This removes the redundant _cogl_xlib_trap/untrap_errors functions that
simply wrap equivalent functions in the _cogl_renderer_xlib namespace.
These were originally only required while the EGL winsys was being
handled in clutter and so there wasn't a CoglRenderer in all cases.
This adds an example cogl compositor to test the
_cogl_wayland_texture_2d_new_from_buffer API. The compositor emulates 4
output displays but doesn't support input since Cogl doesn't deal with
input. It's quite a minimal example of what it takes to write a wayland
compositor so could be interesting to anyone learning about wayland.
In the winsys vtable .xlib_get_visual_info and
.onscreen_x11_get_window_xid should be guarded by the
COGL_HAS_EGL_PLATFORM_POWERVR_X11_SUPPORT because they need to be there
if cogl is configured with --enable-xlib-egl-platform but not if just
configured with --enable-xlib.
When iterating through all the possible window systems trying to find
one we can successfully connect we now associated the current winsys
vtable with the renderer before calling winsys->renderer_connect in case
the implementation calls some other Cogl API that expects to be able to
determine the current winsys. For example calling _cogl_get_proc_address
when querying winsys extensions as part of a successful connect will
need to get at the current winsys vtable.
This adds internal API to be able to wrap a wayland buffer as a
CoglTexture2D. There is a --enable-wayland-egl-server option to decide
if Cogl should support this feature and potentially any EGL based winsys
could support this through the EGL_KHR_image_base and
EGL_WL_bind_display extensions.
By using the EGL_KHR_image_base/pixmap extensions this adds support for
wrapping X11 pixmaps as CoglTexture2D textures. Clutter will
automatically take advantage of this if using the
ClutterX11TexturePixmap actor.
This adds an internal texture_2d constructor that can wrap an EGLImage
as a CoglTexture2D. The plan is to utilize this for texture-from-pixmap
support with EGL as well as creating textures from wayland buffers.
This moves the --enable-cairo check because it was put in the middle of
the logic that handles the --enable-debug option. This moves the
--enable-cairo check down after the --enable-debug logic and adds a
comment header to delimit the option like we have for other options.
Instead of the stub winsys being a special case set of #ifdef'd code
used when COGL_HAS_FULL_WINSYS wasn't defined, the stub winsys now
implements a CoglWinsysVtable like all other winsys backends (it's just
that everything is a NOP). This way we can get rid of the
COGL_HAS_FULL_WINSYS define and also the stub winsys can be runtime
selected whereas before it was incompatible with all other winsys
backends.
Since we no longer have any xlib based backends in Clutter that depend
on the stub winsys in Cogl we can now remove all the special case code
we had for this in cogl-xlib.c
This exposes a CoglTexture2D typedef and adds the following experimental
API:
cogl_is_texture_2d
cogl_texture_2d_new_with_size
cogl_texture_2d_new_from_data
cogl_texture_2d_new_from_foreign
Since this is experimental API you need to define
COGL_ENABLE_EXPERIMENTAL_API before including cogl.h.
Note: With these new entrypoints we now expect a CoglContext pointer to
be passed in, instead of assuming there is a default context. The aim is
that for Cogl 2.0 we won't have a default context so this is a step in
that direction.
Until we have a standalone quartz winsys we don't want to define a
winsys name called "quartz" which is what the current --enable-quartz
option does. For now anyone building for OSX needs to use the stub
winsys and setup their own GL context.
This validates that the viewport width and height arguments are positive
values in _cogl_framebuffer_set_viewport. In addition, just before
calling glViewport we also assert that something else hasn't gone amiss
and that the internal viewport width/height values we track are still
positive before passing to glViewport which generates an error for
negative values.
This reverts commit b2e41f1bfa.
We are backing out the quartz specific stub winsys since we can simply
use the generic stub winsys on quartz until we develop a standalone
winsys. Since we plan on removing all special cases for the stub winsys
by handling with a winsys vtable like all the others it's better if we
don't introduce a quartz specific stub.
This reverts commit eb81ec945c.
We are backing out the quartz specific stub winsys since we can simply
use the generic stub winsys on quartz until we develop a standalone
winsys. Since we plan on removing all special cases for the stub winsys
by handling with a winsys vtable like all the others it's better if we
don't introduce a quartz specific stub.
Previously whenever the journal is flushed a new vertex array would be
created to contain the vertices. To avoid the overhead of reallocating
a buffer every time, this patch makes it use a pool of 8 buffers which
are cycled in turn. The buffers are never destroyed but instead the
data is replaced. The journal should only ever be using one buffer at
a time but we cache more than one buffer anyway in case the GL driver
is internally using the buffer in which case mapping the buffer may
cause it to create a new buffer anyway.
When flushing a pipeline that has more layers than the previous
pipeline, the fixed function fragend is supposed to detect that the
texture unit previously had no texture target enabled and then enable
it. However the logic for checking whether the unit was enabled was
broken due to a typing failure when unit->enabled and
unit->current_gl_target were combined into one value in commit
6b7139b0. This was breaking some of the conformance tests when the
fixed function fragend is used.
https://bugzilla.gnome.org/show_bug.cgi?id=650979
The CoglPipeline code uses a combination of GL_MAX_TEXTURE_COORDS,
GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS and GL_MAX_TEXTURE_UNITS to
determine the maximum number of layers to allow in a pipeline. However
on fixed function hardware that doesn't advertise either GLSL or ARBfp
it was still using the first two enums which will probably just return
0 and set a GLerror. This meant that we effectively didn't support
using any layers on purely fixed function hardware. This patch changes
it to only use those two enums if the appropriate extensions are
advertised and to always use GL_MAX_TEXTURE_UNITS except on GLES2
where there is no fixed function.
https://bugzilla.gnome.org/show_bug.cgi?id=650966
Automake seems a bit fragile when trying to do cunning things like
including a file with "-include". It does not recurse into that file (if
it exists) to generate the final Makefiles.
Let's add a if BUILD_GTK_DOC guard around the gtk-doc.make inclusion
instead, hopefully should work as intended.
The native window type of the EGL/Android winsys is ANativeWinow*. The
Android NDK gives you a pointer to this ANativeWindow and you just need
to configure that window using the EGLConfig you are choosing when
creating the context.
This means you have to know the ANativeWindow* window before creating
the context. This is solved here by just having a global variable you
can set with cogl_android_set_native_window() before creating the
context. This is a bit ugly though, and it conceptually belongs to the
OnScreen creation to know which ANativeWindow* to use. This would need a
"lazy context creation" mechanism, waiting for the user to create the
OnScreen to initialize the GL context.
With GLES 1, frame buffers are a optional extensions. We need to make
sure the pointer exist before calling the function and do that by just
checkout the corresponding feature.
When try_create_context() returns saying that it has to be run again to
try to create a context with an alternate configuration, it might not
have a GError set (and in fact it does not right now).
g_clear_error() handles that case where error is still NULL;
Early implementations provided only a GLES/egl.h while Khronos's
implementer guide now states EGL/egl.h is the One. Some implementations
keep a GLES/egl.h wrapper around EGL/egl.h for backward compatibility
while others provide EGL/egl.h only.
Also took the opportunity to factorize a bit this inclusion in
cogl-defines.h.
When checking for EGL earlier in the configure script (ie EGL_CHECKED is
"yes"), we did not execute some EGL code. Let's split that code in two:
- A first part that has a last change to check for EGL
- A second one that defines variables and that should always been run
in an EGL build
GLES/glext.h and GLES2/gl2ext.h need to include GLES/gl.h and
GLES2/gl2.h respectively to get the GL types.
This used to work as autoconf used to only do a preprocessor pass in
AC_CHECK_HEADER(S), but now it also tries to compile a small test
program and thus the test failed.
Instead of simply extending the cogl_pipeline_ namespace to add api for
controlling the depth testing state we now break the api out. This adds
a CoglDepthState type that can be stack allocated. The members of the
structure are private but we have the following API to setup the state:
cogl_depth_state_init
cogl_depth_state_set_test_enabled
cogl_depth_state_get_test_enabled
cogl_depth_state_set_test_function
cogl_depth_state_get_test_function
cogl_depth_state_set_writing_enabled
cogl_depth_state_get_writing_enabled
cogl_depth_state_set_range
cogl_depth_state_get_range
This removes the following experimental API which is now superseded:
cogl_material_set_depth_test_enabled
cogl_material_get_depth_test_enabled
cogl_material_set_depth_test_function
cogl_material_get_depth_test_function
cogl_material_set_depth_writing_enabled
cogl_material_get_depth_writing_enabled
cogl_material_set_depth_range
cogl_material_get_depth_range
Once a CoglDepthState structure is setup it can be set on a pipeline
using cogl_pipeline_set_depth_state().
Commit 3c1e83c7 changed uses of arrays of CoglAttributes to take a
length instead of being NULL terminated. In cogl_primitive_new it was
still adding the NULL terminator to the array it passes to
cogl_primitive_new_with_attributes but then it was also including this
terminator in the count so it would just segfault when it tries to ref
the NULL pointer. Also _cogl_primitive_new_with_attributes_unref was
still trying to detect the NULL terminator so it would also crash.
This uses INTROSPECTION_COMPILER_ARGS to pass
--includedir=$(top_builddir)/cogl so when building the CoglPango typelib
the compiler can find the required Cogl-1.0.gir file.
cogl/cogl-pango.h can't be included unless the include directory for
Pango is given in the compiler flags. In an application, it is
expected that if they are using this header then they would pull in
cogl-pango-1.0.pc which would provide this. However when building Cogl
itself we might be building without Pango support so the Makefile
can't rely on PANGO_CFLAGS. This was breaking building the
introspection data because cogl-pango.h was listed as one of the files
to scan but it can't be included.
For the first iteration of the CoglAttribute API several of the new
functions accepted a pointer to a NULL terminated list of CoglAttribute
pointers - probably as a way to reduce the number of arguments required.
This style isn't consistent with existing Cogl APIs though and so we now
explicitly pass n_attributes arguments and don't require the NULL
termination.