This splits out the core CoglPipelineLayer support code from
cogl-pipeline.c into cogl-pipeline-layer.c; it splits out the debugging
code for dumping a pipeline to a .dot file into cogl-pipeline-debug.c
and it splits the CoglPipelineNode support which is shared between
CoglPipeline and CoglPipelineLayer into cogl-node.c.
Note: cogl-pipeline-layer.c only contains the layer code directly
relating to CoglPipelineLayer objects; it does not contain any
_cogl_pipeline API relating to how CoglPipeline tracks and manipulates
layers.
This makes a start on porting the Cogl conformance tests that currently
still live in the Clutter repository to be standalone Cogl tests that no
longer require a ClutterStage.
The main thing is that this commit brings in is the basic testing
infrastructure we need, so now we can port more and more tests
incrementally.
Since the test suite wants a way to synchronize X requests/replies and
we can't simply call XSynchronize in the test-utils code before we know
if we are really running on X this adds a check for an environment
variable named "COGL_X11_SYNC" in cogl-xlib-renderer.c and if it's set
it forces XSynchronize (dpy, TRUE) to be called.
By default the conformance tests are run off screen. This makes the
tests run much faster and they also don't interfere with other work you
may want to do by constantly stealing focus. CoglOnscreen framebuffers
obviously don't get tested this way so it's important that the tests
also get run on screen every once in a while, especially if changes are
being made to CoglFramebuffer related code. On screen testing can be
enabled by setting COGL_TEST_ONSCREEN=1 in your environment.
Cogl requires gobject and gmodule API, so we need to check for these and
add them to the pkg-config files as dependencies, otherwise building
Cogl with --as-needed (like modern distributions now do) will cause
build errors.
https://bugzilla.gnome.org/show_bug.cgi?id=656809
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Only cogl-pango needs a dependency on pangocairo so we are now careful to
separate the pangocairo pkg-config flags from the others so we can avoid
having libcogl builds refer to them.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
It's not necessary to generate cogl-display.h just for the GDL backend
and to change the inclusion of libgdl.h. We can just tweak the include
CFLAGS to put /usr/include/CE4100 in the search path when needed.
Previously this did not work because of a stay ',' at the end of the
COGL_EXTRA_CFLAGS int he configure.ac. This actually simplifies the
code, which is always good.
This also fixes out of tree builds.
https://bugzilla.gnome.org/show_bug.cgi?id=655724
Reviewed-by: Neil Roberts <neil@linux.intel.com>
We weren't defining CLUTTER_CEX100_LIBGDL_PREFIX in the configure.ac and
thus failing to compile when selecting the EGL/GDL winsys. Take the
opportunity to rename that to COGL_CEX100_LIBGDL_PREFIX
https://bugzilla.gnome.org/show_bug.cgi?id=655355
AC_CHECK_HEADER(S) for eglext.h need include egl.h as it may not be done
for you.
The patch tries to integrate with the previous work to check if
GLES/egl.h ir EGL/egl.h should be included for egl.h.
This adds 3 configure options to override the library name that gets
dlopened for GL, GLES and GLESv2. This could be useful for distro
maintainers who have an unusual name for the libraries (for example,
on OpenBSD the GL library appears to be called libGL.so.4). This could
at least be simpler than having to create a distro patch.
The configure options would be used like this:
./configure --with-gl-libname=libGL.so \
--with-gles1-libname=libGLESv1.so \
--with-gles2-libname=libGLESv2.so
https://bugzilla.gnome.org/show_bug.cgi?id=654593
Instead of using g_module_build_path with the short name of the GL
library (eg, "GL") and relying on glib to add the suffix and prefix,
the configure script now directly encodes the full name including the
version number (eg, "libGL.so.1"). This is necessary because distros
don't always install the non-versioned suffix for the library.
The GLES libraries are left without the version suffix because it's
not clear what should be placed here and I can't find any
documentation from Khronos to clarify this. Mesa seems to install a
file called libGLESv2.so.2 but the IMG SDK doesn't install any
versioned library. There is an example of dynamically loading
libGLESv2 in the Chromium source code and that does not use the
version suffix even though it does use the version suffix for GL. This
implies that it's at least fairly normal to load the unversioned name
for GLES.
https://bugzilla.gnome.org/show_bug.cgi?id=654593
Instead of only exposing COGL_HAS_GLX_SUPPORT internally in config.h we
now expose it though the public cogl-defines.h header.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
--enable-uprof has been renamed to --enable-profile, make sure the help
string is updated accordingly.
Signed-off-by: Robert Bragg <robert@linux.intel.com>
The experimental 2.0 reference manual was setup with DOC_MODULE name of
"cogl" which conflicted with the 1.x API manual. This meant that when
running make install for both the reference manuals all the html files
would end up bundled together in the same location. The 2.0 API
reference now has a DOC_MODULE name of "cogl-2.0-experimental" the
corresponding -sections.txt and -docs.xml.in files have also been
renamed to match this.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
The GL or GLES library is now dynamically loaded by the CoglRenderer
so that it can choose between GL, GLES1 and GLES2 at runtime. The
library is loaded by the renderer because it needs to be done before
calling eglInitialize. There is a new environment variable called
COGL_DRIVER to choose between gl, gles1 or gles2.
The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have
been changed so that they don't assume the ifdefs are mutually
exclusive. They haven't been removed entirely so that it's possible to
compile the GLES backends without the the enums from the GL headers.
When using GLX the winsys additionally dynamically loads libGL because
that also contains the GLX API. It can't be linked in directly because
that would probably conflict with the GLES API if the EGL is
selected. When compiling with EGL support the library links directly
to libEGL because it doesn't contain any GL API so it shouldn't have
any conflicts.
When building for WGL or OSX Cogl still directly links against the GL
API so there is a #define in config.h so that Cogl won't try to dlopen
the library.
Cogl-pango previously had a #ifdef to detect when the GL backend is
used so that it can sneakily pass GL_QUADS to
cogl_vertex_buffer_draw. This is now changed so that it queries the
CoglContext for the backend. However to get this to work Cogl now
needs to export the _cogl_context_get_default symbol and cogl-pango
needs some extra -I flags to so that it can include
cogl-context-private.h
The README file is generated by the configure script so that it can
include the required dependency version numbers. However there was no
corresponding AC_SUBST calls for the versions so the README would be
left with @THESE_MARKERS@.
The "default" m4 conflicts with one of libtool's internal symbols, one
that is used to determine whether the -fPIC argument should be used;
this breaks compilation onf 64bit platforms.
https://bugzilla.gnome.org/show_bug.cgi?id=653615
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Signed-off-by: Neil Roberts <neil@linux.intel.com>
So that our released tarballs can contain filenames longer than 99
characters we tell automake to create tarballs using the ustar format.
This is newer than the default v7 format but still old enough to be
considered widely portable.
This adds a --enable-profile option which enables uprof based profiling.
It was also necessary to fixup a CLUTTER_ENABLE_PROFILING #ifdef in
cogl-context.c to renamed COGL_ENABLE_PROFILING instead. By default Cogl
doesn't output uprof reports directly, instead it assumes a higher level
toolkit will output a report. If you want a report from Cogl you can
export COGL_PROFILE_OUTPUT_REPORT=1 before running your app.
The latest version of uprof can be fetched from:
git://github.com/rib/UProf.git
This explicitly renames the cogl-2.0 reference manual to
cogl-2.0-experimental and renames the cogl-2.0 pkg-config file to
cogl-2.0-experimental.pc. Hopefully this should avoid
miss-understandings.
This adds an extra header that gets included from config.h where we
can add configuration defines. This is used to #undef 'near' and 'far'
when building for Windows so that we don't have to avoid using them as
variable names in the Cogl code.
This adds internal API to be able to wrap a wayland buffer as a
CoglTexture2D. There is a --enable-wayland-egl-server option to decide
if Cogl should support this feature and potentially any EGL based winsys
could support this through the EGL_KHR_image_base and
EGL_WL_bind_display extensions.
This moves the --enable-cairo check because it was put in the middle of
the logic that handles the --enable-debug option. This moves the
--enable-cairo check down after the --enable-debug logic and adds a
comment header to delimit the option like we have for other options.
Instead of the stub winsys being a special case set of #ifdef'd code
used when COGL_HAS_FULL_WINSYS wasn't defined, the stub winsys now
implements a CoglWinsysVtable like all other winsys backends (it's just
that everything is a NOP). This way we can get rid of the
COGL_HAS_FULL_WINSYS define and also the stub winsys can be runtime
selected whereas before it was incompatible with all other winsys
backends.
Until we have a standalone quartz winsys we don't want to define a
winsys name called "quartz" which is what the current --enable-quartz
option does. For now anyone building for OSX needs to use the stub
winsys and setup their own GL context.
The native window type of the EGL/Android winsys is ANativeWinow*. The
Android NDK gives you a pointer to this ANativeWindow and you just need
to configure that window using the EGLConfig you are choosing when
creating the context.
This means you have to know the ANativeWindow* window before creating
the context. This is solved here by just having a global variable you
can set with cogl_android_set_native_window() before creating the
context. This is a bit ugly though, and it conceptually belongs to the
OnScreen creation to know which ANativeWindow* to use. This would need a
"lazy context creation" mechanism, waiting for the user to create the
OnScreen to initialize the GL context.
Early implementations provided only a GLES/egl.h while Khronos's
implementer guide now states EGL/egl.h is the One. Some implementations
keep a GLES/egl.h wrapper around EGL/egl.h for backward compatibility
while others provide EGL/egl.h only.
Also took the opportunity to factorize a bit this inclusion in
cogl-defines.h.
When checking for EGL earlier in the configure script (ie EGL_CHECKED is
"yes"), we did not execute some EGL code. Let's split that code in two:
- A first part that has a last change to check for EGL
- A second one that defines variables and that should always been run
in an EGL build
GLES/glext.h and GLES2/gl2ext.h need to include GLES/gl.h and
GLES2/gl2.h respectively to get the GL types.
This used to work as autoconf used to only do a preprocessor pass in
AC_CHECK_HEADER(S), but now it also tries to compile a small test
program and thus the test failed.
Gtk-doc can be hard to install on Windows. This patch enables people wanting to
hack on Cogl itself from a Windows system to do so without the hassle to get
gtk-doc installed first.
The semantics of shadowing global variables is well defined and it gets
quite annoying to avoid them completely since there are too many
standard APIs with very poor namespacing.
Wayland now supports integration via standard eglSurfaces which makes it
possible to share more code with other EGL platforms. (though at some
point cogl-winsys-egl.c really needs to gain a more formal
CoglEGLPlatform abstraction so we can rein back on the amount of #ifdefs
we have.)
This pulls in the experimental cogl 2.0 reference manual from the
clutter repository since it wasn't included in the filter-branch when we
split cogl out.
When Cogl was sharing Clutter's configure script, it had a check for
the ffs function of libc so that it can provide a fallback if it is
not available. This fallback was missed in the split out so Cogl would
end up always using the fallback.
This removes all the remnants from being able to build Cogl standalone
while it was part of the Clutter repository. Now that Cogl has been
split out then standalone builds are the only option.
We now install cogl-pango-1.0 and cogl-pango-2.0 pkg-config files that
applications should optionally depend on if they want to use the
cogl_pango API.
For compatibility with the way we build Cogl as part of Clutter we now
substitute an empty MAINTAINER_CFLAGS variable. When building Cogl
standalone all our extra CFLAGS go through COGL_EXTRA_CFLAGS so the
separate MAINTAINER_CFLAGS aren't used, but automake will get confused
if a substitution isn't made.
This fixes the gdk-pixbuf check to not mistakenly check for the "xi"
package instead of gdk-pixbuf and remove a spurious listing "gl" in
COGL_PKG_REQUIRES which should only be there when we are using using
opengl not if we are using gles.
Until Cogl gains native win32/OSX support this remove the osx and win32
winsys files and instead we'll just rely on the stub-winsys.c to handle
these platforms. Since the only thing the platform specific files were
providing anyway was a get_proc_address function; it was trivial to
simply update the clutter backend code to handle this directly for now.
We want to be able to split Cogl out as a standalone project but there
are still some window systems that aren't natively supported by Cogl.
This allows Clutter to support those window systems directly but still
work with a standalone Cogl library.
This also ensures we set the SUPPORT_STUB conditional in clutter's
configure.ac when building for win32/osx and wayland.
Instead of using AC_DEFINE for the various COGL_HAS_PLATFORM defines
this now adds them to the COGL_DEFINES_SYMBOLS variable which gets
substituted into the public cogl-defines.h header.
This adds a simple standalone Cogl application that can be used to
smoke test a standalone build of Cogl without Clutter.
This also adds an x11-foreign app that shows how a toolkit can ask Cogl
to draw to an X Window that it owns instead of Cogl being responsible
for automatically creating and mapping an X Window for CoglOnscreen.
This allows more detailed control over the driver and winsys features
that Cogl should have. Cogl is designed so it can support multiple
window systems simultaneously so we have enable/disable options for
the drivers (gl vs gles1 vs gles2) and options for the individual window
systems; currently glx and egl. Egl is broken down into an option
for each platform.
The GDL API is used for example on intel ce4100 (aka Sodaville) based
systems as a way to allocate memory that can be composited using the
platforms overlay hardware. This updates the Cogl EGL winsys and the
support in Clutter so we can continue to support these platforms.
The "DRM_SURFACELESS" EGL platform was invented when we were adding the
wayland backend to Clutter but in the end we added a dedicated backend
instead of extending the EGL backend so actually the platform name isn't
used.
This backend hasn't been used for years now and so because it is
untested code and almost certainly doesn't work any more it would be a
burdon to continue trying to maintain it. Considering that we are now
looking at moving OpenGL window system integration code down from
Clutter backends into Cogl that will be easier if we don't have to
consider this backend.
This adds an autogen.sh, configure.ac and build/autotool files etc under
clutter/cogl and makes some corresponding Makefile.am changes that make
it possible to build and install Cogl as a standalone library.
Some notable things about this are:
A standalone installation of Cogl installs 3 pkg-config files;
cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for
compatibility with what clutter installed though I'm not sure that
anything uses it so maybe we could remove it. cogl-1.0.pc is what
Clutter would use if it were updated to build against a standalone cogl
library. cogl-2.0.pc is what you would use if you were writing a
standalone Cogl application.
A standalone installation results in two libraries currently, libcogl.so
and libcogl-pango.so. Notably we don't include a major number in the
sonames because libcogl supports two major API versions; 1.x as used by
Clutter and the experimental 2.x API for standalone applications.
Parallel installation of later versions e.g. 3.x and beyond will be
supportable either with new sonames or if we can maintain ABI then we'll
continue to share libcogl.so.
The headers are similarly not installed into a directory with a major
version number since the same headers are shared to export the 1.x and
2.x APIs (The only difference is that cogl-2.0.pc ensures that
-DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of
later versions is not precluded though since we can either continue
sharing or later add a major version suffix.