backends: Delegate pointer confinements to an impl object

Split pointer confinements in 2 objects, one set from the upper layers
containing its definition, and another managed by the backend that
applies it.

Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1403>
This commit is contained in:
Carlos Garnacho 2020-07-08 18:17:13 +02:00 committed by Marge Bot
parent efd065259d
commit 8a8d47725c
15 changed files with 1134 additions and 813 deletions

View File

@ -101,6 +101,8 @@ struct _MetaBackendClass
void (* set_numlock) (MetaBackend *backend,
gboolean numlock_state);
void (* set_pointer_constraint) (MetaBackend *backend,
MetaPointerConstraint *constraint);
};
void meta_init_backend (GType backend_gtype);

View File

@ -1313,11 +1313,8 @@ meta_backend_set_client_pointer_constraint (MetaBackend *backend,
{
MetaBackendPrivate *priv = meta_backend_get_instance_private (backend);
g_assert (!constraint || !priv->client_pointer_constraint);
g_clear_object (&priv->client_pointer_constraint);
if (constraint)
priv->client_pointer_constraint = g_object_ref (constraint);
META_BACKEND_GET_CLASS (backend)->set_pointer_constraint (backend, constraint);
g_set_object (&priv->client_pointer_constraint, constraint);
}
ClutterBackend *

View File

@ -39,10 +39,34 @@
#include "backends/meta-pointer-constraint.h"
#ifdef HAVE_NATIVE_BACKEND
#include "backends/native/meta-backend-native.h"
#include "backends/native/meta-pointer-constraint-native.h"
#endif
#include <glib-object.h>
struct _MetaPointerConstraint
{
GObject parent_instance;
cairo_region_t *region;
};
G_DEFINE_TYPE (MetaPointerConstraint, meta_pointer_constraint, G_TYPE_OBJECT);
G_DEFINE_TYPE (MetaPointerConstraintImpl, meta_pointer_constraint_impl,
G_TYPE_OBJECT);
static void
meta_pointer_constraint_finalize (GObject *object)
{
MetaPointerConstraint *constraint = META_POINTER_CONSTRAINT (object);
g_clear_pointer (&constraint->region, cairo_region_destroy);
G_OBJECT_CLASS (meta_pointer_constraint_parent_class)->finalize (object);
}
static void
meta_pointer_constraint_init (MetaPointerConstraint *constraint)
{
@ -50,12 +74,43 @@ meta_pointer_constraint_init (MetaPointerConstraint *constraint)
static void
meta_pointer_constraint_class_init (MetaPointerConstraintClass *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
object_class->finalize = meta_pointer_constraint_finalize;
}
MetaPointerConstraint *
meta_pointer_constraint_new (const cairo_region_t *region)
{
MetaPointerConstraint *constraint;
constraint = g_object_new (META_TYPE_POINTER_CONSTRAINT, NULL);
constraint->region = cairo_region_copy (region);
return constraint;
}
cairo_region_t *
meta_pointer_constraint_get_region (MetaPointerConstraint *constraint)
{
return constraint->region;
}
static void
meta_pointer_constraint_impl_init (MetaPointerConstraintImpl *constraint_impl)
{
}
static void
meta_pointer_constraint_impl_class_init (MetaPointerConstraintImplClass *klass)
{
}
/**
* meta_pointer_constraint_constrain:
* @constraint: a #MetaPointerConstraint.
* meta_pointer_constraint_impl_constrain:
* @constraint_impl: a #MetaPointerConstraintImpl.
* @device; the device of the pointer.
* @time: the timestamp (in ms) of the event.
* @prev_x: X-coordinate of the previous pointer position.
@ -67,17 +122,25 @@ meta_pointer_constraint_class_init (MetaPointerConstraintClass *klass)
* if needed.
*/
void
meta_pointer_constraint_constrain (MetaPointerConstraint *constraint,
ClutterInputDevice *device,
guint32 time,
float prev_x,
float prev_y,
float *x,
float *y)
meta_pointer_constraint_impl_constrain (MetaPointerConstraintImpl *constraint_impl,
ClutterInputDevice *device,
uint32_t time,
float prev_x,
float prev_y,
float *x,
float *y)
{
META_POINTER_CONSTRAINT_GET_CLASS (constraint)->constrain (constraint,
device,
time,
prev_x, prev_y,
x, y);
META_POINTER_CONSTRAINT_IMPL_GET_CLASS (constraint_impl)->constrain (constraint_impl,
device,
time,
prev_x, prev_y,
x, y);
}
void
meta_pointer_constraint_impl_ensure_constrained (MetaPointerConstraintImpl *constraint_impl,
ClutterInputDevice *device)
{
META_POINTER_CONSTRAINT_IMPL_GET_CLASS (constraint_impl)->ensure_constrained (constraint_impl,
device);
}

View File

@ -32,34 +32,45 @@
G_BEGIN_DECLS
#define META_TYPE_POINTER_CONSTRAINT (meta_pointer_constraint_get_type ())
G_DECLARE_DERIVABLE_TYPE (MetaPointerConstraint, meta_pointer_constraint,
META, POINTER_CONSTRAINT, GObject);
G_DECLARE_FINAL_TYPE (MetaPointerConstraint, meta_pointer_constraint,
META, POINTER_CONSTRAINT, GObject);
MetaPointerConstraint * meta_pointer_constraint_new (const cairo_region_t *region);
cairo_region_t * meta_pointer_constraint_get_region (MetaPointerConstraint *constraint);
#define META_TYPE_POINTER_CONSTRAINT_IMPL (meta_pointer_constraint_impl_get_type ())
G_DECLARE_DERIVABLE_TYPE (MetaPointerConstraintImpl, meta_pointer_constraint_impl,
META, POINTER_CONSTRAINT_IMPL, GObject);
/**
* MetaPointerConstraintClass:
* MetaPointerConstraintImplClass:
* @constrain: the virtual function pointer for
* meta_pointer_constraint_constrain().
* meta_pointer_constraint_impl_constrain().
*/
struct _MetaPointerConstraintClass
struct _MetaPointerConstraintImplClass
{
GObjectClass parent_class;
void (*constrain) (MetaPointerConstraint *constraint,
ClutterInputDevice *device,
guint32 time,
float prev_x,
float prev_y,
float *x,
float *y);
void (* constrain) (MetaPointerConstraintImpl *constraint_impl,
ClutterInputDevice *device,
uint32_t time,
float prev_x,
float prev_y,
float *x,
float *y);
void (* ensure_constrained) (MetaPointerConstraintImpl *constraint_impl,
ClutterInputDevice *device);
};
void meta_pointer_constraint_constrain (MetaPointerConstraint *constraint,
ClutterInputDevice *device,
guint32 time,
float prev_x,
float prev_y,
float *x,
float *y);
void meta_pointer_constraint_impl_constrain (MetaPointerConstraintImpl *constraint_impl,
ClutterInputDevice *device,
uint32_t time,
float prev_x,
float prev_y,
float *x,
float *y);
void meta_pointer_constraint_impl_ensure_constrained (MetaPointerConstraintImpl *constraint_impl,
ClutterInputDevice *device);
G_END_DECLS

View File

@ -105,38 +105,6 @@ meta_backend_native_finalize (GObject *object)
G_OBJECT_CLASS (meta_backend_native_parent_class)->finalize (object);
}
static void
constrain_to_client_constraint (ClutterInputDevice *device,
guint32 time,
float prev_x,
float prev_y,
float *x,
float *y)
{
MetaBackend *backend = meta_get_backend ();
MetaPointerConstraint *constraint =
meta_backend_get_client_pointer_constraint (backend);
if (!constraint)
return;
meta_pointer_constraint_constrain (constraint, device,
time, prev_x, prev_y, x, y);
}
static void
pointer_constrain_callback (ClutterInputDevice *device,
guint32 time,
float prev_x,
float prev_y,
float *new_x,
float *new_y,
gpointer user_data)
{
/* Constrain to pointer lock */
constrain_to_client_constraint (device, time, prev_x, prev_y, new_x, new_y);
}
static ClutterBackend *
meta_backend_native_create_clutter_backend (MetaBackend *backend)
{
@ -181,14 +149,8 @@ maybe_disable_screen_cast_dma_bufs (MetaBackendNative *native)
static void
meta_backend_native_post_init (MetaBackend *backend)
{
ClutterBackend *clutter_backend = meta_backend_get_clutter_backend (backend);
ClutterSeat *seat = clutter_backend_get_default_seat (clutter_backend);
MetaSettings *settings = meta_backend_get_settings (backend);
meta_seat_native_set_pointer_constrain_callback (META_SEAT_NATIVE (seat),
pointer_constrain_callback,
NULL, NULL);
META_BACKEND_CLASS (meta_backend_native_parent_class)->post_init (backend);
if (meta_settings_is_experimental_feature_enabled (settings,
@ -349,6 +311,26 @@ meta_backend_native_set_numlock (MetaBackend *backend,
numlock_state);
}
static void
meta_backend_native_set_pointer_constraint (MetaBackend *backend,
MetaPointerConstraint *constraint)
{
ClutterBackend *clutter_backend = meta_backend_get_clutter_backend (backend);
ClutterSeat *seat = clutter_backend_get_default_seat (clutter_backend);
MetaPointerConstraintImpl *constraint_impl = NULL;
cairo_region_t *region;
if (constraint)
{
region = meta_pointer_constraint_get_region (constraint);
constraint_impl = meta_pointer_constraint_impl_native_new (constraint,
region);
}
meta_seat_native_set_pointer_constraint (META_SEAT_NATIVE (seat),
constraint_impl);
}
static void
meta_backend_native_update_screen_size (MetaBackend *backend,
int width, int height)
@ -562,6 +544,8 @@ meta_backend_native_class_init (MetaBackendNativeClass *klass)
backend_class->lock_layout_group = meta_backend_native_lock_layout_group;
backend_class->update_screen_size = meta_backend_native_update_screen_size;
backend_class->set_numlock = meta_backend_native_set_numlock;
backend_class->set_pointer_constraint = meta_backend_native_set_pointer_constraint;
}
static void

View File

@ -0,0 +1,693 @@
/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*- */
/*
* Copyright (C) 2015-2020 Red Hat
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*
* Written by:
* Jonas Ådahl <jadahl@gmail.com>
*/
#include "config.h"
#include <glib-object.h>
#include <wayland-server.h>
#include "core/meta-border.h"
#include "meta-pointer-constraint-native.h"
struct _MetaPointerConstraintImplNative
{
MetaPointerConstraintImpl parent;
MetaPointerConstraint *constraint;
cairo_region_t *region;
};
G_DEFINE_TYPE (MetaPointerConstraintImplNative,
meta_pointer_constraint_impl_native,
META_TYPE_POINTER_CONSTRAINT_IMPL);
typedef struct _MetaBox
{
int x1;
int y1;
int x2;
int y2;
} MetaBox;
static MetaBorder *
add_border (GArray *borders,
float x1,
float y1,
float x2,
float y2,
MetaBorderMotionDirection blocking_directions)
{
MetaBorder border;
border = (MetaBorder) {
.line = (MetaLine2) {
.a = (MetaVector2) {
.x = x1,
.y = y1,
},
.b = (MetaVector2) {
.x = x2,
.y = y2,
},
},
.blocking_directions = blocking_directions,
};
g_array_append_val (borders, border);
return &g_array_index (borders, MetaBorder, borders->len - 1);
}
static gint
compare_lines_x (gconstpointer a,
gconstpointer b)
{
const MetaBorder *border_a = a;
const MetaBorder *border_b = b;
if (border_a->line.a.x == border_b->line.a.x)
return border_a->line.b.x < border_b->line.b.x;
else
return border_a->line.a.x > border_b->line.a.x;
}
static void
add_non_overlapping_edges (MetaBox *boxes,
unsigned int band_above_start,
unsigned int band_below_start,
unsigned int band_below_end,
GArray *borders)
{
unsigned int i;
GArray *band_merge;
MetaBorder *border;
MetaBorder *prev_border;
MetaBorder *new_border;
band_merge = g_array_new (FALSE, FALSE, sizeof *border);
/* Add bottom band of previous row, and top band of current row, and
* sort them so lower left x coordinate comes first. If there are two
* borders with the same left x coordinate, the wider one comes first.
*/
for (i = band_above_start; i < band_below_start; i++)
{
MetaBox *box = &boxes[i];
add_border (band_merge, box->x1, box->y2, box->x2, box->y2,
META_BORDER_MOTION_DIRECTION_POSITIVE_Y);
}
for (i = band_below_start; i < band_below_end; i++)
{
MetaBox *box= &boxes[i];
add_border (band_merge, box->x1, box->y1, box->x2, box->y1,
META_BORDER_MOTION_DIRECTION_NEGATIVE_Y);
}
g_array_sort (band_merge, compare_lines_x);
/* Combine the two combined bands so that any overlapping border is
* eliminated. */
prev_border = NULL;
for (i = 0; i < band_merge->len; i++)
{
border = &g_array_index (band_merge, MetaBorder, i);
g_assert (border->line.a.y == border->line.b.y);
g_assert (!prev_border ||
prev_border->line.a.y == border->line.a.y);
g_assert (!prev_border ||
(prev_border->line.a.x != border->line.a.x ||
prev_border->line.b.x != border->line.b.x));
g_assert (!prev_border ||
prev_border->line.a.x <= border->line.a.x);
if (prev_border &&
prev_border->line.a.x == border->line.a.x)
{
/*
* ------------ +
* ------- =
* [ ]-----
*/
prev_border->line.a.x = border->line.b.x;
}
else if (prev_border &&
prev_border->line.b.x == border->line.b.x)
{
/*
* ------------ +
* ------ =
* ------[ ]
*/
prev_border->line.b.x = border->line.a.x;
}
else if (prev_border &&
prev_border->line.b.x == border->line.a.x)
{
/*
* -------- +
* ------ =
* --------------
*/
prev_border->line.b.x = border->line.b.x;
}
else if (prev_border &&
prev_border->line.b.x >= border->line.a.x)
{
/*
* --------------- +
* ------ =
* -----[ ]----
*/
new_border = add_border (borders,
border->line.b.x,
border->line.b.y,
prev_border->line.b.x,
prev_border->line.b.y,
prev_border->blocking_directions);
prev_border->line.b.x = border->line.a.x;
prev_border = new_border;
}
else
{
g_assert (!prev_border ||
prev_border->line.b.x < border->line.a.x);
/*
* First border or non-overlapping.
*
* ----- +
* ----- =
* ----- -----
*/
g_array_append_val (borders, *border);
prev_border = &g_array_index (borders, MetaBorder, borders->len - 1);
}
}
g_array_free (band_merge, FALSE);
}
static void
add_band_bottom_edges (MetaBox *boxes,
int band_start,
int band_end,
GArray *borders)
{
int i;
for (i = band_start; i < band_end; i++)
{
add_border (borders,
boxes[i].x1, boxes[i].y2,
boxes[i].x2, boxes[i].y2,
META_BORDER_MOTION_DIRECTION_POSITIVE_Y);
}
}
static void
region_to_outline (cairo_region_t *region,
GArray *borders)
{
MetaBox *boxes;
int num_boxes;
int i;
int top_most, bottom_most;
int current_roof;
int prev_top;
int band_start, prev_band_start;
/*
* Remove any overlapping lines from the set of rectangles. Note that
* pixman regions are grouped as rows of rectangles, where rectangles
* in one row never touch or overlap and are all of the same height.
*
* -------- --- -------- ---
* | | | | | | | |
* ----------====---- --- ----------- ----- ---
* | | => | |
* ----==========--------- ----- ----------
* | | | |
* ------------------- -------------------
*
*/
num_boxes = cairo_region_num_rectangles (region);
boxes = g_new (MetaBox, num_boxes);
for (i = 0; i < num_boxes; i++)
{
cairo_rectangle_int_t rect;
cairo_region_get_rectangle (region, i, &rect);
boxes[i] = (MetaBox) {
.x1 = rect.x,
.y1 = rect.y,
.x2 = rect.x + rect.width,
.y2 = rect.y + rect.height,
};
}
prev_top = 0;
top_most = boxes[0].y1;
current_roof = top_most;
bottom_most = boxes[num_boxes - 1].y2;
band_start = 0;
prev_band_start = 0;
for (i = 0; i < num_boxes; i++)
{
/* Detect if there is a vertical empty space, and add the lower
* level of the previous band if so was the case. */
if (i > 0 &&
boxes[i].y1 != prev_top &&
boxes[i].y1 != boxes[i - 1].y2)
{
current_roof = boxes[i].y1;
add_band_bottom_edges (boxes,
band_start,
i,
borders);
}
/* Special case adding the last band, since it won't be handled
* by the band change detection below. */
if (boxes[i].y1 != current_roof && i == num_boxes - 1)
{
if (boxes[i].y1 != prev_top)
{
/* The last band is a single box, so we don't
* have a prev_band_start to tell us when the
* previous band started. */
add_non_overlapping_edges (boxes,
band_start,
i,
i + 1,
borders);
}
else
{
add_non_overlapping_edges (boxes,
prev_band_start,
band_start,
i + 1,
borders);
}
}
/* Detect when passing a band and combine the top border of the
* just passed band with the bottom band of the previous band.
*/
if (boxes[i].y1 != top_most && boxes[i].y1 != prev_top)
{
/* Combine the two passed bands. */
if (prev_top != current_roof)
{
add_non_overlapping_edges (boxes,
prev_band_start,
band_start,
i,
borders);
}
prev_band_start = band_start;
band_start = i;
}
/* Add the top border if the box is part of the current roof. */
if (boxes[i].y1 == current_roof)
{
add_border (borders,
boxes[i].x1, boxes[i].y1,
boxes[i].x2, boxes[i].y1,
META_BORDER_MOTION_DIRECTION_NEGATIVE_Y);
}
/* Add the bottom border of the last band. */
if (boxes[i].y2 == bottom_most)
{
add_border (borders,
boxes[i].x1, boxes[i].y2,
boxes[i].x2, boxes[i].y2,
META_BORDER_MOTION_DIRECTION_POSITIVE_Y);
}
/* Always add the left border. */
add_border (borders,
boxes[i].x1, boxes[i].y1,
boxes[i].x1, boxes[i].y2,
META_BORDER_MOTION_DIRECTION_NEGATIVE_X);
/* Always add the right border. */
add_border (borders,
boxes[i].x2, boxes[i].y1,
boxes[i].x2, boxes[i].y2,
META_BORDER_MOTION_DIRECTION_POSITIVE_X);
prev_top = boxes[i].y1;
}
g_free (boxes);
}
static MetaBorder *
get_closest_border (GArray *borders,
MetaLine2 *motion,
uint32_t directions)
{
MetaBorder *border;
MetaVector2 intersection;
MetaVector2 delta;
float distance_2;
MetaBorder *closest_border = NULL;
float closest_distance_2 = DBL_MAX;
unsigned int i;
for (i = 0; i < borders->len; i++)
{
border = &g_array_index (borders, MetaBorder, i);
if (!meta_border_is_blocking_directions (border, directions))
continue;
if (!meta_line2_intersects_with (&border->line, motion, &intersection))
continue;
delta = meta_vector2_subtract (intersection, motion->a);
distance_2 = delta.x*delta.x + delta.y*delta.y;
if (distance_2 < closest_distance_2)
{
closest_border = border;
closest_distance_2 = distance_2;
}
}
return closest_border;
}
static void
clamp_to_border (MetaBorder *border,
MetaLine2 *motion,
uint32_t *motion_dir)
{
/*
* When clamping either rightward or downward motions, the motion needs to be
* clamped so that the destination coordinate does not end up on the border
* (see weston_pointer_clamp_event_to_region). Do this by clamping such
* motions to the border minus the smallest possible wl_fixed_t value.
*
* When clamping in either leftward or upward motion, the resulting coordinate
* needs to be clamped so that it is enough on the inside to avoid the
* inaccuracies of clutter's stage to actor transformation algorithm (the one
* used in clutter_actor_transform_stage_point) to make it end up outside the
* next motion. It also needs to be clamped so that to the wl_fixed_t
* coordinate may still be right on the border (i.e. at .0). Testing shows
* that the smallest wl_fixed_t value divided by 10 is small enough to make
* the wl_fixed_t coordinate .0 and large enough to avoid the inaccuracies of
* clutters transform algorithm.
*/
if (meta_border_is_horizontal (border))
{
if (*motion_dir & META_BORDER_MOTION_DIRECTION_POSITIVE_Y)
motion->b.y = border->line.a.y - wl_fixed_to_double (1);
else
motion->b.y = border->line.a.y + wl_fixed_to_double (1) / 10;
*motion_dir &= ~(META_BORDER_MOTION_DIRECTION_POSITIVE_Y |
META_BORDER_MOTION_DIRECTION_NEGATIVE_Y);
}
else
{
if (*motion_dir & META_BORDER_MOTION_DIRECTION_POSITIVE_X)
motion->b.x = border->line.a.x - wl_fixed_to_double (1);
else
motion->b.x = border->line.a.x + wl_fixed_to_double (1) / 10;
*motion_dir &= ~(META_BORDER_MOTION_DIRECTION_POSITIVE_X |
META_BORDER_MOTION_DIRECTION_NEGATIVE_X);
}
}
static uint32_t
get_motion_directions (MetaLine2 *motion)
{
uint32_t directions = 0;
if (motion->a.x < motion->b.x)
directions |= META_BORDER_MOTION_DIRECTION_POSITIVE_X;
else if (motion->a.x > motion->b.x)
directions |= META_BORDER_MOTION_DIRECTION_NEGATIVE_X;
if (motion->a.y < motion->b.y)
directions |= META_BORDER_MOTION_DIRECTION_POSITIVE_Y;
else if (motion->a.y > motion->b.y)
directions |= META_BORDER_MOTION_DIRECTION_NEGATIVE_Y;
return directions;
}
static void
meta_pointer_constraint_impl_native_constraint (MetaPointerConstraintImpl *constraint_impl,
ClutterInputDevice *device,
uint32_t time,
float prev_x,
float prev_y,
float *x_inout,
float *y_inout)
{
MetaPointerConstraintImplNative *constraint_impl_native;
cairo_region_t *region;
float x, y;
GArray *borders;
MetaLine2 motion;
MetaBorder *closest_border;
uint32_t directions;
constraint_impl_native = META_POINTER_CONSTRAINT_IMPL_NATIVE (constraint_impl);
region = cairo_region_reference (constraint_impl_native->region);
x = *x_inout;
y = *y_inout;
/* For motions in a positive direction on any axis, append the smallest
* possible value representable in a Wayland absolute coordinate. This is
* in order to avoid not clamping motion that as a floating point number
* won't be clamped, but will be rounded up to be outside of the range
* of wl_fixed_t. */
if (x > prev_x)
x += (float) wl_fixed_to_double(1);
if (y > prev_y)
y += (float) wl_fixed_to_double(1);
borders = g_array_new (FALSE, FALSE, sizeof (MetaBorder));
/*
* Generate borders given the confine region we are to use. The borders
* are defined to be the outer region of the allowed area. This means
* top/left borders are "within" the allowed area, while bottom/right
* borders are outside. This needs to be considered when clamping
* confined motion vectors.
*/
region_to_outline (region, borders);
cairo_region_destroy (region);
motion = (MetaLine2) {
.a = (MetaVector2) {
.x = prev_x,
.y = prev_y,
},
.b = (MetaVector2) {
.x = x,
.y = y,
},
};
directions = get_motion_directions (&motion);
while (directions)
{
closest_border = get_closest_border (borders,
&motion,
directions);
if (closest_border)
clamp_to_border (closest_border, &motion, &directions);
else
break;
}
*x_inout = motion.b.x;
*y_inout = motion.b.y;
g_array_free (borders, FALSE);
}
static float
point_to_border_distance_2 (MetaBorder *border,
float x,
float y)
{
float orig_x, orig_y;
float dx, dy;
if (meta_border_is_horizontal (border))
{
if (x < border->line.a.x)
orig_x = border->line.a.x;
else if (x > border->line.b.x)
orig_x = border->line.b.x;
else
orig_x = x;
orig_y = border->line.a.y;
}
else
{
if (y < border->line.a.y)
orig_y = border->line.a.y;
else if (y > border->line.b.y)
orig_y = border->line.b.y;
else
orig_y = y;
orig_x = border->line.a.x;
}
dx = fabsf (orig_x - x);
dy = fabsf (orig_y - y);
return dx*dx + dy*dy;
}
static void
closest_point_behind_border (MetaBorder *border,
float *sx,
float *sy)
{
switch (border->blocking_directions)
{
case META_BORDER_MOTION_DIRECTION_POSITIVE_X:
case META_BORDER_MOTION_DIRECTION_NEGATIVE_X:
if (border->blocking_directions == META_BORDER_MOTION_DIRECTION_POSITIVE_X)
*sx = border->line.a.x - wl_fixed_to_double (1);
else
*sx = border->line.a.x + wl_fixed_to_double (1);
if (*sy < border->line.a.y)
*sy = border->line.a.y + wl_fixed_to_double (1);
else if (*sy > border->line.b.y)
*sy = border->line.b.y - wl_fixed_to_double (1);
break;
case META_BORDER_MOTION_DIRECTION_POSITIVE_Y:
case META_BORDER_MOTION_DIRECTION_NEGATIVE_Y:
if (border->blocking_directions == META_BORDER_MOTION_DIRECTION_POSITIVE_Y)
*sy = border->line.a.y - wl_fixed_to_double (1);
else
*sy = border->line.a.y + wl_fixed_to_double (1);
if (*sx < border->line.a.x)
*sx = border->line.a.x + wl_fixed_to_double (1);
else if (*sx > (border->line.b.x))
*sx = border->line.b.x - wl_fixed_to_double (1);
break;
}
}
static void
meta_pointer_constraint_impl_native_ensure_constrained (MetaPointerConstraintImpl *constraint_impl,
ClutterInputDevice *device)
{
MetaPointerConstraintImplNative *constraint_impl_native;
graphene_point_t point;
cairo_region_t *region;
float x;
float y;
constraint_impl_native = META_POINTER_CONSTRAINT_IMPL_NATIVE (constraint_impl);
region = cairo_region_reference (constraint_impl_native->region);
clutter_input_device_get_coords (device, NULL, &point);
x = point.x;
y = point.y;
if (!cairo_region_contains_point (region, (int) x, (int) y))
{
GArray *borders;
float closest_distance_2 = FLT_MAX;
MetaBorder *closest_border = NULL;
ClutterSeat *seat;
unsigned int i;
borders = g_array_new (FALSE, FALSE, sizeof (MetaBorder));
region_to_outline (region, borders);
for (i = 0; i < borders->len; i++)
{
MetaBorder *border = &g_array_index (borders, MetaBorder, i);
float distance_2;
distance_2 = point_to_border_distance_2 (border, x, y);
if (distance_2 < closest_distance_2)
{
closest_border = border;
closest_distance_2 = distance_2;
}
}
closest_point_behind_border (closest_border, &x, &y);
seat = clutter_backend_get_default_seat (clutter_get_default_backend ());
clutter_seat_warp_pointer (seat, x, y);
}
cairo_region_destroy (region);
}
static void
meta_pointer_constraint_impl_native_finalize (GObject *object)
{
MetaPointerConstraintImplNative *constraint_impl_native;
constraint_impl_native = META_POINTER_CONSTRAINT_IMPL_NATIVE (object);
g_clear_pointer (&constraint_impl_native->region, cairo_region_destroy);
G_OBJECT_CLASS (meta_pointer_constraint_impl_native_parent_class)->finalize (object);
}
static void
meta_pointer_constraint_impl_native_init (MetaPointerConstraintImplNative *constraint_impl_native)
{
}
static void
meta_pointer_constraint_impl_native_class_init (MetaPointerConstraintImplNativeClass *klass)
{
MetaPointerConstraintImplClass *constraint_impl_class;
GObjectClass *object_class = G_OBJECT_CLASS (klass);
object_class->finalize = meta_pointer_constraint_impl_native_finalize;
constraint_impl_class = META_POINTER_CONSTRAINT_IMPL_CLASS (klass);
constraint_impl_class->constrain = meta_pointer_constraint_impl_native_constraint;
constraint_impl_class->ensure_constrained =
meta_pointer_constraint_impl_native_ensure_constrained;
}
MetaPointerConstraintImpl *
meta_pointer_constraint_impl_native_new (MetaPointerConstraint *constraint,
const cairo_region_t *region)
{
MetaPointerConstraintImplNative *constraint_impl;
constraint_impl = g_object_new (META_TYPE_POINTER_CONSTRAINT_IMPL_NATIVE,
NULL);
constraint_impl->constraint = constraint;
constraint_impl->region = cairo_region_copy (region);
return META_POINTER_CONSTRAINT_IMPL (constraint_impl);
}

View File

@ -0,0 +1,46 @@
/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*- */
/*
* Copyright (C) 2020 Red Hat
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*
* Written by:
* Carlos Garnacho <carlosg@gnome.org>
*/
#ifndef META_POINTER_CONSTRAINT_NATIVE_H
#define META_POINTER_CONSTRAINT_NATIVE_H
#include <glib-object.h>
#include "clutter/clutter.h"
#include "backends/meta-pointer-constraint.h"
G_BEGIN_DECLS
#define META_TYPE_POINTER_CONSTRAINT_IMPL_NATIVE (meta_pointer_constraint_impl_native_get_type ())
G_DECLARE_FINAL_TYPE (MetaPointerConstraintImplNative,
meta_pointer_constraint_impl_native,
META, POINTER_CONSTRAINT_IMPL_NATIVE,
MetaPointerConstraintImpl)
MetaPointerConstraintImpl * meta_pointer_constraint_impl_native_new (MetaPointerConstraint *constraint_impl,
const cairo_region_t *region);
G_END_DECLS
#endif /* META_POINTER_CONSTRAINT_NATIVE_H */

View File

@ -934,13 +934,14 @@ meta_seat_native_constrain_pointer (MetaSeatNative *seat,
us2ms (time_us),
new_x, new_y);
if (seat->constrain_callback)
/* Bar to constraints */
if (seat->pointer_constraint)
{
seat->constrain_callback (core_pointer,
us2ms (time_us),
x, y,
new_x, new_y,
seat->constrain_data);
meta_pointer_constraint_impl_constrain (seat->pointer_constraint,
core_pointer,
us2ms (time_us),
x, y,
new_x, new_y);
}
/* if we're moving inside a monitor, we're fine */
@ -2642,9 +2643,6 @@ meta_seat_native_finalize (GObject *object)
g_list_free (seat->free_device_ids);
if (seat->constrain_data_notify != NULL)
seat->constrain_data_notify (seat->constrain_data);
g_free (seat->seat_id);
G_OBJECT_CLASS (meta_seat_native_parent_class)->finalize (object);
@ -3028,33 +3026,6 @@ meta_seat_native_set_device_callbacks (MetaOpenDeviceCallback open_callback,
device_callback_data = user_data;
}
/**
* meta_seat_native_set_pointer_constrain_callback:
* @seat: the #ClutterSeat created by the evdev backend
* @callback: the callback
* @user_data: data to pass to the callback
* @user_data_notify: function to be called when removing the callback
*
* Sets a callback to be invoked for every pointer motion. The callback
* can then modify the new pointer coordinates to constrain movement within
* a specific region.
*/
void
meta_seat_native_set_pointer_constrain_callback (MetaSeatNative *seat,
MetaPointerConstrainCallback callback,
gpointer user_data,
GDestroyNotify user_data_notify)
{
g_return_if_fail (META_IS_SEAT_NATIVE (seat));
if (seat->constrain_data_notify)
seat->constrain_data_notify (seat->constrain_data);
seat->constrain_callback = callback;
seat->constrain_data = user_data;
seat->constrain_data_notify = user_data_notify;
}
void
meta_seat_native_update_xkb_state (MetaSeatNative *seat)
{
@ -3303,3 +3274,17 @@ meta_seat_native_get_barrier_manager (MetaSeatNative *seat)
{
return seat->barrier_manager;
}
void
meta_seat_native_set_pointer_constraint (MetaSeatNative *seat,
MetaPointerConstraintImpl *constraint_impl)
{
if (!g_set_object (&seat->pointer_constraint, constraint_impl))
return;
if (constraint_impl)
{
meta_pointer_constraint_impl_ensure_constrained (constraint_impl,
seat->core_pointer);
}
}

View File

@ -29,6 +29,7 @@
#include "backends/native/meta-barrier-native.h"
#include "backends/native/meta-keymap-native.h"
#include "backends/native/meta-pointer-constraint-native.h"
#include "backends/native/meta-xkb-utils.h"
#include "clutter/clutter.h"
@ -36,30 +37,6 @@ typedef struct _MetaTouchState MetaTouchState;
typedef struct _MetaSeatNative MetaSeatNative;
typedef struct _MetaEventSource MetaEventSource;
/**
* MetaPointerConstrainCallback:
* @device: the core pointer device
* @time: the event time in milliseconds
* @x: (inout): the new X coordinate
* @y: (inout): the new Y coordinate
* @user_data: user data passed to this function
*
* This callback will be called for all pointer motion events, and should
* update (@x, @y) to constrain the pointer position appropriately.
* The subsequent motion event will use the updated values as the new coordinates.
* Note that the coordinates are not clamped to the stage size, and the callback
* must make sure that this happens before it returns.
* Also note that the event will be emitted even if the pointer is constrained
* to be in the same position.
*/
typedef void (* MetaPointerConstrainCallback) (ClutterInputDevice *device,
uint32_t time,
float prev_x,
float prev_y,
float *x,
float *y,
gpointer user_data);
struct _MetaTouchState
{
MetaSeatNative *seat;
@ -104,10 +81,7 @@ struct _MetaSeatNative
GList *free_device_ids;
MetaBarrierManagerNative *barrier_manager;
MetaPointerConstrainCallback constrain_callback;
gpointer constrain_data;
GDestroyNotify constrain_data_notify;
MetaPointerConstraintImpl *pointer_constraint;
MetaKeymapNative *keymap;
@ -256,11 +230,6 @@ void meta_seat_native_set_device_callbacks (MetaOpenDeviceCallback open_callba
void meta_seat_native_release_devices (MetaSeatNative *seat);
void meta_seat_native_reclaim_devices (MetaSeatNative *seat);
void meta_seat_native_set_pointer_constrain_callback (MetaSeatNative *seat,
MetaPointerConstrainCallback callback,
gpointer user_data,
GDestroyNotify user_data_notify);
struct xkb_state * meta_seat_native_get_xkb_state (MetaSeatNative *seat);
void meta_seat_native_set_keyboard_map (MetaSeatNative *seat,
@ -286,4 +255,7 @@ void meta_seat_native_release_touch_slots (MetaSeatNative *seat,
MetaBarrierManagerNative * meta_seat_native_get_barrier_manager (MetaSeatNative *seat);
void meta_seat_native_set_pointer_constraint (MetaSeatNative *seat,
MetaPointerConstraintImpl *constraint_impl);
#endif /* META_SEAT_NATIVE_H */

View File

@ -697,6 +697,8 @@ if have_native_backend
'backends/native/meta-kms-utils.h',
'backends/native/meta-kms.c',
'backends/native/meta-kms.h',
'backends/native/meta-pointer-constraint-native.c',
'backends/native/meta-pointer-constraint-native.h',
'backends/native/meta-renderer-native-gles3.c',
'backends/native/meta-renderer-native-gles3.h',
'backends/native/meta-renderer-native.h',

View File

@ -41,667 +41,70 @@
#include "backends/meta-backend-private.h"
#include "backends/meta-pointer-constraint.h"
#include "compositor/meta-surface-actor-wayland.h"
#include "core/meta-border.h"
#include "wayland/meta-wayland-pointer-constraints.h"
#include "wayland/meta-wayland-pointer.h"
#include "wayland/meta-wayland-seat.h"
#include "wayland/meta-wayland-surface.h"
struct _MetaPointerConfinementWayland
{
MetaPointerConstraint parent;
typedef struct _MetaPointerConfinementWaylandPrivate MetaPointerConfinementWaylandPrivate;
struct _MetaPointerConfinementWaylandPrivate
{
MetaWaylandPointerConstraint *constraint;
gboolean enabled;
};
typedef struct _MetaBox
enum
{
int x1;
int y1;
int x2;
int y2;
} MetaBox;
PROP_0,
PROP_WAYLAND_POINTER_CONSTRAINT,
N_PROPS,
};
G_DEFINE_TYPE (MetaPointerConfinementWayland, meta_pointer_confinement_wayland,
META_TYPE_POINTER_CONSTRAINT);
static GParamSpec *props[N_PROPS] = { 0 };
static MetaBorder *
add_border (GArray *borders,
float x1, float y1,
float x2, float y2,
MetaBorderMotionDirection blocking_directions)
{
MetaBorder border;
border = (MetaBorder) {
.line = (MetaLine2) {
.a = (MetaVector2) {
.x = x1,
.y = y1,
},
.b = (MetaVector2) {
.x = x2,
.y = y2,
},
},
.blocking_directions = blocking_directions,
};
g_array_append_val (borders, border);
return &g_array_index (borders, MetaBorder, borders->len - 1);
}
static gint
compare_lines_x (gconstpointer a, gconstpointer b)
{
const MetaBorder *border_a = a;
const MetaBorder *border_b = b;
if (border_a->line.a.x == border_b->line.a.x)
return border_a->line.b.x < border_b->line.b.x;
else
return border_a->line.a.x > border_b->line.a.x;
}
G_DEFINE_TYPE_WITH_PRIVATE (MetaPointerConfinementWayland,
meta_pointer_confinement_wayland,
G_TYPE_OBJECT)
static void
add_non_overlapping_edges (MetaBox *boxes,
unsigned int band_above_start,
unsigned int band_below_start,
unsigned int band_below_end,
GArray *borders)
meta_pointer_confinement_wayland_update (MetaPointerConfinementWayland *self)
{
unsigned int i;
GArray *band_merge;
MetaBorder *border;
MetaBorder *prev_border;
MetaBorder *new_border;
MetaPointerConstraint *constraint;
band_merge = g_array_new (FALSE, FALSE, sizeof *border);
/* Add bottom band of previous row, and top band of current row, and
* sort them so lower left x coordinate comes first. If there are two
* borders with the same left x coordinate, the wider one comes first.
*/
for (i = band_above_start; i < band_below_start; i++)
{
MetaBox *box = &boxes[i];
add_border (band_merge, box->x1, box->y2, box->x2, box->y2,
META_BORDER_MOTION_DIRECTION_POSITIVE_Y);
}
for (i = band_below_start; i < band_below_end; i++)
{
MetaBox *box= &boxes[i];
add_border (band_merge, box->x1, box->y1, box->x2, box->y1,
META_BORDER_MOTION_DIRECTION_NEGATIVE_Y);
}
g_array_sort (band_merge, compare_lines_x);
/* Combine the two combined bands so that any overlapping border is
* eliminated. */
prev_border = NULL;
for (i = 0; i < band_merge->len; i++)
{
border = &g_array_index (band_merge, MetaBorder, i);
g_assert (border->line.a.y == border->line.b.y);
g_assert (!prev_border ||
prev_border->line.a.y == border->line.a.y);
g_assert (!prev_border ||
(prev_border->line.a.x != border->line.a.x ||
prev_border->line.b.x != border->line.b.x));
g_assert (!prev_border ||
prev_border->line.a.x <= border->line.a.x);
if (prev_border &&
prev_border->line.a.x == border->line.a.x)
{
/*
* ------------ +
* ------- =
* [ ]-----
*/
prev_border->line.a.x = border->line.b.x;
}
else if (prev_border &&
prev_border->line.b.x == border->line.b.x)
{
/*
* ------------ +
* ------ =
* ------[ ]
*/
prev_border->line.b.x = border->line.a.x;
}
else if (prev_border &&
prev_border->line.b.x == border->line.a.x)
{
/*
* -------- +
* ------ =
* --------------
*/
prev_border->line.b.x = border->line.b.x;
}
else if (prev_border &&
prev_border->line.b.x >= border->line.a.x)
{
/*
* --------------- +
* ------ =
* -----[ ]----
*/
new_border = add_border (borders,
border->line.b.x,
border->line.b.y,
prev_border->line.b.x,
prev_border->line.b.y,
prev_border->blocking_directions);
prev_border->line.b.x = border->line.a.x;
prev_border = new_border;
}
else
{
g_assert (!prev_border ||
prev_border->line.b.x < border->line.a.x);
/*
* First border or non-overlapping.
*
* ----- +
* ----- =
* ----- -----
*/
g_array_append_val (borders, *border);
prev_border = &g_array_index (borders, MetaBorder, borders->len - 1);
}
}
g_array_free (band_merge, FALSE);
}
static void
add_band_bottom_edges (MetaBox *boxes,
int band_start,
int band_end,
GArray *borders)
{
int i;
for (i = band_start; i < band_end; i++)
{
add_border (borders,
boxes[i].x1, boxes[i].y2,
boxes[i].x2, boxes[i].y2,
META_BORDER_MOTION_DIRECTION_POSITIVE_Y);
}
}
static void
region_to_outline (cairo_region_t *region,
GArray *borders)
{
MetaBox *boxes;
int num_boxes;
int i;
int top_most, bottom_most;
int current_roof;
int prev_top;
int band_start, prev_band_start;
/*
* Remove any overlapping lines from the set of rectangles. Note that
* pixman regions are grouped as rows of rectangles, where rectangles
* in one row never touch or overlap and are all of the same height.
*
* -------- --- -------- ---
* | | | | | | | |
* ----------====---- --- ----------- ----- ---
* | | => | |
* ----==========--------- ----- ----------
* | | | |
* ------------------- -------------------
*
*/
num_boxes = cairo_region_num_rectangles (region);
boxes = g_new (MetaBox, num_boxes);
for (i = 0; i < num_boxes; i++)
{
cairo_rectangle_int_t rect;
cairo_region_get_rectangle (region, i, &rect);
boxes[i] = (MetaBox) {
.x1 = rect.x,
.y1 = rect.y,
.x2 = rect.x + rect.width,
.y2 = rect.y + rect.height,
};
}
prev_top = 0;
top_most = boxes[0].y1;
current_roof = top_most;
bottom_most = boxes[num_boxes - 1].y2;
band_start = 0;
prev_band_start = 0;
for (i = 0; i < num_boxes; i++)
{
/* Detect if there is a vertical empty space, and add the lower
* level of the previous band if so was the case. */
if (i > 0 &&
boxes[i].y1 != prev_top &&
boxes[i].y1 != boxes[i - 1].y2)
{
current_roof = boxes[i].y1;
add_band_bottom_edges (boxes,
band_start,
i,
borders);
}
/* Special case adding the last band, since it won't be handled
* by the band change detection below. */
if (boxes[i].y1 != current_roof && i == num_boxes - 1)
{
if (boxes[i].y1 != prev_top)
{
/* The last band is a single box, so we don't
* have a prev_band_start to tell us when the
* previous band started. */
add_non_overlapping_edges (boxes,
band_start,
i,
i + 1,
borders);
}
else
{
add_non_overlapping_edges (boxes,
prev_band_start,
band_start,
i + 1,
borders);
}
}
/* Detect when passing a band and combine the top border of the
* just passed band with the bottom band of the previous band.
*/
if (boxes[i].y1 != top_most && boxes[i].y1 != prev_top)
{
/* Combine the two passed bands. */
if (prev_top != current_roof)
{
add_non_overlapping_edges (boxes,
prev_band_start,
band_start,
i,
borders);
}
prev_band_start = band_start;
band_start = i;
}
/* Add the top border if the box is part of the current roof. */
if (boxes[i].y1 == current_roof)
{
add_border (borders,
boxes[i].x1, boxes[i].y1,
boxes[i].x2, boxes[i].y1,
META_BORDER_MOTION_DIRECTION_NEGATIVE_Y);
}
/* Add the bottom border of the last band. */
if (boxes[i].y2 == bottom_most)
{
add_border (borders,
boxes[i].x1, boxes[i].y2,
boxes[i].x2, boxes[i].y2,
META_BORDER_MOTION_DIRECTION_POSITIVE_Y);
}
/* Always add the left border. */
add_border (borders,
boxes[i].x1, boxes[i].y1,
boxes[i].x1, boxes[i].y2,
META_BORDER_MOTION_DIRECTION_NEGATIVE_X);
/* Always add the right border. */
add_border (borders,
boxes[i].x2, boxes[i].y1,
boxes[i].x2, boxes[i].y2,
META_BORDER_MOTION_DIRECTION_POSITIVE_X);
prev_top = boxes[i].y1;
}
g_free (boxes);
}
static MetaBorder *
get_closest_border (GArray *borders,
MetaLine2 *motion,
uint32_t directions)
{
MetaBorder *border;
MetaVector2 intersection;
MetaVector2 delta;
float distance_2;
MetaBorder *closest_border = NULL;
float closest_distance_2 = DBL_MAX;
unsigned int i;
for (i = 0; i < borders->len; i++)
{
border = &g_array_index (borders, MetaBorder, i);
if (!meta_border_is_blocking_directions (border, directions))
continue;
if (!meta_line2_intersects_with (&border->line, motion, &intersection))
continue;
delta = meta_vector2_subtract (intersection, motion->a);
distance_2 = delta.x*delta.x + delta.y*delta.y;
if (distance_2 < closest_distance_2)
{
closest_border = border;
closest_distance_2 = distance_2;
}
}
return closest_border;
}
static void
clamp_to_border (MetaBorder *border,
MetaLine2 *motion,
uint32_t *motion_dir)
{
/*
* When clamping either rightward or downward motions, the motion needs to be
* clamped so that the destination coordinate does not end up on the border
* (see weston_pointer_clamp_event_to_region). Do this by clamping such
* motions to the border minus the smallest possible wl_fixed_t value.
*
* When clamping in either leftward or upward motion, the resulting coordinate
* needs to be clamped so that it is enough on the inside to avoid the
* inaccuracies of clutter's stage to actor transformation algorithm (the one
* used in clutter_actor_transform_stage_point) to make it end up outside the
* next motion. It also needs to be clamped so that to the wl_fixed_t
* coordinate may still be right on the border (i.e. at .0). Testing shows
* that the smallest wl_fixed_t value divided by 10 is small enough to make
* the wl_fixed_t coordinate .0 and large enough to avoid the inaccuracies of
* clutters transform algorithm.
*/
if (meta_border_is_horizontal (border))
{
if (*motion_dir & META_BORDER_MOTION_DIRECTION_POSITIVE_Y)
motion->b.y = border->line.a.y - wl_fixed_to_double (1);
else
motion->b.y = border->line.a.y + wl_fixed_to_double (1) / 10;
*motion_dir &= ~(META_BORDER_MOTION_DIRECTION_POSITIVE_Y |
META_BORDER_MOTION_DIRECTION_NEGATIVE_Y);
}
else
{
if (*motion_dir & META_BORDER_MOTION_DIRECTION_POSITIVE_X)
motion->b.x = border->line.a.x - wl_fixed_to_double (1);
else
motion->b.x = border->line.a.x + wl_fixed_to_double (1) / 10;
*motion_dir &= ~(META_BORDER_MOTION_DIRECTION_POSITIVE_X |
META_BORDER_MOTION_DIRECTION_NEGATIVE_X);
}
}
static uint32_t
get_motion_directions (MetaLine2 *motion)
{
uint32_t directions = 0;
if (motion->a.x < motion->b.x)
directions |= META_BORDER_MOTION_DIRECTION_POSITIVE_X;
else if (motion->a.x > motion->b.x)
directions |= META_BORDER_MOTION_DIRECTION_NEGATIVE_X;
if (motion->a.y < motion->b.y)
directions |= META_BORDER_MOTION_DIRECTION_POSITIVE_Y;
else if (motion->a.y > motion->b.y)
directions |= META_BORDER_MOTION_DIRECTION_NEGATIVE_Y;
return directions;
}
static void
meta_pointer_confinement_wayland_constrain (MetaPointerConstraint *constraint,
ClutterInputDevice *device,
guint32 time,
float prev_x,
float prev_y,
float *x,
float *y)
{
MetaPointerConfinementWayland *self =
META_POINTER_CONFINEMENT_WAYLAND (constraint);
MetaWaylandSurface *surface;
cairo_region_t *region;
float sx, sy;
float prev_sx, prev_sy;
GArray *borders;
MetaLine2 motion;
MetaBorder *closest_border;
uint32_t directions;
surface = meta_wayland_pointer_constraint_get_surface (self->constraint);
meta_wayland_surface_get_relative_coordinates (surface, *x, *y, &sx, &sy);
meta_wayland_surface_get_relative_coordinates (surface, prev_x, prev_y,
&prev_sx, &prev_sy);
/* For motions in a positive direction on any axis, append the smallest
* possible value representable in a Wayland absolute coordinate. This is
* in order to avoid not clamping motion that as a floating point number
* won't be clamped, but will be rounded up to be outside of the range
* of wl_fixed_t. */
if (sx > prev_sx)
sx += (float)wl_fixed_to_double(1);
if (sy > prev_sy)
sy += (float)wl_fixed_to_double(1);
borders = g_array_new (FALSE, FALSE, sizeof (MetaBorder));
/*
* Generate borders given the confine region we are to use. The borders
* are defined to be the outer region of the allowed area. This means
* top/left borders are "within" the allowed area, while bottom/right
* borders are outside. This needs to be considered when clamping
* confined motion vectors.
*/
region =
meta_wayland_pointer_constraint_calculate_effective_region (self->constraint);
region_to_outline (region, borders);
cairo_region_destroy (region);
motion = (MetaLine2) {
.a = (MetaVector2) {
.x = prev_sx,
.y = prev_sy,
},
.b = (MetaVector2) {
.x = sx,
.y = sy,
},
};
directions = get_motion_directions (&motion);
while (directions)
{
closest_border = get_closest_border (borders,
&motion,
directions);
if (closest_border)
clamp_to_border (closest_border, &motion, &directions);
else
break;
}
meta_wayland_surface_get_absolute_coordinates (surface,
motion.b.x, motion.b.y,
x, y);
g_array_free (borders, FALSE);
}
static float
point_to_border_distance_2 (MetaBorder *border,
float x,
float y)
{
float orig_x, orig_y;
float dx, dy;
if (meta_border_is_horizontal (border))
{
if (x < border->line.a.x)
orig_x = border->line.a.x;
else if (x > border->line.b.x)
orig_x = border->line.b.x;
else
orig_x = x;
orig_y = border->line.a.y;
}
else
{
if (y < border->line.a.y)
orig_y = border->line.a.y;
else if (y > border->line.b.y)
orig_y = border->line.b.y;
else
orig_y = y;
orig_x = border->line.a.x;
}
dx = fabsf (orig_x - x);
dy = fabsf (orig_y - y);
return dx*dx + dy*dy;
}
static void
warp_to_behind_border (MetaBorder *border,
float *sx,
float *sy)
{
switch (border->blocking_directions)
{
case META_BORDER_MOTION_DIRECTION_POSITIVE_X:
case META_BORDER_MOTION_DIRECTION_NEGATIVE_X:
if (border->blocking_directions == META_BORDER_MOTION_DIRECTION_POSITIVE_X)
*sx = border->line.a.x - wl_fixed_to_double (1);
else
*sx = border->line.a.x + wl_fixed_to_double (1);
if (*sy < border->line.a.y)
*sy = border->line.a.y + wl_fixed_to_double (1);
else if (*sy > border->line.b.y)
*sy = border->line.b.y - wl_fixed_to_double (1);
break;
case META_BORDER_MOTION_DIRECTION_POSITIVE_Y:
case META_BORDER_MOTION_DIRECTION_NEGATIVE_Y:
if (border->blocking_directions == META_BORDER_MOTION_DIRECTION_POSITIVE_Y)
*sy = border->line.a.y - wl_fixed_to_double (1);
else
*sy = border->line.a.y + wl_fixed_to_double (1);
if (*sx < border->line.a.x)
*sx = border->line.a.x + wl_fixed_to_double (1);
else if (*sx > (border->line.b.x))
*sx = border->line.b.x - wl_fixed_to_double (1);
break;
}
}
static void
meta_pointer_confinement_wayland_maybe_warp (MetaPointerConfinementWayland *self)
{
MetaWaylandSeat *seat;
MetaWaylandSurface *surface;
graphene_point_t point;
float sx;
float sy;
cairo_region_t *region;
seat = meta_wayland_pointer_constraint_get_seat (self->constraint);
surface = meta_wayland_pointer_constraint_get_surface (self->constraint);
clutter_input_device_get_coords (seat->pointer->device, NULL, &point);
meta_wayland_surface_get_relative_coordinates (surface,
point.x, point.y,
&sx, &sy);
region =
meta_wayland_pointer_constraint_calculate_effective_region (self->constraint);
if (!cairo_region_contains_point (region, (int)sx, (int)sy))
{
GArray *borders;
float closest_distance_2 = FLT_MAX;
MetaBorder *closest_border = NULL;
ClutterSeat *seat;
unsigned int i;
float x;
float y;
borders = g_array_new (FALSE, FALSE, sizeof (MetaBorder));
region_to_outline (region, borders);
for (i = 0; i < borders->len; i++)
{
MetaBorder *border = &g_array_index (borders, MetaBorder, i);
float distance_2;
distance_2 = point_to_border_distance_2 (border, sx, sy);
if (distance_2 < closest_distance_2)
{
closest_border = border;
closest_distance_2 = distance_2;
}
}
warp_to_behind_border (closest_border, &sx, &sy);
meta_wayland_surface_get_absolute_coordinates (surface, sx, sy, &x, &y);
seat = clutter_backend_get_default_seat (clutter_get_default_backend ());
clutter_seat_warp_pointer (seat, (int)x, (int)y);
}
cairo_region_destroy (region);
constraint =
META_POINTER_CONFINEMENT_WAYLAND_GET_CLASS (self)->create_constraint (self);
meta_backend_set_client_pointer_constraint (meta_get_backend (), constraint);
g_object_unref (constraint);
}
static void
surface_geometry_changed (MetaWaylandSurface *surface,
MetaPointerConfinementWayland *self)
{
meta_pointer_confinement_wayland_maybe_warp (self);
meta_pointer_confinement_wayland_update (self);
}
static void
window_position_changed (MetaWindow *window,
MetaPointerConfinementWayland *self)
{
meta_pointer_confinement_wayland_maybe_warp (self);
meta_pointer_confinement_wayland_update (self);
}
MetaPointerConstraint *
meta_pointer_confinement_wayland_new (MetaWaylandPointerConstraint *constraint)
void
meta_pointer_confinement_wayland_enable (MetaPointerConfinementWayland *confinement)
{
GObject *object;
MetaPointerConfinementWayland *confinement;
MetaPointerConfinementWaylandPrivate *priv;
MetaWaylandPointerConstraint *constraint;
MetaWaylandSurface *surface;
MetaWindow *window;
object = g_object_new (META_TYPE_POINTER_CONFINEMENT_WAYLAND, NULL);
confinement = META_POINTER_CONFINEMENT_WAYLAND (object);
priv = meta_pointer_confinement_wayland_get_instance_private (confinement);
g_assert (!priv->enabled);
confinement->constraint = constraint;
priv->enabled = TRUE;
constraint = priv->constraint;
surface = meta_wayland_pointer_constraint_get_surface (constraint);
g_signal_connect_object (surface,
@ -720,7 +123,34 @@ meta_pointer_confinement_wayland_new (MetaWaylandPointerConstraint *constraint)
0);
}
return META_POINTER_CONSTRAINT (confinement);
meta_pointer_confinement_wayland_update (confinement);
}
void
meta_pointer_confinement_wayland_disable (MetaPointerConfinementWayland *confinement)
{
MetaPointerConfinementWaylandPrivate *priv;
MetaWaylandPointerConstraint *constraint;
MetaWaylandSurface *surface;
MetaWindow *window;
priv = meta_pointer_confinement_wayland_get_instance_private (confinement);
constraint = priv->constraint;
g_assert (priv->enabled);
priv->enabled = FALSE;
surface = meta_wayland_pointer_constraint_get_surface (constraint);
g_signal_handlers_disconnect_by_func (surface, surface_geometry_changed,
confinement);
window = meta_wayland_surface_get_window (surface);
if (window)
{
g_signal_handlers_disconnect_by_func (window, window_position_changed,
confinement);
}
meta_backend_set_client_pointer_constraint (meta_get_backend (), NULL);
}
static void
@ -728,11 +158,110 @@ meta_pointer_confinement_wayland_init (MetaPointerConfinementWayland *confinemen
{
}
static void
meta_pointer_confinement_wayland_get_property (GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec)
{
MetaPointerConfinementWayland *confinement;
MetaPointerConfinementWaylandPrivate *priv;
confinement = META_POINTER_CONFINEMENT_WAYLAND (object);
priv = meta_pointer_confinement_wayland_get_instance_private (confinement);
switch (prop_id)
{
case PROP_WAYLAND_POINTER_CONSTRAINT:
g_value_set_object (value, priv->constraint);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
meta_pointer_confinement_wayland_set_property (GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec)
{
MetaPointerConfinementWayland *confinement;
MetaPointerConfinementWaylandPrivate *priv;
confinement = META_POINTER_CONFINEMENT_WAYLAND (object);
priv = meta_pointer_confinement_wayland_get_instance_private (confinement);
switch (prop_id)
{
case PROP_WAYLAND_POINTER_CONSTRAINT:
priv->constraint = g_value_get_object (value);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static MetaPointerConstraint *
meta_pointer_confinement_wayland_create_constraint (MetaPointerConfinementWayland *confinement)
{
MetaPointerConfinementWaylandPrivate *priv;
MetaPointerConstraint *constraint;
MetaWaylandSurface *surface;
cairo_region_t *region;
float dx, dy;
priv = meta_pointer_confinement_wayland_get_instance_private (confinement);
surface = meta_wayland_pointer_constraint_get_surface (priv->constraint);
region =
meta_wayland_pointer_constraint_calculate_effective_region (priv->constraint);
meta_wayland_surface_get_absolute_coordinates (surface, 0, 0, &dx, &dy);
cairo_region_translate (region, dx, dy);
constraint = meta_pointer_constraint_new (region);
cairo_region_destroy (region);
return constraint;
}
static void
meta_pointer_confinement_wayland_class_init (MetaPointerConfinementWaylandClass *klass)
{
MetaPointerConstraintClass *pointer_constraint_class =
META_POINTER_CONSTRAINT_CLASS (klass);
GObjectClass *object_class = G_OBJECT_CLASS (klass);
pointer_constraint_class->constrain = meta_pointer_confinement_wayland_constrain;
object_class->set_property = meta_pointer_confinement_wayland_set_property;
object_class->get_property = meta_pointer_confinement_wayland_get_property;
klass->create_constraint = meta_pointer_confinement_wayland_create_constraint;
props[PROP_WAYLAND_POINTER_CONSTRAINT] =
g_param_spec_object ("wayland-pointer-constraint",
"Wayland pointer constraint",
"Wayland pointer constraint",
META_TYPE_WAYLAND_POINTER_CONSTRAINT,
G_PARAM_READWRITE |
G_PARAM_CONSTRUCT_ONLY |
G_PARAM_STATIC_STRINGS);
g_object_class_install_properties (object_class, N_PROPS, props);
}
MetaPointerConfinementWayland *
meta_pointer_confinement_wayland_new (MetaWaylandPointerConstraint *constraint)
{
return g_object_new (META_TYPE_POINTER_CONFINEMENT_WAYLAND,
"wayland-pointer-constraint", constraint,
NULL);
}
MetaWaylandPointerConstraint *
meta_pointer_confinement_wayland_get_wayland_pointer_constraint (MetaPointerConfinementWayland *confinement)
{
MetaPointerConfinementWaylandPrivate *priv;
priv = meta_pointer_confinement_wayland_get_instance_private (confinement);
return priv->constraint;
}

View File

@ -33,12 +33,23 @@
G_BEGIN_DECLS
#define META_TYPE_POINTER_CONFINEMENT_WAYLAND (meta_pointer_confinement_wayland_get_type ())
G_DECLARE_FINAL_TYPE (MetaPointerConfinementWayland,
meta_pointer_confinement_wayland,
META, POINTER_CONFINEMENT_WAYLAND,
MetaPointerConstraint);
G_DECLARE_DERIVABLE_TYPE (MetaPointerConfinementWayland,
meta_pointer_confinement_wayland,
META, POINTER_CONFINEMENT_WAYLAND,
GObject)
MetaPointerConstraint *meta_pointer_confinement_wayland_new (MetaWaylandPointerConstraint *constraint);
struct _MetaPointerConfinementWaylandClass
{
GObjectClass parent_class;
MetaPointerConstraint * (*create_constraint) (MetaPointerConfinementWayland *confinement);
};
MetaPointerConfinementWayland *meta_pointer_confinement_wayland_new (MetaWaylandPointerConstraint *constraint);
MetaWaylandPointerConstraint *
meta_pointer_confinement_wayland_get_wayland_pointer_constraint (MetaPointerConfinementWayland *confinement);
void meta_pointer_confinement_wayland_enable (MetaPointerConfinementWayland *confinement);
void meta_pointer_confinement_wayland_disable (MetaPointerConfinementWayland *confinement);
G_END_DECLS

View File

@ -37,33 +37,55 @@
#include <glib-object.h>
#include "backends/meta-pointer-constraint.h"
#include "backends/meta-backend-private.h"
#include "compositor/meta-surface-actor-wayland.h"
struct _MetaPointerLockWayland
{
MetaPointerConstraint parent;
GObject parent;
MetaWaylandPointerConstraint *constraint;
};
G_DEFINE_TYPE (MetaPointerLockWayland, meta_pointer_lock_wayland,
META_TYPE_POINTER_CONSTRAINT);
META_TYPE_POINTER_CONFINEMENT_WAYLAND)
static void
meta_pointer_lock_wayland_constrain (MetaPointerConstraint *constraint,
ClutterInputDevice *device,
guint32 time,
float prev_x,
float prev_y,
float *x,
float *y)
static MetaPointerConstraint *
meta_pointer_lock_wayland_create_constraint (MetaPointerConfinementWayland *confinement)
{
*x = prev_x;
*y = prev_y;
MetaBackend *backend = meta_get_backend ();
ClutterBackend *clutter_backend = meta_backend_get_clutter_backend (backend);
ClutterSeat *seat = clutter_backend_get_default_seat (clutter_backend);
ClutterInputDevice *pointer = clutter_seat_get_pointer (seat);
MetaWaylandPointerConstraint *wayland_constraint;
MetaPointerConstraint *constraint;
MetaWaylandSurface *surface;
graphene_point_t point;
cairo_region_t *region;
float sx, sy, x, y;
clutter_input_device_get_coords (pointer, NULL, &point);
wayland_constraint =
meta_pointer_confinement_wayland_get_wayland_pointer_constraint (confinement);
surface = meta_wayland_pointer_constraint_get_surface (wayland_constraint);
meta_wayland_surface_get_relative_coordinates (surface,
point.x, point.y,
&sx, &sy);
meta_wayland_surface_get_absolute_coordinates (surface, sx, sy, &x, &y);
region = cairo_region_create_rectangle (&(cairo_rectangle_int_t) { (int) x, (int) y, 1 , 1 });
constraint = meta_pointer_constraint_new (region);
cairo_region_destroy (region);
return constraint;
}
MetaPointerConstraint *
meta_pointer_lock_wayland_new (void)
MetaPointerConfinementWayland *
meta_pointer_lock_wayland_new (MetaWaylandPointerConstraint *constraint)
{
return g_object_new (META_TYPE_POINTER_LOCK_WAYLAND, NULL);
return g_object_new (META_TYPE_POINTER_LOCK_WAYLAND,
"wayland-pointer-constraint", constraint,
NULL);
}
static void
@ -74,8 +96,9 @@ meta_pointer_lock_wayland_init (MetaPointerLockWayland *lock_wayland)
static void
meta_pointer_lock_wayland_class_init (MetaPointerLockWaylandClass *klass)
{
MetaPointerConstraintClass *pointer_constraint_class =
META_POINTER_CONSTRAINT_CLASS (klass);
MetaPointerConfinementWaylandClass *confinement_class =
META_POINTER_CONFINEMENT_WAYLAND_CLASS (klass);
pointer_constraint_class->constrain = meta_pointer_lock_wayland_constrain;
confinement_class->create_constraint =
meta_pointer_lock_wayland_create_constraint;
}

View File

@ -27,15 +27,15 @@
#include <glib-object.h>
#include "backends/meta-pointer-constraint.h"
#include "wayland/meta-pointer-confinement-wayland.h"
G_BEGIN_DECLS
#define META_TYPE_POINTER_LOCK_WAYLAND (meta_pointer_lock_wayland_get_type ())
G_DECLARE_FINAL_TYPE (MetaPointerLockWayland, meta_pointer_lock_wayland,
META, POINTER_LOCK_WAYLAND, MetaPointerConstraint);
META, POINTER_LOCK_WAYLAND, MetaPointerConfinementWayland)
MetaPointerConstraint *meta_pointer_lock_wayland_new (void);
MetaPointerConfinementWayland *meta_pointer_lock_wayland_new (MetaWaylandPointerConstraint *constraint);
G_END_DECLS

View File

@ -68,7 +68,7 @@ struct _MetaWaylandPointerConstraint
wl_fixed_t x_hint;
wl_fixed_t y_hint;
MetaPointerConstraint *constraint;
MetaPointerConfinementWayland *confinement;
};
typedef struct _MetaWaylandSurfacePointerConstraintsData
@ -375,7 +375,7 @@ meta_wayland_pointer_constraint_notify_deactivated (MetaWaylandPointerConstraint
zwp_confined_pointer_v1_send_unconfined (resource);
}
static MetaPointerConstraint *
static MetaPointerConfinementWayland *
meta_wayland_pointer_constraint_create_pointer_constraint (MetaWaylandPointerConstraint *constraint)
{
struct wl_resource *resource = constraint->resource;
@ -384,7 +384,7 @@ meta_wayland_pointer_constraint_create_pointer_constraint (MetaWaylandPointerCon
&zwp_locked_pointer_v1_interface,
&locked_pointer_interface))
{
return meta_pointer_lock_wayland_new ();
return meta_pointer_lock_wayland_new (constraint);
}
else if (wl_resource_instance_of (resource,
&zwp_confined_pointer_v1_interface,
@ -399,8 +399,6 @@ meta_wayland_pointer_constraint_create_pointer_constraint (MetaWaylandPointerCon
static void
meta_wayland_pointer_constraint_enable (MetaWaylandPointerConstraint *constraint)
{
MetaBackend *backend = meta_get_backend ();
g_assert (!constraint->is_enabled);
constraint->is_enabled = TRUE;
@ -408,20 +406,25 @@ meta_wayland_pointer_constraint_enable (MetaWaylandPointerConstraint *constraint
meta_wayland_pointer_start_grab (constraint->seat->pointer,
&constraint->grab);
constraint->constraint =
constraint->confinement =
meta_wayland_pointer_constraint_create_pointer_constraint (constraint);
meta_backend_set_client_pointer_constraint (backend, constraint->constraint);
g_object_add_weak_pointer (G_OBJECT (constraint->constraint),
(gpointer *) &constraint->constraint);
g_object_unref (constraint->constraint);
meta_pointer_confinement_wayland_enable (constraint->confinement);
g_object_add_weak_pointer (G_OBJECT (constraint->confinement),
(gpointer *) &constraint->confinement);
}
static void
meta_wayland_pointer_constraint_disable (MetaWaylandPointerConstraint *constraint)
{
constraint->is_enabled = FALSE;
if (constraint->confinement)
{
meta_pointer_confinement_wayland_disable (constraint->confinement);
g_object_unref (constraint->confinement);
}
meta_wayland_pointer_constraint_notify_deactivated (constraint);
meta_backend_set_client_pointer_constraint (meta_get_backend (), NULL);
meta_wayland_pointer_end_grab (constraint->grab.pointer);
}