutter_stage_window_redraw_view ()
11) handle_frame_clock_frame ()
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1746>
Without these devices, things that depend on the existance of input
device classes won't know about the existance of e.g. pointer devices,
if the only pointer device is from a virtual one.
This requires handling situations where e.g. a device doesn't have a
device node thus can't be matched against a udev device.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1688>
Libinput will queue a few initial events when a seat is assigned to the
udev backend; a result of it probing udev adding detected devices. For
us to see these events, we need to dispatch libinput before going idle,
as nothing will show up on the libinput file descriptor until something
else (e.g. keyboard event or mouse movement) wakes us up.
Do this by adding a prepare() function to the libinput GSource, that
checks whether there are any events in the queue already, and return
TRUE if so is the case, causing us to dispatch before going fully idle.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1688>
When a remote desktop user emits a virtual smooth scrolling event, a
smooth scroll event, that is not emulated, is emitted and on occasion
a discrete scroll event, that is emulated, is emitted.
As base for the discrete scrolling event, the smooth scrolling steps
are accumulated.
When the accumulated smooth scrolling steps surpass the
DISCRETE_SCROLL_STEP, the discrete scrolling event is emitted.
Currently, mutter uses for DISCRETE_SCROLL_STEP the value 10, which is
a terrible value to work with, especially for high resolution mouse
wheels.
When a triple resolution mouse wheel is used, each scrolling step will
have the value 3 1/3.
Three of such events won't however surpass the DISCRETE_SCROLL_STEP.
To fix this situation, add DBL_EPSILON to the calculation step, when
checking for the discrete scroll event to ensure that 3 smooth scroll
events, with each having the value 3 1/3, emit a discrete scrolling
event.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1727>
g_set_error_literal() asserts that the provided message is not NULL.
If it is NULL, the function is entirely no-op.
This resulted in a NULL dereference of the GError, which remained
NULL in this case, when trying to print a warning in
clutter_stage_cogl_redraw_view().
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1715>
The original implementation of ::touch-mode tested for keyboard
presence to know whether the OSK and other touch-only features were
enabled.
However that didn't pan out, every webcam, card reader and kitchen
sink like to live a second life as EV_KEY devices. This made the
detection of actual external keyboards a much harder task than it
sounds, and was thus removed in commit f8e2234ce5.
Try a different approach here, and test for pointer devices, it
doesn't matter if internal or external devices, the rationales:
- It is significantly easier to get this right, there's virtually
no devices with abs/rel axes that don't try to be a real input
device of some sorts.
- It's not as good as testing for keyboard presence, but it's the
next best thing. These usually come in pairs, except in weird
setups.
- It is better than not having anything for a number of situations:
- Non-convertible laptops with a touchscreen will get touch-mode
disabled due to touchpad presence (plus keyboard). There's
been complains about OSK triggering with those.
- Same for desktop machines with USB touchscreens, the mouse
(and presumably keyboard) attached would make touch-mode
get in the middle.
- Convertible laptops with a broken tablet-mode switch get a
chance to work on tablet modes that do disable input devices
(e.g. detachable keyboards, or via firmware)
- Kiosk machines, tablets, and other devices that have a
touchscreen but will not regularly have a mouse/keyboard
will get the touch-mode enabled.
All in all, this seems to cover more situations the way we expect it,
there's only one situation that the OSK would show where it might
not be desirable, and one that might not show when it better should:
- Tablets and kiosk machines that get one keyboard plugged, but not a
mouse, will still show the OSK, despite being able to type right
away.
- Convertible laptops with broken/unreliable tablet-mode switch (e.g.
ignored by the kernel) rely entirely on the device/firmware
characteristics to work. If after folding into tablet mode the
touchpad remains active, touch-mode will not turn on.
Fixing the tablet-mode switch on these devices should be preferred,
as that'll also make libinput magically disable the touchpad.
The latter can be worked around with the a11y toggle. The former is
merely inconvenient, and nothing prevents the user from plugging a mouse
in addition.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1710>
Instead of calling "init_onscreen()" on two different separate vtables
from the allocate() funtion, just have the CoglOnscreen sub types
themself implement allocate() and initialize in there.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
Thins means that e.g. MetaOnscreenNative now inherits CoglOnscreenEgl,
which inherits CoglOnscreen which inherits CoglFramebuffer, all being
the same GObject instance.
This makes it necessary to the one creating the onscreen to know what it
wants to create. For the X11 backend, the type of renderer (Xlib EGL or
GLX) determines the type, and for the native backend, it's currently
always MetaOnscreenNative.
The "winsys" vfunc entries related to onscreens hasn't been moved yet,
that will come later.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
To get meta-renderer-native.c down to a bit more managable size, and to
isolate "onscreen" functionality from other (at least partly), move out
the things related to CoglOnscreen to meta-onscreen-native.[ch].
A couple of structs are moved to a new shared header file, as
abstracting those types (e.g. (primary, secondary) render devices) will
be dealt with later.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
The mutter naming convention for types and their instance variables is:
Type name:
[Namespace][BaseName][SubType]
Instance name:
[base_name]_[sub_type]
This means that e.g. CoglOnscreenGLX is renamed CoglOnscreenGlx, and
glx_onscreen is renamed onscreen_glx. This is in preparation for
GObjectification.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
Make the API used more shared and better named.
meta_monitor_manager_on_hotplug() was renamed
meta_monitor_manager_reconfigure(), and meta_monitor_manager_reload()
was introduced to combine reading the current state and reconfiguring.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1689>
It was named "backend_native" and "backend" which is easily confused with
MetaBackendNative and MetaBackend which tends to have those names.
Prepare for introducing the usage of a MetaBackendNative and MetaBackend
pointers here by cleaning up the naming.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1689>
This adds a MetaKmsImplDevice backend using atomic drmMode* API in constrast to
non-atomic legacy drmMode* API used in MetaKmsImplDeviceSimple.
This has various behavioral differences worth noting, compared to the
simple backend:
* We can only commit once per CRTC per page flip.
This means that we can only update the cursor plane once. If a primary
plane composition missed a dead line, we cannot commit only a cursor
update that would be presented earlier.
* Partial success is not possible with the atomic backend.
Cursor planes may fail with the simple backend. This is not the case
with the atomic backend. This will instead later be handled using API
specific to the atomic backend, that will effectively translate into
TEST_ONLY commits.
For testing and debugging purposes, the environment variable
MUTTER_DEBUG_ENABLE_ATOMIC_KMS can be set to either 1 or 0 to
force-enable or force-disable atomic mode setting. Setting it to some
other value will cause mutter to abort().
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/548
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
In order to reliably manage the reference count of the user data passed
to page flip listeners - being the stage view - make the ownership of
this data travel through the different objects that take responsibility
of the next step.
Initially this is the MetaKmsPageFlipListener that belongs to a
MetaKmsUpdate.
When a page flip is successfully queued, the ownership is transferred to
a MetaKmsPageFlipClosure that is part of a MetaKmsPageFlipData. In the
simple impl device, the MetaKmsPageFlipData is passed to
drmModePageFlip(), then returned back via the DRM event. In the future
atomic impl device, the MetaKmsPageFlipData is stored in a table, then
retrieved when DRM event are handled.
When the DRM events are handled, the page flip listener's interface
callbacks are invoked, and after that, the user data is freed using the
passed GDestroyNotify function, in the main context, the same as where
the interface callbacks were called.
When a page flip fails, the ownership is also transferred to a
MetaKmsPageFlipClosure that is part of a MetaKmsPageFlipData. This page
flip data will be passed to the main context via a callback, where it
will discard the page flip, and free the user data using the provided
GDestroyNotify.
Note that this adds back a page flip listener type flag for telling the
KMS implementation whether to actively discard a page flip via the
interface, or just free the user data. Avoiding discarding via the
interface is needed for the direct scanout case, where we immediately
need to know the result in order to fall back to the composite pipeline
if the direct scanout failed. We do in fact also need active discard via
the interface paths, e.g. in the simple impl device when we're
asynchronously retrying a page flip, so replace the ad-hoc discard paths
in meta-renderer-native.c and replace them by not asking for no-discard
page flip error handling.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Suspending might have changed the CRTC configuration, turning some off,
some on, etc. We need to update our internal representation of this
state, so that we know how to reconfigure upon resuming, e.g. what CRTCs
to turn off again.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Destroying an onscreen destroyes the gbm_surface, the gbm_bo's, and the
fb_id's. Doing this (drmModeRmFB() of the fb_id specifically), may on
some hw implicitly disable the CRTC of the plane that framebuffer was
assigned to. This would cause following atomic commit that attempts to
disable the CRTC to fail as disabling an already disabled CRTC is not
allowed.
It'd also mean we'd always disable the plane before having finished next
mode set, leaving it monitor content potentially empty when not really
necessary.
Solve this by keeping the CoglOnscreens (thus the gbm_surface, gbm_bo
and fb_id) alive until the following global mode set has completed, i.e.
the new state has been fully committed and applied.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
This makes "power save" (i.e. when you make a monitor go into power save
mode, or make it come out of power save mode), a per device action when
turning on power saving (power save being set to 'off'), and implicitly
handled when turning off power saving (power save being set to 'on')
when doing a mode set.
This is needed as with atomic mode setting, the configuration of DPMS
(Display Power Management Signaling), is replaced by directly turning on
or off CRTCs, and via the CRTC drm properties. Thus in order to handle
both with a common API, make that API high level enough for both cases
being covered.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Before we received new gamma updates via D-Bus and posted the update to
KMS directly. This won't be possible with atomic KMS, since one can only
update the state of a CRTC once per cycle.
Thus, to handle this, when configured by D-Bus, only cache the value,
and mark it as invalid. The next frame, the native renderer will pick
up the newly cached gamma value and configure the CRTCs accordingly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
We cannot switch DPMS state to 'on' first, then mode set later, when
using atomic KMS. So when we're turning it on, just let the eventual
mode set handle DPMS too.
When switching DPMS to 'off', do it directly, synchronously, both by
setting the DPMS state and switching off CRTCs.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Before each frame is maybe redrawn, push any new cursor KMS state to the
pending update. It'll then either be posted during the next page flip,
or when the same frame finishes, in case nothing was redrawn.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
This makes it possible to post a symbolic page flip and frame callback,
meant to be used by immediate symbolic page flip reply when emulating
cursor plane changes using legacy drmMode* functions.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Don't mode set each CRTC in separate KMS updates, as reconfiguring one
CRTC might cause other CRTCs to be implicitly reset thus as well,
causing KMS return EBUSY if using atomic modesetting.
Prepare for this by compositing each CRTC first including adding steps
to the KMS update, but wait until all views has rendered at least once
before posting the initial update. After this each CRTC is posted
separately.
Using EGLStreams instead of normal page flipping seems to fail when
doing this though, so handle that the old way for the EGLStream case,
i.e. eglSwapBuffers() -> mode set with dumb buffer -> eglStream
"acquire" (resulting in page flip under the hood).
For this we also introduce a new error code so that we don't use client
buffers when doing mode sets, which could accidentally configure the
CRTC in a way that is incompatible with the primary plane buffers.
Do the same also when we're in power save mode, to only have one special
case path for this scenario in the regular swap-buffer path.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Instead of setting the frame result in the most generic layer, have the
backends do it themselves. This is necessary to communicate that a
swap-buffer call didn't really succeed completely to present the swapped
buffer, e.g. errors from KMS.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
This argument is intended to be used by clutter to be able to
communicate with the onscreen backend, that happens to be the native
backend. It will be used to pass a ClutterFrame pointer, where the
result of page flips, mode sets etc can be communicated whenever it is
available.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
ClutterFrame aims to carry information valid during dispatching a frame.
A frame may or may not include redrawing, but will always end with a
result.
A asynchronous page flip, for example, will result in a
CLUTTER_FRAME_RESULT_PENDING_PRESENTED, while a frame that only
dispatched events etc will result in CLUTTER_FRAME_RESULT_IDLE. Instead
of this being implicit, make the ClutterStageWindow implementation
handle this itself.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
The way drm events are handled depends on whether we're using atomic or
not. Lets move the handling to the implementation, so that later the
atomic backend can handle the event they it need to.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
If we reassign e.g. a cursor plane twice before it's updated, we need to
make sure the 'fb-unchanged' flag is correctly handled, so that if we
changed the fb first, then updated the assignment again only changing
the position, the new assignment should not be flagged with
fb-unchanged.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
When we e.g. try to post an direct client buffer scanout update, it
might arbitrarily fail; when this happen we still will want to post the
rest of the update when we try again after having composited the primary
plane. To do this, add a way to preserve the metadata of an update if it
failed, only dropping the failed plane assignments. This involves
unlocking a previously locked MetaKmsUpdate, so that e.g. a new primary
plane can be assigned.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Sealing is a one way operation, but in the next commit, the "seal" will
be broken, so to avoid missusing the "seal" terminology, rename related
methods and variables to use the term "lock" instead. E.g.
meta_update_is_sealed() is now meta_update_is_locked().
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
If a modeset is pending, it's likely that the cursor update will not
work; thus, wait with updating the cursor so that it's applied together
with the mode set update.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Something might want to affect the next update that is going to be
posted, but without posting it immediately. For example, changing the
cursor might need to wait for mode setting. Make it possible to get
feedback from posting the update, in order to gracefully handle any
errors.
Note, the API for notifiying about results take out the result listener
from the update, and notifies them in an open coded for loop. The reason
for this is that in the next commit we'll sometimes reuse updates, and
we only want notify about the results once.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Page flipping shouldn't necessarily be an actively requested action, but
happen implicitly depending on the given state. Thus, change the "page
flip" update into adding listeners for page flip feedback instead.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
This will later make it possible to pass cursor plane assignments,
together with a complete update including the primary plane, but not
failing the whole update if just processing the cursor plane failed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
If posting an update resulted in an immediate error, don't communicate
this failure using the page flip feedback callbacks, but directly as a
return value.
This makes it possible for the direct client buffer scanout path not to
pass around flags triggering this behavior, meaning we can handle such
direct scanouts better.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Instead of a "post all pending updates", pass an update specific to a
single device. This gets rid of the awkward "combine feedback" function,
and makes it possible to queue updates to a multiple devices without
always posting them together.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Custom page flips are meant to allow using e.g. EGLStream API to
indirectly trigger page flip queueing, when the KMS API cannot be used
directly. This is really something that is specific to a device, so
instead of making part of the page flip API, make it a configuration of
the update itself.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Eventually the type of impl device will depend on the driver details, so
get that information before constructing the impl device. This commit
doesn't introduce any new usage of the details, it just prepares for
the future.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
This commit consolidates DRM buffer management to the MetaDrmBuffer
types, where the base type handles the common functionality (such as
managing the framebuffer id using drmModeAdd*/RMFb()), and the sub types
their corresponding type specific behavior.
This means that drmModeAdd*/RmFB() handling is moved from meta-gpu-kms.c
to meta-drm-buffer.c; dumb buffer allocation/management from
meta-renderer-native.c.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
For now feedbacks from an update are combined, meaning we might lose
error information. The feedback API may have to be reconsidered and
redesigned when planes gets a more front seat position.
This means we need to avoid trying to post updates if we're in power
save mode, as it may be empty.
Note that this is an intermediate state during refactoring that aims to
introduce atomic mode setting support, and we'll stop combining
feedbacks completely in the future.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Instead of a constructor method, use the type directly and handle error
reporting using GInitable.
The DRM capability setting is done before construction, as later it'll
determine what type of impl device should be constructed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Instead of telling MetaKmsConnector fill a MetaKmsUpdate with connector
property changes, make the update itself aware of the changes, making
the impl side translate that to property changes.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Instead of having MetaKmsPlaneAssignment carry a low level property
list, set the actual state change, and then have the implementation
translate that into the necessary property changes.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
With the aim at always using the property table to fetch and parse
property metadata, move IN_FORMATS handling to the property table, using
the newly introduced parse vfunc.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Values may need to be processed and parsed in custom ways; make this
possible via the property table infrastructure using a callback.
Will be used for e.g. parsing rotation and formats.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
Instead of relatively verbosely going through the DRM properties finding
the properties we care about and saving their ID's, add a more
declarative way to fetch property metadata. This'll allow for fetching
more property IDs with relatively less code, which will be useful for
the atomic backend.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
This contains a copy of a drmModeModeInfo, describing a mode. It also
has an unused pointer to the impl device it is associated with. It'll
later be used to get a blob ID for the mode.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
This means backend implementations can have more control of the order of
how things are destroyed. To be precise, this will, in the next commit,
allow us to destroy the logind integration after the clutter backend
thus the libinput owning seat, that uses the logind integration to
release input devices.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1670>
We can't post tasks to the input thread when cleaning up the
MetaSeatImpl, as that will make the GTask complain about adding
references to a to be purged object. Avoid this by adding an explicit
meta_seat_impl_destroy() function that handles the destruction of the
MetaSeatImpl properly.
This also does more of the cleanup in the input thread, as that is where
it was managed. Will likely not make a difference as before this
happened after tearing down the thread, but lets tear down things in the
thread they were managed for good measure.
This fixes the last log spew I see right now when terminating mutter.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1670>
We didn't tear down the libinput objects in the right thread when
exiting, but did so after the input thread exited.
We also tried to destroy the libinput devices after the libinput context
was destroyed, which isn't allowed.
Fix these two issues by tearing down the libinput objects in a input
thread task that when done exits the input thread. This effectively
"flushes" the input thread tasks while destroying the libinput objects
just before the thread exits.
While it might fine to tear down libinput objects in an arbitrary (main
in this case) thread while making sure nothing pokes at it in parallel
(e.g. the input thread is gone), libinput is by definition single
threaded, and could theoretically make assumptions about this, and we
shouldn't cause any possible surprises here, so make sure to destroy it
all in the right thread.
This fixes an abort() on exit caused by an assert about invalid object
destruction in libinput.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1663>
The "seat" usually refers to the ClutterSeat (MetaSeatNative) object,
and "seat_impl" to the MetaSeatImpl object, but there were still a few
places where this wasn't adhered to so fix those.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1663>
To clear a pointer constraint, the Wayland backend passes a NULL
constraint to the native input backend.
The new async API however tries to reference/un-reference the given
object to use it while running in a separate task, which leads to a
warning from GLib trying to g_object_ref()/g_object_unref() a non
GObject pointer.
To avoid that issue, simply set the data only if the given constraints
pointer is not NULL.
Suggested-by: Carlos Garnacho <carlosg@gnome.org>
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1587
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1652>
Power saving changes in laptop panels enable/disable the attached
touchscreen input device, this is an asynchronous operation that
may be happening while the device is disappearing.
In fact, closing the lid is such perfect storm where both things
happen around the same time.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1644>
Currently, the MetaInputDeviceNative owns the libinput_device, with the
small catch that it is eventually finished in the main thread (as the
CLUTTER_DEVICE_REMOVED event keeps the last reference to it).
Make it sure that the libinput_device is destroyed in the input thread,
before giving away the last extra input device references.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1639>
There was an attempt to remove an unnecessary inclusion of a header
file, but only got so far as compile testing after having commented out,
but didn't remove the comment before creating a commit. This commit
fixes that mistake.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1640>
Instead of using native backend platform data specifically, store
this info in ClutterMotionEvent. This includes time in usec since
it's just used for motion events, in the future it could make sense
to make these general to all events again, but it could make sense
to make ClutterEvent structs private before.
In order to express that a motion event has relative motion info,
the CLUTTER_EVENT_FLAG_RELATIVE_MOTION event flag has been added
for it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1623>
We had code in both backends that sort of independently associated
sequences to slots. Make both transform slots to sequences the same
way, so they may share the implementation convert those back to slots.
This helper now lives in Clutter API.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1623>
We have this as platform-dependent data in the native backend, and
a bunch of fallback code done in place in the evcode users. Stop
making this platform-dependent data, and move it to the relevant
ClutterEvents.
The fallback code for the X11 backend case is about the same, but
now it is done directly by the X11 backend.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1623>
Ensure that color_ptr gets set, and avoid color_char usage too in
that case. Fixes:
../../../../Source/gnome/mutter/src/backends/native/meta-monitor-manager-kms.c: In function ‘meta_monitor_manager_kms_set_crtc_gamma’:
../../../../Source/gnome/mutter/src/backends/native/meta-monitor-manager-kms.c:370:7: warning: ‘color_char’ may be used uninitialized in this function [-Wmaybe-uninitialized]
370 | g_string_append_printf (string, " %c: ", color_char);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../../../../Source/gnome/mutter/src/backends/native/meta-monitor-manager-kms.c:351:12: note: ‘color_char’ was declared here
351 | char color_char;
| ^~~~~~~~~~
../../../../Source/gnome/mutter/src/backends/native/meta-monitor-manager-kms.c:391:36: warning: ‘color_ptr’ may be used uninitialized in this function [-Wmaybe-uninitialized]
391 | (*color_ptr)[i]);
| ~^~~~~~~~~~~
../../../../Source/gnome/mutter/src/backends/native/meta-monitor-manager-kms.c:350:24: note: ‘color_ptr’ was declared here
350 | unsigned short **color_ptr;
| ^~~~~~~~~
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1624>
Figuring out the MetaSeatImpl this much indirectly is fairly awkward when
the keymap is only updated from the MetaSeatImpl, pass instead the seat
impl's xkb_state, as we have it handy in all the places this is called.
This will not break on NULL seats during initialization, should the numlock
state be restored from previous sessions.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1556
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1612>
Make it impossible to add individual includes of input thread objects.
This must go through meta-input-thread.h now, which should be enough
to make anyone think it twice.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
They're a dime a dozen. If it gets called exclusively from the
input thread, it got one. Hopefully these breadcrumbs will be
enough so people don't lose their way here.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
This (now) doesn't change anything in regards to the API that the UI
thread should access from the MetaSeatImpl. The MetaInputDeviceNative,
MetaInputSettings and MetaKeymap objects are now considered owned by
the input thread, as well as all of libinput objects.
The MetaEventSource now dispatches events in a GMainContext that is
the thread default to this thread, and all UI-thread-accessible API
(seat and virtual input device API) will be handled in a serialized
manner by that same input thread.
The MetaSeatImpl itself is still considered to be owned by the caller
thread, and all the signals that this object emits will be emitted in
the GMainContext that is default at the time of calling
meta_seat_impl_new().
The MetaInputSettings configuration changes will likewise be handled
in the input thread, close to libinput devices.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
Instead of going through the event queue, stage handling code, and
back to the input device via a vmethod call, do this directly in the
MetaSeatImpl. This is not too different from X11, where everything
happens inside the backend.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
This API is the one accessed from different bits of the UI thread,
make it "async" (it's basically one-way setters, so API stays the same
in the surface) and able to run in the MetaSeatImpl main context.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
Simplify the handling of numlock state, so it can be entirely handled
within the input thread. Since the saving/restoring is triggered inside
each backend code, there's no need anymore for meta_backend_set_numlock().
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
Push it a little bit down to the MetaSeatNative. As both the UI thread
and the input thread are interested in dealing with the xkb_keymap and
it is not meant to be used in different threads, keep 2 separate copies
around.
The keyboard map will always be set from the UI thread, so the xkb_keymap
owned by the MetaSeatNative (owned by the UI thread) can be considered
canonical.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
Don't let the vfuncs (meant to be called from the UI thread) deal with
xkb state itself. Instead store the current state in struct fields, which
is then fetched in vfuncs.
This makes the keymap able to be used from the UI thread, while being
maintained by the input thread. Same caveats apply than
clutter_seat_query_state(), you are asking for the most up-to-date state,
but it still may be changing under your feet.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
Wrap all keyboard state updates, and all pointer/stylus/touch cursor
position with a write lock, and ::query_state() (The only entrypoint
to this state from other threads) with a read lock.
The principle is that query_state may be called from different threads
(UI so far, but maybe KMS too in the future), while the input thread
may (or may not) be updating it. This state is fetched "atomically"
(eg. x/y will be consistently old or new, if the input thread were
updating it at the same time).
There's other places deep in backends/native that read this state,
they all will run in the input thread, so they count as "other readers"
to the other thread. Those changes are already mutually exclusive with
updates, so they don't explicitly need the RW lock.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
While barriers will be added from the main thread, the native barrier
manager will sit close to the MetaSeatImpl in its own thread. Add the
necessary locking so that we can pass MetaBarrierImplNative from the
UI thread to the input thread, and ensure the MetaBarrier signals are
still emitted in the UI thread.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
Depending on the backend, we want to integrate this object at different
levels. It will sit close to the MetaBackendX11/MetaSeatX11 in X11, but
it will be put deep down with MetaSeatImpl in the native backend, in a
separate thread.
Since we can't depend on a single object type, nor are able to track
ClutterSeat signals neatly, make this API something to be called
explicitly by backends.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
These changes will happen in the input event management code, so let them
be emitted via the MetaSeatImpl, as that's what we'll have neat access to.
The ClutterSeat signals are now emitted from there.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
Move most of the functional bits (those meant to run on a standalone
thread) to a MetaSeatImpl object. This object is managed by the MetaSeatImpl
and not exposed outside the friend MetaSeatNative/MetaInputDeviceNative/
MetaInputSettings classes.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
Banish MetaInputSettings from MetaBackend "public" API, it's now meant to
spend the rest of its days in the backend dungeons, maybe hanging
off a thread.
MetaInputMapper replaces all external uses.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
Rename the set_tablet_keep_aspect() vfunc into a set_tablet_aspect_ratio()
one that takes an aspect ratio double, instead of leaking monitor info
into subclasses to let them all figure out this number themselves.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
We have 2 sources (this one in MetaSeatNative, and the one in
MetaBackend) dispatching ClutterEvents to the stage. Make the
MetaSeatNative one exclusively about dispatching the libinput
queue, and leave ClutterEvents to the other.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
This will resort to SW rendering if this cursor renderer does not
own the MetaKmsCursorRenderer, so it's pretty much equivalent thus
far, except we may now implement logic to flip the kms cursor renderer
around.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
We are aiming for a split of HW and SW cursor rendering management.
Given the HW plane is a limited resource and the amount of cursor
renderers may be >1 (due to tablets, even though we currently use an
always-software cursor renderer there), it would ideally be able to
switch between renderers.
Being MetaCursorRenderer not really a singleton, having cursor
inhibitor accounting here doesn't pan out. Make it MetaBackend API
so all cursor renderers get the same picture.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
These use now more of a "pull" model, where they receive update
notifications and the relevant input position is queried, instead
of the coordinates being passed along.
This allows to treat cursor renderers all the same independently
of the device they track. This notifying of position changes should
ideally be more backend-y than core-y, a better location will be
figured out in future commits.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
Instead of letting the wayland bits maintain an always-software
cursor renderer, let the cursor renderer be managed by the backend,
and only hook to it (as we do for pointer cursor) in the wayland
bits.
ATM, make the cursor renderer still always-software, although
ideally we should allow moving the HW cursor management between
renderers.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
Different devices may get standalone cursor renderers, add this API
to adapt slowly to this. The meta_backend_get_cursor_renderer() call
still exists, but shortcuts to the mouse pointer's renderer (as it
actually did before).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
Use a new set in MetaInputDeviceNative, this coexists with
ClutterInputDevice coords for the time being. This API will
eventually be only accessed from the input thread.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
xkb recently gained support for user-specified keymaps, which means we
can no longer assume that the configuration data is necessarily fully
complete or correct; and the configuration language is quite a labyrinth,
so it's easy to get wrong. If setting the keymap fails, leave it in
whatever state it previously had, since that seems preferable to crashing
with a NULL pointer dereference.
Resolves: https://gitlab.gnome.org/GNOME/mutter/-/issues/1555
Signed-off-by: Simon McVittie <smcv@debian.org>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1605>
Sometimes the automatically selected primary GPU isn't suitable with no
way to make an well educated guess to do it better. To make it possible
for the user to override the automatically calculated default, make it
possible to override it using a udev rule.
E.g. to select /dev/dri/card1 as the primary GPU, add a file e.g.
/usr/lib/udev/rules.d/61-mutter-primary-gpu.rules (path my vary
depending on distribution) containing the fellowing line:
ENV{DEVNAME}=="/dev/dri/card1", TAG+="mutter-device-preferred-primary"
Reboot or manual triggering of udev rules to make it take effect may be
required.
Related: https://gitlab.gnome.org/GNOME/mutter/merge_requests/1057https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1562
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1562>
At startup, libinput dispatch is called from the MetaSeatNative
constructed callback.
That means that we may get libinput events even before the default seat
is set.
In turn, processing those events may trigger the use the default seat
while it's still not set yet, and cause a crash of gnome-shell/mutter
at startup.
A simple reproducer for this is to start gnome-shell/mutter with a
tablet connected and the stylus in proximity, the proximity event will
cause gnome-shell/mutter to crash at startup.
To avoid that issue, avoid dispatching libinput events early from the
MetaSeatNative constructed callback, those events will eventually get
processed when the seat and the backend are all setup.
https://gitlab.gnome.org/GNOME/mutter/-/issues/1501https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1534
Rely on the seat stage, or other ways to fetch it. Also rely that
there is actually a single stage, so that we assign the right stage
to all events going out of the seat, in a single place.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1486
This is a bit scattered around, with the setter/getter in Clutter, and
it only being only directly honored in Wayland (it goes straight through
device properties in X11).
Make this private native API, and out of public ClutterInputDevice API.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1486
Make the upper part agnostic about the device being relative in order
to avoid applying keep-aspect. The X11 bits already are, so make it
sure it's also the case for the native backend.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1486
As it does seem from a read to libinput code, TOUCH_CANCEL events
actually do contain slot information, and are emitted per-slot.
This means we can avoid iterating over the slots ourselves, they
are still expected to be sent altogether.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1486
Add support for the (mostly theoretical) case of an input-device
offering tablet-mode-switch functionality being unplugged.
This makes the has_tablet_switch handling identical to the has_touchscreen
handling, leading to more consistent code.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1506
Detect if a tablet-mode-switch device is already present when mutter
starts by checking for this from meta_seat_native_constructed. This
mirrors how we also set has_touchscreen from meta_seat_native_constructed.
This fixes tablet-mode-switches only being recognized when they are added
at runtime.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1506
Unconditionally setting has_touchscreen to check_touch_mode
when a new device gets added leads to has_touchscreen becoming
false when during runtime e.g. an USB keyboard gets plugged in.
Fix this by setting has_touchscreen to TRUE when check_touch_mode
is TRUE and leaving it alone otherwise.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1506
A first step towards abandoning the CoglObject type system: convert
CoglFramebuffer, CoglOffscreen and CoglOnscreen into GObjects.
CoglFramebuffer is turned into an abstract GObject, while the two others
are currently final. The "winsys" and "platform" are still sprinkled
'void *' in the the non-abstract type instances however.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1496
During seat initialization, we process early libinput events (adding all known
devices) before the seat gets a stage assigned. This causes warnings when trying
to handle the corresponding CLUTTER_DEVICE_ADDED events, as they are sent
stageless.
As it is definitely too soon to have those events sent meaningfully, filter
those events out and instead handle the CLUTTER_DEVICE_ADDED emission for all
known devices after the seat receives an stage. This makes the events guaranteed
to be emitted early in initialization, but not so soon that they can't be
handled yet.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1472
In X, buttons 1, 2, 3 are left, middle, right. In evdev, the order is
BTN_LEFT, BTN_RIGHT, BTN_MIDDLE. So setting a scroll button to 2 gave us a
middle button in the X session and a right button in a wayland session.
Fix that by hard-coding the LMR buttons handling.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1433
Even when a direct client buffer has a compatible format, stride and
modifier for direct scanout, drmModePageFlip() may still fail sometimes.
From testing, it has been observed that it may seemingly randomly fail
with ENOSPC, where all subsequent attempts later on the same CRTC
failing with EBUSY.
Handle this by falling back to flipping after having composited a full
frame again.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1410
It's enabled by default when using the i915 driver, but disabled
everywhere else until it can be made reliably an improvement. Until
then, for anyone want to force-enable it, add the string
'dma-buf-screen-sharing' to the experimental features list in GSettings.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1442
Seems DMA buffer based interprocess buffer sharing is more broken than
not, so for now only enable it when using the i915 driver.
For example vmwgfx, qxl and radeon, it results in mmap() failing to mmap the
memory region. Other drivers, e.g. amdgpu will function, but may hit
very slow memory download paths, resulting in worse performance.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1442
This will be used when screencasting monitors so that if
there's scanout in place, it'll still be possible to blit
it to a PipeWire-owned framebuffer, and stream it.
Add a new 'blit_to_framebuffer' vfunc to CoglScanout, and
implement it in MetaDrmBufferGbm.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1421
Just because X11/XI uses a particular terminology doesn't mean we
have to use the same terms in our own API. The replacement terms
are in line with gtk@1c856a208, which seems a better precedent
for consistency.
Follow-up to commit 17417a82a5.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1425
QXL doesn't support mmap():ing a DMA buffer allocated in mutter inside
the PipeWire stream consumer process. To make screen casting work again
on QXL, disable DMA buffer based screen casting for QXL.
Eventually, it should be the client that renegotiates the supported
buffer types, but until then we need this list.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1318
Delay the addition and removal of devices using ClutterDeviceEvent's so that
they are processed following the libinput event order, and that we don't
have to flush the events on removal.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1371
We checked if we were using the usig the X11 backend to decide when to
deal with a11y event posting - in order to make the clutter code less
windowing system dependent, make this check a check whether we're a
display server or not, in contrast to a window/compositing manager
client. This is made into a vfunc ot ClutterBackendClass, implemented by
MetaClutterBackendNative and MetaClutterBackendX11.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1364
Detect displays marked as 'non-desktop' by the kernel and skip them when
creating the outputs. Mutter is not able to render images that are shown
properly on those devices anyway.
This avoids lighting up attached VR HMDs and showing the GDM login
screen between the eyes in a VR HMD instead of on the monitor.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1393
The new "id" properties for the MetaCrtc* and MetaOuput* objects are 64-bit
values, so take care to pass 64-bit values when calling g_object_new.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1343.
When using its EGLStream-based presentation path with the proprietary NVIDIA
driver, mutter will use a different function to process page flips -
custom_egl_stream_page_flip. If that fails due to an EBUSY error, it will
attempt to retry the flip. However, when retrying, it unconditionally uses the
libdrm-based path. In practice, this causes a segfault when attempting to
access plane_assignments->fb_id, since plane_assignments will be NULL in the
EGLStream case. The issue can be reproduced reliably by VT-switching away from
GNOME and back again while an EGL application is running.
This patch has mutter also use the custom page flip function when retrying the
failed flip.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1375
Replace the default master clock with multiple frame clocks, each
driving its own stage view. As each stage view represents one CRTC, this
means we draw each CRTC with its own designated frame clock,
disconnected from all the others.
For example this means we when using the native backend will never need
to wait for one monitor to vsync before painting another, so e.g. having
a 144 Hz monitor next to a 60 Hz monitor, things including both Wayland
and X11 applications and shell UI will be able to render at the
corresponding monitor refresh rate.
This also changes a warning about missed frames when sending
_NETWM_FRAME_TIMINGS messages to a debug log entry, as it's expected
that we'll start missing frames e.g. when a X11 window (via Xwayland) is
exclusively within a stage view that was not painted, while another one
was, still increasing the global frame clock.
Addititonally, this also requires the X11 window actor to schedule
timeouts for _NET_WM_FRAME_DRAWN/_NET_WM_FRAME_TIMINGS event emitting,
if the actor wasn't on any stage views, as now we'll only get the frame
callbacks on actors when they actually were painted, while in the past,
we'd invoke that vfunc when anything was painted.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/903
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/3https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
The mutexes was used by ClutterTexture's async upload and to match GDK's
mutexes on X11. GDK's X11 connection does not share anything with
Clutter's, we don't have the Gdk Clutter backend left, and we have
already removed ClutterTexture, so lets remove these mutexes as well.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
The native backend had a plain counter, and the X11 backend used the
CoglOnscreen of the screen; change it into a plain counter in
ClutterStageCogl. This also moves the global frame count setting to the
frame info constuctor.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
We currently have mutter set a global frame counter on the frame info in
the native backend, but in order to do this from clutter, change the
frame info construction from being implicitly done so when swapping
buffers to having the caller create the frame info and passing that to
the swap buffers call.
While this commit doesn't introduce any other changes than the API, the
intention is later to have the caller be able to pass it's own state
(e.g. the global frame count) along with the frame info.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
We had time unit conversion helpers (e.g. us2ms(), ns2us(), etc) in
multiple places. Clean that up by moving them all to a common file. That
file is clutter-private.h, as it's accessible by both from clutter/ and
src/.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
Currently unused, but it's intention is to use as a initial refresh rate
for a with the stage view associated frame clock. It defaults to 60 Hz
if nothing sets it, but the native backend sets it to the associated
CRTCs current mode's refresh rate.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
This avoids some issues which could happen on some setups[0] due to
meta-native-renderer.c:dummy_power_save_page_flip →
meta_onscreen_native_swap_drm_fb implicitly turning of the primary
plane (by destroying the KMS framebuffer assigned to it):
* drmModeObjectSetProperty could return an "Invalid argument" error
between setting a non-empty cursor with drmModeSetCursor(2) and
enabling the primary plane again:
Failed to DPMS: Failed to set connector 69 property 2: Invalid argument
(This was harmless other than the error message, as we always re-set
a mode on the CRTC after setting the DPMS property to on, which
enables the primary plane and implicitly sets the DRM property to on)
* drmModeSetCursor(2) could return an "Invalid argument" error between
setting the DPMS property to on and enabling the primary plane again:
Failed to set hardware cursor (drmModeSetCursor failed: Invalid argument), using OpenGL from now on
[0] E.g. with the amdgpu DC display code.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1240
Add a method to ClutterSeat that allows peeking the list of input
devices and allow looping through devices a bit faster. The API left is
private so we can make use of peeking the GList internally, but don't
have to expose any details to the outside, which means we'd have to
eventually stick with a GList forever to avoid breaking API.
Since we now have the peek_devices() API internally, we can implement
ClutterSeats public list_devices() API using g_list_copy() on the list
returned by peek_devices().
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1275
Trying to figure out what this comment was actually about, it turns out
that MSC means Media Stream Counter, and as mentioned in an article[0]
is related to DRI3 and the X11 Present extension. Anyway, the comment
has been there raising questions for some years now, I think we can
remove it.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
The ID and name are just moved into the instance private, while the rest
is moved to a `MetaCrtcModeInfo` struct which is used during
construction and retrieved via a getter. Opens up the possibility to
add actual sub types.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
Just as with MetaOutput, instead of the home baked "inheritance" system,
using a gpointer and a GDestroyNotify function to keep the what
effectively is sub type details, make MetaCrtc an abstract derivable
type, and make the implementations inherit it.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
Instead of the home baked "inheritance" system, using a gpointer and a
GDestroyNotify function to keep the what effectively is sub type
details, make MetaOutput an abstract derivable type, and make the
implementations inherit it.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
Now set as a property during construction. Only actually set by the
Xrandr backend, as it's the only one currently not supporting all
transforms, which is the default.
While at it, move the 'ALL_TRANFORMS' macro to meta-monitor-tranforms.h.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
The output info is established during construction and will stay the
same for the lifetime of the MetaOutput object. Moving it out of the
main struct enables us to eventually clean up the MetaOutput type
inheritence to use proper GObject types.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
MetaCrtcInfo and MetaOutputInfo did not represent information about
MetaCrtc and MetaOutput, but the result of the monitor configuration
assignment algorithm, thus rename it to MetaCrtcAssignment and
MetaOutputAssignment.
The purpose for this is to be able to introduce a struct that actually
carries information about the CRTCs and outputs, as retrieved from the
backend implementations.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
That is is_presentation, is_primary, is_underscanning and backlight.
The first three are set during CRTC assignment as they are only valid
when active. The other is set separately, as it is untied to
monitor configuration.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
It was used during configuration to ensure that we always dealt with
every output and CRTC. Do this without polluting the MetaOutput and
MetaCrtc structs with intermediate variables not used by the
corresponding types themself.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
When the stage views the stage is shown on are changed, ClutterStage
currently provides a clutter_stage_update_resource_scales() method
that allows invalidating the resource scales of all actors. With the new
stage-views API that's going to be added to ClutterActor, we also need a
method to invalidate the stage-views lists of actors in case the stage
views are rebuilt and fortunately we can re-use the infrastructure for
invalidating resource scales for that.
So since resource scales depend on the stage views an actor is on,
rename clutter_stage_update_resource_scales() and related methods to
clutter_stage_clear_stage_views(), which also covers resource scales.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1196
Using XDG_CONFIG_HOME allows users to place their keyboard configuration into
their home directory and have them loaded automatically.
libxkbcommon now defaults to XDG_CONFIG_HOME/xkb/ first, see
https://github.com/xkbcommon/libxkbcommon/pull/117
However - libxkbcommon uses secure_getenv() to obtain XDG_CONFIG_HOME and thus
fails to load this for the mutter context which has cap_sys_nice.
We need to manually add that search path as lookup path.
As we can only append paths to libxkbcommon's context, we need to start with
an empty search path set, add our custom path, then append the default search
paths.
The net effect is nil where a user doesn't have XDG_CONFIG_HOME/xkb/.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/936
When we created the DMA buffer backed CoglFramebuffer, we handed it over
to CoglDmaBufHandle which took its own reference. What we failed to do
was to release our own reference to it, effectively leaking it.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1283
This cannot be made to work reliably. Some factoids:
- Internal devices may be connected via USB.
- The ACPI spec provides the _PLD (Physical location of device) hook to
determine how is an USB device connected, with an anecdotal success
rate. Internal devices may be seen as external and vice-versa, there is
also an "unknown" value that is widely used.
- There may be non-USB keyboards, the old "AT Translated Set 2 Keyboard"
interface does not change on hotplugging.
- Libinput has an internal series of quirks to classify keyboards as
internal of external, also with an "unknown" value.
These heuristics are kinda hopeless to get right by our own hand. Drop
this external keyboard detection in the hope that there will be something
more deterministic to rely on in the future (e.g. the libinput quirks
made available to us directly or indirectly).
Fixes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/2378
Related: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/2353https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1277
Move Wayland support (i.e. the MetaWaylandCompositor object) made to be
part of the backend. This is due to the fact that it is needed by the
backend initialization, e.g. the Wayland EGLDisplay server support.
The backend is changed to be more involved in Wayland and clutter
initialization, so that the parts needed for clutter initialization
happens before clutter itself initialization happens, and the rest
happens after. This simplifies the setup a bit, as clutter and Wayland
init now happens as part of the backend initialization.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1218
Will be used for logging to identify what view a log entry concerns. For
the native and nested backend this is the name of the output the CRTC is
assigned to drive; for X11 it's just "X11 screen", and for the legacy
"X11 screen" emulation mode of the nested backend it's called "legacy
nested".
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1237
We were iterating through evcodes, but using API that expects Clutter button
numbers. Instead of transforming those to Clutter numbers to have those translated
back, use the inner seat API that already takes evcodes.
Fixes stuck buttons keys after a virtual device is destroyed while those are
pressed.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1239
If drmModePageFlip() or custom_page_flip_func fails, process_page_flip() was
forgetting to undo the ref taken for that call. This would leak page_flip_data.
The reference counting works like this:
- when created, ref count is 1
- when calling drmModePageFlip, ref count is increased to 2
- new: if flip failed, ref count is decreased back to 1
- if calling schedule_retry_page_flip(), it takes a ref internally
- if calling mode_set_fallback(), it takes a ref internally
- all return FALSE paths have an explicit unref
- return TRUE path has an explicit unref
This issue was found by code inspection and while debugging an unrelated issue
with debug prints sprinkled around. I am not aware of any end-user visible
issues being fixed by this, as the leak is small and probably very rare.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1209
When testing a laptop with intel and DisplayLink devices, attempting to set the
DL output as the only active output resulted in GNOME/Wayland freezing. The
main event loop was running fine, but nothing on screen would get updated once
the DL output become the only one. This patch fixes that issue.
DisplayLink USB 3 devices use an out-of-tree kernel DRM driver called EVDI.
EVDI can sometimes fail drmModePageFlip(). For me, the flip fails reliably when
hotplugging the DL dock and when changing display configuration to DL only.
Mutter has a workaround for failing flips, it just calls drmModeSetCrtc() and
that succeeds.
What does not work reliably in the fallback path is Mutter keeping track of the
pageflip. Since drmModePageFlip() failed, there will not be a pageflip event
coming and instead Mutter queues a callback in its stead. When you have more
than one output, some other output repainting will attempt to swap buffers and
calls wait_for_pending_flips() which has the side-effect of dispatching any
queued flip callbacks. With multiple outputs, you don't get stuck (unless they
all fail the exact same way at the same time?). When you have only one output,
it cannot proceed to repaint and buffer swap because the pageflip is not marked
complete yet. Nothing dispatches the flip callback, leading to the freeze.
The flip callback is intended to be an idle callback, implemented with a
GSource. It is supposed to be called as soon as execution returns to the main
event loop. The setup of the GSource is incomplete, so it will never dispatch.
Fix the GSource setup by setting its ready-time to be always in the past. That
gets it dispatched on the next cycle of the main event loop. This is now the
default behavior for all sources created by meta_kms_add_source_in_impl().
Sources that need a delay continue to do that by overriding the ready-time
explicitly.
An alternative solution could have been to implement GSource prepare and check
callbacks returning TRUE. However, since meta_kms_add_source_in_impl() is used
by flip retry code as well, and that code needs a delay through the ready-time,
I was afraid I might break the flip retry code. Hence I decided to use
ready-time instead.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1209
While this is fairly incomplete, as to check things fully we need to use
TEST_ONLY in atomic to try out a complete assignment on the device, but
this works well enough for legacy non-modifier cases.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
Instead of always swapping buffers and flipping the back buffer, make it
possible to scan out a provided buffer directly without swapping any EGL
buffers.
A buffer is passed as an object implementing the empty CoglScanout
interface. It is only possible to do this in the native backend; and the
interface is implemented by MetaDrmBufferGbm. When directly scanned out,
instead of calling gbm_surface_lock_front_buffer() to get the gbm_bo and
fbid, get it directly from the MetaDrmBufferGbm, and use that to create
the page flip KMS update.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
Surface buffers are created with meta_drm_buffer_new_acquire(), taking a
gbm_surface acquiring the gbm itself, and meta_drm_buffer_new_take()
that takes over ownership of a passed gbm_bo.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
The CRTC level transform (not necessarily the hw transform) must be
taken into account when calculating the position of the CRTC in the
stage coordinate space, when placing the hw cursor, otherwise we'll
place the cursor as if the monitor was not rotated.
This wasn't a problem in the past, as with rotation, we always used the
OpenGL cursor, so the issue newer showed.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1199
The port to per CRTC views was incomplete; we still used the logical
monitor layout as the stage view layout, while still using one view per
CRTC.
This worked fine for most cases, e.g. regular monitors, tiled or
non-tiled, transformed or non-transformed. Where it broke, however, was
when a monitor consists of multiple CRTCs. We already have the layout a
CRTC corresponds to on the stage kept with the CRTC metadata, so use
this directly.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1170https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1199`
The motion events of tablets for example need to be mapped on the
selected screen area if the input device is configured to use only a
part of the active logical monitor.
To achieve this behavior each motion event is transformed using the
transformation matrix set for the input device.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1118
GObject recommends to break references to other objects on dispose
instead of finalize, also we want to release the pressed virtual buttons
as early as possible if we know the object is getting destroyed.
So release the pressed buttons and unref our virtual
MetaInputDeviceNative when the dispose vfunc is called, which also
allows us to release the buttons immediately from javascript instead of
waiting for the garbage collector by calling run_dispose() on the
object.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1157
When calculating the transform we should apply to the cursor sprite
before uploading it to the cursor plane, we must also take into
account non upright mounted LCD panels.
Otherwise the cursor ends up 90 degrees rotated on devices where the
LCD panel is mounted 90 degrees rotated in its enclosure.
This commit fixes this by calling meta_monitor_logical_to_crtc_transform
in get_common_crtc_sprite_transform_for_logical_monitors to adjust the
transform for each Monitor in the LogicalMonitor.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1123https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1153
The transactional KMS API has been modelled after atomic KMS. Atomic KMS
currently doesn't support forwarding cursor hotspot metadata, thus it
was left out of the transactional KMS API having the user set the simply
create a plane assigment with the cursor sprite assigned to a cursor
plane using regular coordinates.
This, however, proved to be inadequate for virtual machines using
"seamless mouse mode" where they rely on the cursor position to
correspond to the actual cursor position of the virtual machine, not the
cursor plane. In effect, this caused cursor positions to look "shifted".
Fix this by adding back the hotspot metadata, right now as a optional
field to the plane assignment. In the legacy KMS implementation, this is
translated into drmModeSetCursor2() just as before, while still falling
back to drmModeSetCursor() with the plane coordinates, if either there
was no hotspot set, or if drmModeSetCursor2() failed.
Eventually, the atomic KMS API will learn about hotspots, but when
adding our own atomic KMS backend to the transacitonal KMS API, we must
until then still fall back to legacy KMS for virtual machines.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1136
This is so that cogl-trace.h can start using things from cogl-macros.h,
and so that it doesn't leak cogl-config.h into the world, while exposing
it to e.g. gnome-shell so that it can make use of it as well. There is
no practical reason why we shouldn't just include cogl-trace.h via
cogl.h as we do with everything else.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1059
This class sits between ClutterInputDevice and the backend implementations,
it will be the despositary of features we need across both backends, but
don't need to offer through Clutter's API.
As a first thing to have there, add a getter for a WacomDevice. This is
something scattered across and somewhat inconsistent (eg. different places
of the code create wacom devices for different device types). Just make it
here for all devices, so users can pick.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1109
When a page flip fails with a certain error code, we've treated this as
a hint that page flipping is broken and we should try to use mode
setting instead.
On some drivers, it seems that this error is also reported when there
was no mode set, which means we'll have no cached mode set to use in the
fallback. The lack of prior mode set tends to happen when we hit a race
when the DRM objects change before we have the time to process a hotplug
event.
Handle the lack a missing mode set in the flip fallback path, with the
assumption that we'll get a hotplug event that'll fix things up for us
eventually.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/917
If the CRTCs the cursor is visible on do not share a common scale
and transform, we can't use the cursor hardware plane as we only have one.
We therefore fall back to software / gl cursor.
The check for that currently happens after we tried to upload the cursor image
to the hardware plane though.
This is made worse by the fact that in the scaling step, where we scale the
cursor image to the desired size, until now we expected a valid common scale -
otherwise scaling the image by an uninitialized float.
Make sure we bail out early during the scale/upload step if we don't have common
scales and transforms - to avoid that bug and save some unnecessary work.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1125
Listen for GPU hotplug events to initialize their cursor support.
This fixes one reason for why DisplayLink devices may not be using a hardware
cursor. Particularly, when a DisplayLink device is hotplugged for the first
time such that EVDI creates a new DRM device node after gnome-shell has already
started, we used to forget to initialize the cursor support.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1097
Extract the code to initialize a single GPU cursor support into its own
function. The new function will be used by GPU hotplug in the future.
This is a pure refactoring without any behavioral changes.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1097
While we will always have cursor planes, as we'll currently create fake
ones when real ones are missing (See #1058), eventually we will run into
situations where we can't create fake ones, for example for atomic KMS
drivers that don't advertise any cursor planes.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1079
Create a new gbm_bo using the same given geometry, and export the new
bo's DMA buffer fd. The new bo lives as long as necessary to be used,
and reused, by PipeWire.
Unfortunately, PipeWire doesn't support modifiers properly, so use the
linear format for now. For now, a hardcoded format of DRM_FORMAT_XRGB8888
is set, so we don't need to negotiate the format with PipeWire early.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1086
If the cursor sprite does not match the scale factor or transformation
of the monintor, we currently fall back to a software cursor, causing
redraws of the shell. This commit implements scaling and transforming
of the cursor sprite, so we can use it with hardware planes, too.
This commit does the following steps:
1. Make sure we reupload the cursor image if the cursor is over
a logical monitor not matching the scale or transform from the previous
update.
2. Before upload to the hardware plane, scale and transform the cursor
image if possible and necessary.
3. Make sure we always use the hardware cursor if possible (only fall
back to software/OGL cursor if it is visible on multiple logical monitors
with differet scales/transforms).
4. Transform or scale the cursor coordinates if necessary.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/526
This may be used indirectly before creation as we dispatch libinput events
right after creation (to let input devices be known), so those device
additions would trigger the touch-mode checks.
Creating it in advance results in checks being correctly performed, although
redundantly.
Spotted by Bastien Nocera.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/1067
Prior to this commit the stage was drawn separately for each logical
monitor. This allowed to draw different parts of the stage with
different transformations, e.g. with a different viewport to implement
HiDPI support.
Go even further and have one view per CRTC. This causes the stage to
e.g. draw two mirrored monitors twice, instead of using the same
framebuffer on both. This enables us to do two things: one is to support
tiled monitors and monitor mirroring using the EGLStreams backend; the
other is that it'll enable us to tie rendering directly to the CRTC it
will render for. It is also a requirement for rendering being affected
by CRTC state, such as gamma.
It'll be possible to still inhibit re-drawing of the same content
twice, but it should be implemented differently, so that it will still
be possible to implement features requiring the CRTC split.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1042
To make it more reliable to distinguish between values that are read
from the backend implementation (which is likely to be irrelevant for
anything but the backend implementation), split out those values (e.g.
layout).
This changes the meaning of what was MetaCrtc::rect, to a
MetaCrtcConfig::layout which is the layout the CRTC has in the global
coordinate space.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1042
On a Surface Pro 2017, touch-mode is currently only detected correctly
after detaching and attaching the Type Cover (detachable keyboard) once,
it seems that `has_external_keyboard` is only set to the correct value
after MetaSeatNative is initialized.
So fix that and call `update_touch_mode()` once again when the object is
initialized and the `has_external_keyboard` and `has_touchscreen`
properties have been finally updated.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1075
Devices have capabilities that other parts need to know about. Instead
of having them probe using drmMode* API, outsource this to
MetaKmsDevice. Currently the only capability tracked is HW cursor size.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/930
Turns the cursor setting and movement into cursor plane assignment
primitives. In the current simple implementation, this in turn
translates into legacy drmModeSetCursor() and drmModeMoveCursor() calls.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/930
A cursor plane can now be assigned, and for the simple KMS
implementation, it'll translate into drmModeSetCursor() and
drmModeMoveCursor() calls.
When assignments failed, the cursor planes that failed to be assigned
are communicated via the feedback object.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/930
The current API as all synchronous, so they can be made to return
feedback immediately. This will be needed for the cursor renderer which
needs to know whether it should fall back to OpenGL cursor rendering.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/930
meta_kms_update_process_..() makes it sound like it's a MetaKmsUpdate
function called update_..() but in fact it's a MetaKms function that
calls the corresponding process-update impl function. Clear up this
naming confusion.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/930
This taps on:
1) Touchscreen availability
2) Availability of external keyboards
3) Tablet mode switch, if existent
So we get this property enabled whenever it makes sense to show touch
focused features (eg. the OSK).
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1044
During compilation, gen_default_modes.py shows two warnings that
say that a comparison is using 'is' instead of '=='.
This patch fixes this bug.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/985
When creating a virtual device for the native backend, no "device-added"
is emitted.
Similarly, no "device-removed" signal is emitted either when the virtual
device is disposed.
However, the backend plugs into the "device-added" signal to set the
monitor device. Without the "device-added" signal being emitted, the
monitor associated with a virtual device remains NULL.
That later will cause a crash in `meta_idle_monitor_reset_idlettime()`
called from `handle_idletime_for_event()` when processing events from a
virtual device because the device monitor is NULL.
Make sure to emit the "device-added" signal when creating a virtual
device, and the "device-removed" when the virtual device is disposed.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1037
e9fbbd5853 changed meta_backend_get_idle_monitor() to use
ClutterInputDevice pointers instead of device IDs, but did not adjust
the call in meta_backend_native_resume() which was still using 0 to get
the core idle monitor resulting in a NULL pointer dereference.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1029
The meta_seat_native_constrain_pointer() function receives the current
pointer position, and the new pointer position as in/out parameters.
We were however calculating the new coordinates based on the last pointer
position if there was no pointer constrain in place.
Fortunately to us, this didn't use to happen often/ever, as a pointer
constrain function is set on MetaBackend initialization. This behavior
did also exist previously in MetaDeviceManagerNative.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1028