Since the completion callback (on_switch_workspace_effect_complete) sets
priv->tml_switch_workspace1 to NULL, the unref was trying to unref NULL,
and the reffed ClutterTimeline was not getting unreffed.
This could be triggered by rapidly switching workspaces, switching again
before the animation of the initial switch was done.
Found while working on #2038.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2120>
This can happen if a texture was newly assigned to the actor, but the
unobscured region hasn't been updated yet. Without bailing here, the
actor would display correctly via direct scanout, but other parts of
mutter would continue considering it obscured, which would e.g. result
in no frame callbacks getting sent for its surface.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1636
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2112>
Previously we chose to only anti-alias texels inside the boundary
(`clip_radius - 1.0`) but zoomed in you could see it was slightly smaller
than the correct curve (#2024).
Similarly if you choose to only anti-alias texels outside that edge
(`clip_radius + 1.0`) then you'd get an overly convex curve that doesn't
match up with the straight line sections.
So now we anti-alias texels that intersect the circle boundary, regardless
of which side they are mostly on. For efficiency we define "intersect" to
mean any texel whose center is within 0.5 of the theoretical edge.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/2024
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2102>
When grabbing the devices, there's no error paths that would quit
late enough that both pointer and keyboard would need ungrabbing,
so the keyboard checks were dead code.
Fix this by dropping the boolean variable checks, and adding goto
labels to unroll the operation properly at every stage.
CID: #1418254
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2061>
Analogous to `get_image()` this returns a `ClutterContent` for a
given `MetaWindowActor`. This can be used to implement window
effects without a roundtrip from GPU to CPU memory.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1893>
We fetch a frame clock that we schedule update on when queuing
_NET_WM_FRAME_DRAWN events. In some situations this frame clock is the
one from the stage, and if there are multiple hotplugs in a row, we
failed to update it as there were no stage views changes on the window
actor itself. As an actor updates the stage views list on layout, When a
queue_frame_drawn() call was done (typically from an X11 event) after a
second hotplug, it'd attempt to schedule an update on the frame clock
from the previous hotplug, as it didn't get notified about any
stage-views changes since for itself there was none.
Fix this by not caching the frame clock at all and just fetch it every
time.
In the majority of cases, this fetching means iterating over a very
short list (most often a single entry, rarely more), so it's very
unlikely to be of any relevance. The only situations where it might be a
heavier operation is the short time between a hotplug and a layout, as
it will attempt to traverse up to the stage to find a clock, but that's
likely only a few levels, so even that is unlikely to be an issue.
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/4486
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1947>
This was introduced by accident in commit 1467b6b02a
y-inverted textures in combination with shape masks appear to
be only commonly used with EGLstreams. However, as we draw the
shape mask ourselves, we don't want to apply the y-invert to it
as testified by the left over `cogl_pipeline_set_layer_matrix()`.
Note that we still allow to apply viemports and buffer transforms,
as the Xwayland mode setting emulation may use it (in fact only
the former, but it probably does not hurt to leave the later as well).
Closes https://gitlab.gnome.org/GNOME/mutter/-/issues/1792
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1937>
This code sneaked unconditionally, even though we can disable
tracing code with -Dprofiler=false. Add some COGL_HAS_TRACING
checks so that this code is also optionally built.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1951>
When a viewport source rect or destination size is set, `stex->dst_width`
gives us the the cropped and/or scaled size. At this step, we need the
uncropped/unscaled size however.
Note: this is only ever relevant if buffer transform and viewport are
used together - otherwise the values are the same.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1836>
The shadow size is factored into the paint volume MetaWindowActorX11
returns in its get_paint_volume() vfunc override, so we should
invalidate the paint volume every time that shadow might change.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1829>
When using buffer transforms and viewports together, we currently
apply the transformation (read: rotation) first, resulting in
wrong buffer coordinates for viewport source rects.
Flip the order in whitch we apply our matrix transformations.
This can be tested e.g. via:
`weston-simple-damage --use-viewport --transform=flipped-180`
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1832>
Currently when reordering subsurfaces, we un- and reparent all child
actors of the window actor. This is unnecessarily wasteful and
triggers bugs in clutter. While the underlying issue should be fixed
eventually, simply reorder the actors with the tools clutter provides
us with, avoiding those bugs and likely being faster as well.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1831>
When the texture size is invalidated using `invalidate_size()`, the new
size will only get calculated the next time `update_size()` is
called. This happens e.g. in `meta_shaped_texture_get_preferred_size()`
via `ensure_size_valid()`.
`update_size()` can chain up to `clutter_content_invalidate_size()`
as well as emitting a `size-changed` signal. If this happens during
layout, the result is a 'change the layout conditions during layout'
issue, causing heavy breakage in e.g. the Shell overview.
To fix this, expose `ensure_size_valid()` as API so callers can make
sure the texture has a valid size without creating redundant size
invalidations calls.
Note that if a buffer with a new size is attached we already trigger
`update_size()` explicitely, avoiding such situations.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1799>
If only a viewport destination size is set, the noop viewport has
to take the buffer scale into account.
If a viewport source but no viewport destination size is set, the
destination size is that of the viewport source, not of the whole
texture.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1786>
The order of which function argument expressions are executed is
undefined, so don't rely on this for setting the background colors, as
it results in different colors on different architectures.
For example, it has been observed that the order of execution is
reversed comparing x86_64 and aarch64, making these two architectures
having different background color.
Fix this confusion, and also reproduceability in future reference tests,
by making the order of execution predictable.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
The sync ring has an API about "frames", where it is notified about
the end of frames. However, its "insert wait" call is done before
updates, meaning that some "insert waits" will never see the "after
frame" if there was no frame drawn. This will cause mismatching in the
frame counting, causing freezes in the synchronization until something
else triggers an actual frame, effectively "unfreezing" the sync ring.
Fix this by not only notifying the sync ring about frames when there
were actual frames drawn, but also on plain updates which didn't result
in a drawn frame.
Related: https://gitlab.gnome.org/GNOME/mutter/-/issues/1516
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1754>
This concerns only the cases when the presentation timestamp is received
directly from the device (from KMS or from GLX). In the majority of
cases this timestamp is already MONOTONIC. When it isn't, after this
commit, the current value of the MONOTONIC clock is sampled instead.
The alternative is to store the clock id alongside the timestamp, with
possible values of MONOTONIC, REALTIME (from KMS) and GETTIMEOFDAY (from
GLX; this might be the same as REALTIME, I'm not sure), and then
"convert" the timestamp to MONOTONIC when needed. An example of such a
conversion was done in compositor.c (removed in this commit). It would
also be needed for the presentation-time Wayland protocol. However, it
seems that the vast majority of up-to-date systems are using MONOTONIC
anyway, making this effort not justified.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1484>
The cache had the size 9, which was "big enough" in the past, but when
more ways pipelines could be constructed, the size was not enough. The
need to increase the cache size was hard to spot though, since adding
pipeline flag didn't give any hints about the cache being directly tied
to these flag values.
So, when enough flag bits were set when attempting to retrieve and put a
pipeline in the cache, it'd instead overwrite some arbitrary stack
memory, which would sooner or later result in a memory corruption
induced crash. Valgrind could not detect this particular memory
corruption, as it messed up stack memory, not e.g. freed heap memory, so
it instead got confused and thought plain stack values were unreadable.
Fix these two issues by making the cache size the combination of all
pipeline flags + 1, so that we can safely put any flag combination in
the cache.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1747>
GObject signals pass the emitting GObject as the first argument to
signal handler callbacks. When refactoring the grab-op-begin/end signals
to remove MetaScreen with commit 1d5e37050d,
the "screen" argument was replaced with a "display" argument instead of
being removed completely. This made us call the signal handlers with two
identical MetaDisplay arguments, which is very confusing and actually
wasn't handled in a grab-op-begin handler in gnome-shell.
So fix this by not adding the MetaDisplay as an argument to those
signals, GObject will take care of that for us.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1734>
We're going to round the workspace backgrounds in the new overview for
gnome-shell 40.
So far corner-rounding was only possible for StWidgets because the
rounded clipping was done using cairo drawing. We now need rounded
clipping for ClutterActors too because backgrounds are drawn using
ClutterActors (or more specifically a ClutterContent). To implement
that, first a ClutterOffscreenEffect subclass together with a fragment
shader from GSK (see gskSetOutputColor() [1] in the GSK GL renderer
code) was investigated, and while that was generic and worked quite
well, it was extremely slow for the case of drawing wallpapers because
of all the FBOs that had to be allocated.
This is the new, more performant approach: Use the same fragment shader,
but perform the rounded clipping right in MetaBackgroundContent while
we're painting the wallpaper. This has almost no performance impact,
with the downside of not being a generic solution.
To allow for rounded clipping not only at the edges of the wallpaper,
but using any given bounding rectangle, the API exposes not only the
radius, but also a bounding rect.
[1] https://gitlab.gnome.org/GNOME/gtk/-/blob/master/gsk/resources/glsl/preamble.fs.glsl
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1717>
Ensure we issue a motion event for the current pointer position,
as there might be situations where compositor modals get X grabs
from other clients stacked on top, or missed events in between
otherwise.
Ensure the Clutter state is still up-to-date afterwards here. This
replaces some sync_pointer() calls done in GNOME Shell code, always
done after modality changes.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1659>
Do these Wayland operations (that apply on both native and nested backends)
in the MetaCompositorServer subclass. We want to add more backend specific
behavior here in the future.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1659>
Technically this is still wrong if the source actor or dnd actor are
transformed in other ways. However geometry scale is the by far most
common case and we currently lack convenience API in Clutter to
easily compute the right values.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1683>
Mutter freezes Xwayland commits when resizing windows, and thaw them in
the window actors' after_paint() for X11.
Yet, after_paint() could be never called, as when a new window is mapped
while the overview is active in gnome-shell.
As a result, the content of the X11 window will remain invisible to the
overview.
Add a new window actor API to tell whether commits can be frozen. For
Wayland window actors, this always return FALSE, whereas for X11 window
actors, it checks whether the Clutter actor is mapped.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1678>
The monitor texture is the final background image. It doesn't need to
have any alpha channel. Cross-fades (which is the process of rendering
*into* the monitor texture) still work just fine.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1665>
Just because of implementation details, this is only relevant to Wayland,
and is done via ::effects-completed handlers there. Ideally, Clutter should
notice by itself about effects starting, finishing, and affecting picking.
Doing this in generic code seems slightly cleaner in the interim.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1654>
Assert that the region is created, thus we passed a valid enum value
to the get_scaled_region() function. Fixes:
../../../../Source/gnome/mutter/src/compositor/meta-surface-actor.c: In function ‘get_scaled_region’:
../../../../Source/gnome/mutter/src/compositor/meta-surface-actor.c:113:10: warning: ‘scaled_region’ may be used uninitialized in this function [-Wmaybe-uninitialized]
113 | return scaled_region;
| ^~~~~~~~~~~~~
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1624>
In case we only have a single view (or there's only one view left to
check and the actor is visible on previous views) we can take a short-
cut, saving a region allocation and some calculations.
While on it, declare float numbers in '.f' style to make them more
recognizable.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1596>
Our main use case of `is_obscured()` is frame callback emission.
Since we now support stage views running at differt speeds, we
need to know whether an actor is visible on a specific stage view
in order to schedule frame callbacks accordingly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1468>
We want the bounding box so `ceilf` seems more appropriate. It was
only written using `roundf` before as a workaround for inaccuracies
coming out of `clutter_actor_get_transformed_size` that would have
tricked `ceilf` into landing on the wrong integer. But that's since
been fixed by 67cc60cbda so we can use `ceilf` now.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1532
Because clones may not have identical geometry to their source actors.
So we can't use the geometry of the source actor to decide to take the
more optimized (more clipped) path.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1480
A first step towards abandoning the CoglObject type system: convert
CoglFramebuffer, CoglOffscreen and CoglOnscreen into GObjects.
CoglFramebuffer is turned into an abstract GObject, while the two others
are currently final. The "winsys" and "platform" are still sprinkled
'void *' in the the non-abstract type instances however.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1496
The timestamp sent with _NET_WM_FRAME_DRAWN should be in "high
resolution X server timestamps", meaning they should have the same scope
as the built in X11 32 bit unsigned integer timestamps, i.e. overflow at
the same time.
This was not done correctly when mutter had determined the X server used
the monotonic clock, where it'd just forward the monotonic clock,
confusing any client using _NET_WM_FRAME_DRAWN and friends.
Fix this by 1) splitting the timestamp conversiot into an X11 case and a
display server case, where the display server case simply clamps the
monotonic clock, as it is assumed Xwayland is always usign the monotonic
clock, and 2) if we're a X11 compositing manager, if the X server is
using the monotonic clock, apply the same semantics as the display
server case and always just clamp, or if not, calculate the offset every
10 seconds, and offset the monotonic clock timestamp with the calculated
X server timestamp offset.
This fixes an issue that would occur if mutter (or rather GNOME Shell)
would have been started before a X11 timestamp overflow, after the
overflow happened. In this case, GTK3 clients would get unclamped
timestamps, and get very confused, resulting in frames queued several
weeks into the future.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1494
A boring one, with the exception that row and column needed to be
swapped. For the sake of consistency, the variable names were also
synchronized with the values they hold, so e.g. xy → yx, etc.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
CoglMatrix already is a typedef to graphene_matrix_t. This commit
simply drops the CoglMatrix type, and align parameters. There is
no functional change here, it's simply a find-and-replace commit.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
Ideally, we would use Graphene to do that, however as of now Graphene
lacks these APIs so we still need these helpers. Since we're preparing
to get rid of CoglMatrix, move them to a separate file, and rename them
with the 'cogl_graphene' prefix.
Since I'm already touching the world with this change, I'm also renaming
cogl_matrix_transform_point() to cogl_graphene_matrix_project_point(),
as per XXX comment, to make it consistent with the transform/projection
semantics in place.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
Mutter itself is versioned now, so passing the version information
to the plugin is redunant now: The version is already determined by
linking to a particular API version (gnome-shell) or by installing
to a versioned plugin path (external plugins).
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1473
This reverts the commits 372d73e275 and 1d20045247 - the special
case for alpha-less textures could only happen on Wayland, but now
the opaque region is also set in those cases.
This commit saves us some allocations, simplifies the logic a bit and
makes sure culling uses the same opaque region as our painting paths.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1463
Just like we used to before 30809665d8.
Because in some cases `clip_region` is able to shave off an extra pixel
from the edge of the redraw rectangle(s). And not shaving that off was
making the background rendering inconsistent with shaped-texture, causing
occasional off-by-one artefacts. Now both shaped-texture and
background-content agree on the clip region again that doesn't happen.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1443https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1464
Using opaque painting paths can have a big impact on painting performance.
In order to easily validate whether we use the opaque paths, add a opaque
(green) or blended (purple) overlay over painted areas if the
`META_DEBUG_PAINT_OPAQUE_REGION` `MetaDebugPaintFlag` is set.
You can do so in `lg` via:
`Meta.add_debug_paint_flag(Meta.DebugPaintFlag.OPAQUE_REGION)`
This can be helpful for application developers, as previously it was not
trivial to check whether e.g. Wayland or X11 opaque regions where
properly set.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1372
When in the overview culling via `self->clip_region` is unavailable.
The region is `NULL` because the paint call has not originated from a
`WindowGroup`, because the overview does not use `WindowGroup`.
So the main wallpaper was being painted in full while in the overview.
That's a waste of effort because `redraw_clip` is going to be used to
stencil/scissor out only the parts that are changing. We don't need to
paint *most* of the wallpaper, only the parts behind anything changing.
For the overview this reduces GPU power usage (intel_gpu_top) roughly
10% and reduces render times almost as much.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1363
`meta_background_content_paint_content` was mixing two different
coordinate systems in `actor_pixel_rect`. It was initialized with
actor-local coordinates and then `if (self->clip_region)` would be
treated as stage coordinates. This worked because `self->clip_region`
was only non-NULL outside of the overview where both coordinate systems
were the same. So it always got the right answer, possibly by accident.
In order to enhance the function however we will need to know which
coordinate system we're working in, so now we make it explicit.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1363
Commit 510cbef15a changed the logic in `handle_update()` for X11 window
actors to return early if the surface is not an X11 surface.
That works fine for plain Xorg, but on Xwayland, the surface is actually
a Wayland surface, therefore the function returns early before updating
the drop shadows of server-side decorations for X11 windows.
Change the test logic to restore drops shadows with Xwayland windows.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1384
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1358
That was obviously always the intention, but it didn't work when the
display was scaled. My 3840x2160 monitor with a 3840x2160 texture was
being rendered with LINEAR filtering.
It seems the `force_bilinear` flag was TRUE when it should be FALSE.
Because a texture area that's an integer fraction of the texture
resolution is still a perfect match when that integer is the monitor
scale. We were also getting:
`meta_actor_painting_untransformed (fb, W, H, W, H, NULL, NULL) == FALSE`
when the display was scaled. Because the second W,H was not the real
sampling resolution. So with both of those issues fixed we now get
NEAREST filtering when the texture resolution matches the resolution it's
physically being rendered at.
Note: The background texture actually wasn't equal to the physical monitor
resolution prior to January 2020 (76240e24f7). So it wasn't possible to do
this before then. Since then however, the texture resolution is always
equal to the physical monitor resolution.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1346
It doesn't take all children - subsurfaces in this case - into
account, thus creating glitches if subsurfaces extend outside
of the toplevel surface.
Further more it doesn't seem to serve any special purpose - it was
added in f7315c9a36, a pretty big commit, and no discussion was
started about the code in question. So it was likely just overlooked
in the review process.
Closes https://gitlab.gnome.org/GNOME/mutter/-/issues/873
Closes https://gitlab.gnome.org/GNOME/mutter/-/issues/1316
gnome-shell displays workspace previews at one tenth scale. That's a
few binary orders of magnitude so even using a LINEAR filter was
resulting in visible jaggies. Now we apply mipmapping so they appear
smooth.
As an added bonus, the mipmaps used occupy roughly 1% the memory of
the original image (0.1 x 0.1 = 0.01) so they actually fit into GPU/CPU
caches now and rendering performance is improved. There's no need to
traverse the original texture which at 4K resolution occupies 33MB,
only a 331KB mipmap.
In my case this reduces the render time for the overview by ~10%.
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/1416https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1347
Replace the default master clock with multiple frame clocks, each
driving its own stage view. As each stage view represents one CRTC, this
means we draw each CRTC with its own designated frame clock,
disconnected from all the others.
For example this means we when using the native backend will never need
to wait for one monitor to vsync before painting another, so e.g. having
a 144 Hz monitor next to a 60 Hz monitor, things including both Wayland
and X11 applications and shell UI will be able to render at the
corresponding monitor refresh rate.
This also changes a warning about missed frames when sending
_NETWM_FRAME_TIMINGS messages to a debug log entry, as it's expected
that we'll start missing frames e.g. when a X11 window (via Xwayland) is
exclusively within a stage view that was not painted, while another one
was, still increasing the global frame clock.
Addititonally, this also requires the X11 window actor to schedule
timeouts for _NET_WM_FRAME_DRAWN/_NET_WM_FRAME_TIMINGS event emitting,
if the actor wasn't on any stage views, as now we'll only get the frame
callbacks on actors when they actually were painted, while in the past,
we'd invoke that vfunc when anything was painted.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/903
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/3https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
The repaint callbacks are not tied to repaint, thus a bit misleading.
What the functionality in the pre/post-paint callbacks here cares about
is when actually painting; the non-painting related parts has already
moved out to a *-update signal.
This also renames the related MetaWindowActorClass vfuncs, to align with
naming convention of the signals that it listens to.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
Instead of going via MetaCompositor to know about when we updated
(confusingly named post-paint), use the new stage signal directly.
Note that this doesn't change the time frame callbacks are dispatched;
it's still not tied to actual painting even though it seemed so before
given the function names.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
We'd emit multiple "presented" signals per frame, one for "sync" and one
for "completion". Only the latter were ever used, and removing the
differentiation eases the avoidance of cogl onscreen framebuffer frame
callback details leaking into clutter.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
The vfunc was not tied to "paint", but was used by MetaWindowActorX11
as part of the "update" mechanisms. In order to make that more clear,
special case it in MetaWindowActorX11 by type checking the surface
actor, handling the case without MetaSurfacActor abstraction.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
The synchronization must happen no matter the painting, as it in itself
might result in reported damage, making the stage actually painted. Thus
move it out of the "pre-paint" handler, to something explicitly not tied
to the painting itself - ClutterStage::before-update.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
Instead of the 'pre-paint' signal on MetaCompositor, rely directly on
the 'before-update' signal on the stage. A reason for this is that the
callback should not only invoked in connection to painting, but updating
in general. Currently the 'pre-paint' signal is emitted no matter
whether there were any painting or not, but that's both misleading and
will go away.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
The MetaLater functionality needs to make sure an update is scheduled so
that it can run its callbacks etc. This used a ClutterTimeline (which is
an object more or less meant to drive animations markers, frames etc)
just to keep the master frame clock running. We're moving away from a
single master clock, so just schedule updates directly instead, with the
newly exposed API.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
41130b08eb added a fix for culling subsurfaces with geometry scale.
Unfortunately it only did so for the opaque regions, not for clip and
unobscured regions, as the effect was hidden by bug that was only
fixed by 3187fe8ebc.
Apply the same fix to clip and unobscured regions and use the chance
to move most of the slightly hackish geometry scale related code
into a single place.
We need to scale slightly differently in the two cases, indicated by
the new `ScalePerspectiveType` enum, as the scale is dependent on the
perspective - once from outside, once from inside of the scaled actor.
Closes https://gitlab.gnome.org/GNOME/mutter/-/issues/1312
Since we now always return a resource scale, we can remove the boolean
return value from clutter_actor_get_resource_scale() and
_clutter_actor_get_real_resource_scale(), and instead simply return the
scale.
While at it, also remove the underscore from the
_clutter_actor_get_real_resource_scale() private API.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1276
We were setting the pipeline colour to all white (1.0, 1.0, 1.0, 1.0)
and so the default layer combine function multiplied each pixel
(R, G, B, A) by all ones. Obviously multiplying by one four times per
pixel is a waste of effort so we remove the colour setting *and* set
the layer combine function to a trivial shader that will ignore whatever
the current pipeline colour is set to. So now we do **zero** multiplies
per pixel.
On an i7-7700 at UHD 3840x2160 this results in 5% faster render times
and 10% lower power usage (says intel_gpu_top). The benefit is probably
much higher for virtual machines though, as they're no longer being
asked to do CPU-based math on every pixel of a window.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1331
In commit 4c1fde9d MetaCullable related code was moved out of
MetaShapedTexture into MetaSurfaceActor. While generally desirable,
this removed drawing optimizations in MetaShapedTexture for partial
redraws. The common case for fully obscured actors was still supposed
to work, but it was now discovered that it actually did not.
This commit revert parts of 4c1fde9d: it reintroduces clipping
to MetaShapedTexture but leaves all culling and actor related logic
in MetaSurfaceActor.
Thanks to Daniel van Vugt for uncovering the issue.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/850
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1295https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1326
As explained in the last commits, we'll let gnome-shell take care of
this since freezing and thawing needs to be decoupled from the effect
starting and ending.
So stop freezing the MetaWindowActor when starting the effect and
thawing the actor when ending the effect.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1250
As explained in the last commit, gnome-shell needs to be able to thaw
window actor updates during its size-change effect is active.
So make meta_window_actor_freeze() and meta_window_actor_thaw() public
API, which will allow the shell to freeze and thaw actor updates itself.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1250
The size-change animation in gnome-shell needs to sync the window actors
geometry during the animation, it currently does this by notifying the
compositor that the animation was finished before it actually is.
This causes a few bugs in Mutter though, since it will now emit the
"effects-completed" signal on the window actor even though they aren't
completed.
To fix that, we need to decouple freezing and thawing of actor updates
from window effects and allow gnome-shell to thaw actor updates before
it notifies Mutter that the effect is completed.
The first step for this is allowing to sync the actor geometry while an
effect is active, this should be redundant since effects which actually
need to inhibit those updates will freeze the actor anyway. Also a
geometry change happening while another effect is active will kill the
old effect anyway because MetaPluginManager kills all the active window
effects before starting a new one; so the new size-change effect for any
geometry change is going to kill the current effect.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1250
The current code assumes that the actor will always have the same
size and position of the background texture, but part of the implicit
contract of being a ClutterContent is being able to render itself
at any given actor, at any given size.
For example, if the current code is given an actor with 0x0+100+100
as geometry, and no clipped region, it'll render not the whole
background, but the 0x0+100+100 rectangle of the background. In
practice, the actor geometry acts like a "clip mask" over the
background texture, due to the assumption that the actor will
always have the same size of the monitor.
Make the calculation of the texture slices relative to the actor
box.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1302
MetaBackgroundActor is still necessary for culling purposes,
but now the actual rendering of the background is delegated
to MetaBackgroundContent, as well as the sizing information.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1302
MetaBackgroundContent is a ClutterContent implementation
that can render a background to any attached actor. Right
now, it preserves all the properties and the rendering
model of MetaBackgroundActor.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1302
We would get the MetaDisplay from the backend singleton before creating
the MetaCompositor, then in MetaCompositor, get the backend singleton
again to get the stage. To get rid of the extra singleton fetching, just
pass the backend the MetaCompositor constructors, and fetch the stage
directly from the backend everytime it's needed.
This also makes it available earlier than before, as we didn't set our
instance private stage pointer until the manage() call.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1289
Move Wayland support (i.e. the MetaWaylandCompositor object) made to be
part of the backend. This is due to the fact that it is needed by the
backend initialization, e.g. the Wayland EGLDisplay server support.
The backend is changed to be more involved in Wayland and clutter
initialization, so that the parts needed for clutter initialization
happens before clutter itself initialization happens, and the rest
happens after. This simplifies the setup a bit, as clutter and Wayland
init now happens as part of the backend initialization.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1218
On X11 we don't update the texture in certain circumstances, such as if
the surface is a fullscreen unredirect, or doesn't have a Pixmap. On
Wayland we only want to avoid updating the texture if there is no
texture, but as this is handled implicitly by MetashapedTexture, we
don't need to try to emulate the X11-y conditions in the generic layer
and instead just have the implementations handle update processing
themself.
This doesn't have any functional changes, but removes a vfunc from
MetaSurfaceActorClass.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1218
All existing users of clutter_actor_has_mapped_clones() actually want to
know whether the actor is being cloned by a visible clone, it doesn't
matter to them if that clone is attached to an actor somewhere else in
the tree or to the actor itself.
So make clutter_actor_has_mapped_clones() a bit more convenient to use
and also check the clones of the parent-actors in that function.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1235
When the wallpaper image is larger than the monitor resolution we already
use mipmapping to scale it down smoothly in hardware. We use
`GL_TEXTURE_MIN_FILTER` = `GL_LINEAR_MIPMAP_LINEAR` for the highest quality
scaling that GL can do. However that option is designed for 3D use cases
where the mipmap level is changing over time or space.
Since our wallpaper is not changing distance from us we can improve the
rendering quality even more than `GL_LINEAR_MIPMAP_LINEAR`. To do this we
now set `GL_TEXTURE_MAX_LEVEL` (if available) to limit the mipmap level or
blurriness level to the lowest resolution (highest level) that is still
equal to or higher than the monitor itself. This way we get the benefits
of mipmapping (downscaling in hardware) *and* retain the maximum possible
sharpness for the monitor resolution -- something that
`GL_LINEAR_MIPMAP_LINEAR` alone doesn't do.
Example:
Monitor is 1920x1080
Wallpaper photo is 4000x3000
Mipmaps stored on the GPU are 4000x3000, 2000x1500, 1000x750, ...
Before: You would see an average of the 2000x1500 and 1000x750 images.
After: You will now only see the 2000x1500 image, linearly sampled.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1003
One of the important classes in Mutter's handling of client textures is
the `MetaShapedTexture`. This commit adds a few gtk-doc comments which
explain its purpose, with special attention to the viewport methods.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1210
When resizing an X11 window with client side decorations, the shadow is
clipped by the frame bounds so that we don't need to paint the shadow
under the opaque areas covered by the window and its frame.
When the X11 client uses the EMWH synchronization mechanism (like all
gtk-3 based clients), the actual window may not be updated so that the
actual window and it frame may be behind the expected window frame
bounds, which gives the impression of de-synchronized shadows.
To avoid the issue, keep a copy of the frame bounds as a cache and only
update it when the client is not frozen so that the clipping occurs on
the actual content.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/1178https://gitlab.gnome.org/GNOME/mutter/merge_requests/1214
A paint flag affects a paint operation in ways defined by the flags.
Currently no flags are defined, so no semantical changes are defined
yet. Eventually a flag aiming to avoid painting of cursors is going to
be added, so that screen cast streams can decide whether to include a
cursor or not.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1207
Try to bypass compositing if there is a fullscreen toplevel window with
a buffer compatible with the primary plane of the monitor it is
fullscreen on. Only non-mirrored is currently supported; as well as
fullscreened on a single monitor. It should be possible to extend with
more cases, but this starts small.
It does this by introducing a new MetaCompositor sub type
MetaCompositorNative specific to the native backend, which derives from
MetaCompositorServer, containing functionality only relevant for when
running on top of the native backend.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
We need to coordinate with MetaCompositor during pre-paint so that we
have control over whether MetaLater callbacks happen first, or the
MetaCompositor pre-paint logic.
In order to do so, make MetaLater listen to a new signal "pre-paint" on
MetaCompositor, that is called MetaCompositors own pre-paint handling.
This fixes an issue where the top window actor was calculated after the
MetaCompositor pre-paint handling, meaning the top actor being painted
was out-of-date.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
Since the order of destruction during MetaDisplay tear down is a bit
unordered, there are pieces that try to destruct its compositing
dependent pieces (i.e. queued MetaLater callbacks) after MetaCompositor
has been cleaned up, meaning we need to put some slightly awkward NULL
checks to avoid crashing.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
MetaCompositor is the place in mutter that manages the higher level
state of compositing, such as handling what happens before and after
paint. In order for other units that depend on having a compositor
instance active, but should be initialized before the X11 implementation
of MetaCompositor registers as a X11 compositing manager, split the
initialization of compositing into two steps:
1) Instantiate the object - only construct the instance, making it
possible for users to start listening to signals etc
2) Manage - this e.g. establishes the compositor as the X11 compositing
manager and similar things.
This will enable us to put compositing dependent scattered global
variables into a MetaCompositor owned object.
For now, compositor management is internally done by calling a new
`meta_compositor_do_manage()`, as right now we can't change the API of
`meta_compositor_manage()` as it is public. For the next version, manual
management of compositing will removed from the public API, and only
managed internally.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
While at it, fix some style inconsistencies, for now use a single
singleton struct instead of multiple static variables, and
other non-functional cleanups. Semantically, there is no changes
introduced.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
Better to have the relevant object figure out whether it is a good
position to be unredirectable other than the actor, which should be
responsible for being composited.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
This fixes an issue where a non-maximized screen casted window would be
stretched to fill the whole screen cast stream, instead of just the crop
that corresponds to the current window size.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1174
Normally we bail out in `sync_actor_geometry()`. The comment there
states:
```
Normally we want freezing a window to also freeze its position; this allows
windows to atomically move and resize together, either under app control,
or because the user is resizing from the left/top. But on initial placement
we need to assign a position, since immediately after the window
is shown, the map effect will go into effect and prevent further geometry
updates.
```
The signal for the initial sync originates in `MetaWindow` though and predates
`xdg_toplevel_set_maximized`, which again calls `meta_window_force_placement`,
triggering the signal too early. As a result, Wayland clients that start up
maximized have a wrong map animation, starting in the top-left corner.
In order to fix this without changing big parts of the geometry logic and risking
regressions, force the initial sync again before mapping.
Solution suggested by Jonas Ådahl.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1164
This allows us to screencast any window continuously, even
without it being visible. Because it's still being painted,
clients continue to receive frame callbacks, and people
are happy again.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1129
cogl_framebuffer_push_rectangle_clip() acts on the current modelview
matrix. That means the result of clipping then translating will be
different of the result of translating then clipping.
What we want for window screencasting is the former, not the latter.
Move the translation code (and associated) to after clipping.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/1097https://gitlab.gnome.org/GNOME/mutter/merge_requests/1129
We checked that the content size was appropriately painted in the stage,
but didn't take into account that the size of the sampled texture
region, meaning that when stage views were scaled, we'd think that we
would draw a texture scaled, as e.g. a 200x200 sized texture with buffer
scale 2 would have the size 100x100. When stage views were not scaled,
we'd apply a geometry scale meaning it'd end up as 200x200 anyway, thus
pass the check, but when stage views are scaled, it'd still be painted
as a 100x100 shaped texture on the stage, thus failing the
are-we-unscaled test.
Fix this by comparing the transformed paint size with the sampled size,
instead of the paint size again, when checking whether we are being
painted scaled or not. For example, when stage views are scaled, our
200x200 buffer with buffer scale 2, thus content size 100x100 will
transform to a 200x200 paint command, thus passing the test. For
non-scaled stage views, our 200x200 buffer with buffer scale 2 thus
content size 100x100 will also transform into a 200x200 paint command,
and will also pass the check, as the texture sample region is still
200x200.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/804https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1124
This is so that cogl-trace.h can start using things from cogl-macros.h,
and so that it doesn't leak cogl-config.h into the world, while exposing
it to e.g. gnome-shell so that it can make use of it as well. There is
no practical reason why we shouldn't just include cogl-trace.h via
cogl.h as we do with everything else.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1059
This fixes a case that was overlooked in
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1036 - when we
have a geometry scale > 1 and Wayland subsurfaces that have an offset
to their parent surface (which is often the case when the toplevel surface
includes decoration/shadows etc.), we have to add extra offset to their
opaque regions so they match their 'visible' location.
This is necessary as `meta_cullable_cull_out_children` moves the coordinate
system during culling, but does not know about geometry scale.
Also, remove the redundant check for `window_actor` - we only hit this code
path if a `window_actor` culls out its children.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1108
To keep consistent and avoid confusion, rename the function:
`meta_window_x11_buffer_rect_to_frame_rect()`
to:
`meta_window_x11_surface_rect_to_frame_rect()`
As this function doesn't deal with the `window->buffer_rect` at all.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1091