This moves the framebuffer stack apis out of cogl-framebuffer.c into
cogl/deprecated/cogl-framebuffer-deprecated.c so cogl-framebuffer.c is
more in-line with the master branch to ease cherry picking patches.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Texture allocation is now consistently handled lazily such that the
internal format can now be controlled using
cogl_texture_set_components() and cogl_texture_set_premultiplied()
before allocating the texture with cogl_texture_allocate(). This means
that the internal_format arguments to texture constructors are now
redundant and since most of the texture constructors now can't ever fail
the error arguments are also redundant. This now means we no longer
use CoglPixelFormat in the public api for describing the internal format
of textures which had been bad solution originally due to how specific
CoglPixelFormat is which is missleading when we don't support such
explicit control over the internal format.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 99a53c82e9ab0a1e5ee35941bf83dc334b1fbe87)
Note: there are numerous API changes for functions currently marked
as 'unstable' which we don't think are in use by anyone depending on
a stable 1.x api. Compared to the original patch though this avoids
changing the cogl_texture_rectangle_new_with_size() api which we know
is used by Mutter.
This introduces the internal idea of texture loaders that track the
state for loading and allocating a texture. This defers a lot more work
until the texture is allocated.
There are several intentions to this change:
- provides a means for extending how textures are allocated without
requiring all the parameters to be supplied in a single _texture_new()
function call.
- allow us to remove the internal_format argument from all
_texture_new() apis since using CoglPixelFormat is bad way of
expressing the internal format constraints because it is too specific.
For now the internal_format arguments haven't actually been removed
but this patch does introduce replacement apis for controlling the
internal format:
cogl_texture_set_components() lets you specify what components your
texture needs when it is allocated.
cogl_texture_set_premultiplied() lets you specify whether a texture
data should be interpreted as premultiplied or not.
- Enable us to support asynchronous texture loading + allocation in the
future.
Of note, the _new_from_data() texture constructors all continue to
allocate textures immediately so that existing code doesn't need to be
adapted to manage the lifetime of the data being uploaded.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c)
Note: Compared to the original patch, the ->premultipled state for
textures isn't forced to be %TRUE in _cogl_texture_init since that
effectively ignores the users explicitly given internal_format which was
a mistake and on master that change should have been made in the patch
that followed. The gtk-doc comments for cogl_texture_set_premultiplied()
and cogl_texture_set_components() have also been updated in-line with
this fix.
Previously the private feature flags were stored in an enum and we
already had 31 flags. Adding the 32nd flag would presumably make it
add -2³¹ as one of the values which might cause problems. To avoid
this we'll just use an fixed-size array of longs and use indices for
the enum values like we do for the public features.
A slight complication with this is in the CoglDriverDescription where
we were previously using a static intialised value to describe the set
of features that the driver supports. We can't easily do this with the
flags array so instead the features are stored in a fixed-size array
of indices.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit d94cb984e3c93630f3c2e6e3be9d189672aa20f3)
Conflicts:
cogl/cogl-context-private.h
cogl/cogl-context.c
cogl/cogl-private.h
cogl/cogl-renderer.c
cogl/driver/gl/cogl-pipeline-opengl.c
cogl/driver/gl/gl/cogl-driver-gl.c
cogl/driver/gl/gl/cogl-pipeline-progend-fixed-arbfp.c
cogl/driver/gl/gles/cogl-driver-gles.c
cogl/driver/nop/cogl-driver-nop.c
This adds a table of driver descriptions to cogl-renderer.c in order of
preference and when choosing what driver to use we now iterate the table
instead of repeating boilerplate checks. For handling the "default driver"
that can be specified when building cogl and handling driver overrides
there is a foreach_driver_description() that will make sure to iterate
the default driver first or if an override has been set then nothing but
the override will be considered.
This patch introduces some driver flags that let us broadly categorize
what kind of GL driver we are currently running on. Since there are
numerous OpenGL apis with different broad feature sets and new apis
may be introduced in the future by Khronos then we should tend to
avoid using the driver id to do runtime feature checking. These flags
provide a more stable quantity for broad feature checks.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit e07d0fc7441dddc3f0a2bc33a6a37d62ddc3efc0)
This splits out the cogl_path_ api into a separate cogl-path sub-library
like cogl-pango and cogl-gst. This enables developers to build Cogl with
this sub-library disabled if they don't need it which can be useful when
its important to keep the size of an application and its dependencies
down to a minimum. The functions cogl_framebuffer_{fill,stroke}_path
have been renamed to cogl_path_{fill,stroke}.
There were a few places in core cogl and cogl-gst that referenced the
CoglPath api and these have been decoupled by using the CoglPrimitive
api instead. In the case of cogl_framebuffer_push_path_clip() the core
clip stack no longer accepts path clips directly but it's now possible
to get a CoglPrimitive for the fill of a path and so the implementation
of cogl_framebuffer_push_path_clip() now lives in cogl-path and works as
a shim that first gets a CoglPrimitive and uses
cogl_framebuffer_push_primitive_clip instead.
We may want to consider renaming cogl_framebuffer_push_path_clip to
put it in the cogl_path_ namespace.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 8aadfd829239534fb4ec8255cdea813d698c5a3f)
So as to avoid breaking the 1.x API or even the ABI since we are quite
late in the 1.16 development cycle the patch was modified to build
cogl-path as a noinst_LTLIBRARY before building cogl and link the code
directly into libcogl.so as it was previously. This way we can wait
until the start of the 1.18 cycle before splitting the code into a
separate libcogl-path.so.
This also adds shims for cogl_framebuffer_fill/stroke_path() to avoid
breaking the 1.x API/ABI.
cogl_display_new() takes a ref on the renderer, so code creating a
renderer and not keeping a pointer to it do unref later needs to drop
the ref immediately.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 5433555f19ac73f3f236026f1bafca758d63c9fa)
When a layer is added to a pipeline without setting a texture it ends
up sampling from a default 1x1 texture which is meant to be solid
white. However for some reason we were creating the texture with 0
opacity which is effectively an invalid premultiplied colour. This
would make the blending behave oddly if it was used.
https://bugzilla.gnome.org/show_bug.cgi?id=702570
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 2ffc77565fb6395b986d3274f8bdb6eee6addbf9)
This removes cogl-queue.h and adds a copy of Wayland's embedded list
implementation. The advantage of the Wayland model is that it is much
simpler and so it is easier to follow. It also doesn't require
defining a typedef for every list type.
The downside is that there is only one list type which is a
doubly-linked list where the head has a pointer to both the beginning
and the end. The BSD implementation has many more combinations some of
which we were taking advantage of to reduce the size of critical
structs where we didn't need a pointer to the end of the list.
The corresponding changes to uses of cogl-queue.h are:
• COGL_STAILQ_* was used for onscreen the list of events and dirty
notifications. This makes the size of the CoglContext grow by one
pointer.
• COGL_TAILQ_* was used for fences.
• COGL_LIST_* for CoglClosures. In this case the list head now has an
extra pointer which means CoglOnscreen will grow by the size of
three pointers, but this doesn't seem like a particularly important
struct to optimise for size anyway.
• COGL_LIST_* was used for the list of foreign GLES2 offscreens.
• COGL_TAILQ_* was used for the list of sub stacks in a
CoglMemoryStack.
• COGL_LIST_* was used to track the list of layers that haven't had
code generated yet while generating a fragment shader for a
pipeline.
• COGL_LIST_* was used to track the pipeline hierarchy in CoglNode.
The last part is a bit more controversial because it increases the
size of CoglPipeline and CoglPipelineLayer by one pointer in order to
have the redundant tail pointer for the list head. Normally we try to
be very careful about the size of the CoglPipeline struct. Because
CoglPipeline is slice-allocated, this effectively ends up adding two
pointers to the size because GSlice rounds up to the size of two
pointers.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 13abf613b15f571ba1fcf6d2eb831ffc6fa31324)
Conflicts:
cogl/cogl-context-private.h
cogl/cogl-context.c
cogl/driver/gl/cogl-pipeline-fragend-glsl.c
doc/reference/cogl-2.0-experimental/Makefile.am
This adds a new function to enable per-vertex point size on a
pipeline. This can be set with
cogl_pipeline_set_per_vertex_point_size(). Once enabled the point size
can be set either by drawing with an attribute named
'cogl_point_size_in' or by writing to the 'cogl_point_size_out'
builtin from a snippet.
There is a feature flag which must be checked for before using
per-vertex point sizes. This will only be set on GL >= 2.0 or on GLES
2.0. GL will only let you set a per-vertex point size from GLSL by
writing to gl_PointSize. This is only available in GL2 and not in the
older GLSL extensions.
The per-vertex point size has its own pipeline state flag so that it
can be part of the state that affects vertex shader generation.
Having to enable the per vertex point size with a separate function is
a bit awkward. Ideally it would work like the color attribute where
you can just set it for every vertex in your primitive with
cogl_pipeline_set_color or set it per-vertex by just using the
attribute. This is harder to get working with the point size because
we need to generate a different vertex shader depending on what
attributes are bound. I think if we wanted to make this work
transparently we would still want to internally have a pipeline
property describing whether the shader was generated with per-vertex
support so that it would work with the shader cache correctly.
Potentially we could make the per-vertex property internal and
automatically make a weak pipeline whenever the attribute is bound.
However we would then also need to automatically detect when an
application is writing to cogl_point_size_out from a snippet.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 8495d9c1c15ce389885a9356d965eabd97758115)
Conflicts:
cogl/cogl-context.c
cogl/cogl-pipeline-private.h
cogl/cogl-pipeline.c
cogl/cogl-private.h
cogl/driver/gl/cogl-pipeline-progend-fixed.c
cogl/driver/gl/gl/cogl-pipeline-progend-fixed-arbfp.c
Since _cogl_pipeline_update_blend_enable() can sometimes show up quite
high in profiles; instead of calling
_cogl_pipeline_update_blend_enable() whenever we change pipeline state
that may affect blending we now just set a dirty flag and when we flush
a pipeline we check this dirty flag and lazily calculate whether blender
really needs to be enabled if it's set.
Since it turns out we were too optimistic in assuming most GL drivers
would recognize blending with ADD(src,0) is equivalent to disabling
GL_BLEND we now check this case ourselves so we can always explicitly
disable GL_BLEND if we know we don't need blending.
This introduces the idea of an 'unknown_color_alpha' boolean to the
pipeline flush code which is set whenever we can't guarantee that the
color attribute is opaque. For example this is set whenever a user
specifies a color attribute with 4 components when drawing a primitive.
This boolean needs to be cached along with every pipeline because
pipeline::real_blend_enabled depends on this and so we need to also call
_cogl_pipeline_update_blend_enable() if the status of this changes.
Incidentally with this patch we now no longer ever use
_cogl_pipeline_set_blend_enable() internally. For now the internal api
hasn't been removed though since we might want to consider re-purposing
it as a public api since it will now not conflict with our own internal
state tracking and could provide a more convenient way to disable
blending than setting a blend string.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit ab2ae18f3207514c91fa6fd9f2d3f2ed93a86497)
This adds a callback that can be registered with
cogl_onscreen_add_dirty_callback which will get called whenever the
window system determines that the contents of the window is dirty and
needs to be redrawn. Under the two X-based winsys's, this is reported
off the back of the Expose events, under SDL it is reported from
SDL_VIDEOEXPOSE or SDL_WINDOWEVENT_EXPOSED and under Windows from the
WM_PAINT messages. The Wayland winsys doesn't really have the concept
of dirtying the buffer but in order to allow applications to work the
same way on all platforms it will emit the event when the surface is
first shown and whenever it is resized.
There is a private feature flag to specify whether dirty events are
supported. If the winsys does not set this then Cogl will simulate
dirty events by emitting one when the window is first allocated and
when it is resized. The only winsys's that don't set this flag are
things like KMS or the EGL null winsys where there is no windowing
system and showing and hiding the onscreen doesn't really make any
sense. In that case Cogl can assume the buffer will only become dirty
once when it is first allocated.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 85c5a9ba419b2247bd768284c79ee69164a0c098)
Conflicts:
cogl/cogl-private.h
cogl_framebuffer_add_fence creates a synchronisation fence, which will
invoke a user-specified callback when the GPU has finished executing all
commands provided to it up to that point in time.
Support is currently provided for GL 3.x's GL_ARB_sync extension, and
EGL's EGL_KHR_fence_sync (when used with OpenGL ES).
Signed-off-by: Daniel Stone <daniel@fooishbar.org>
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Reviewed-by: Robert Bragg <robert@linux.intel.com>
https://bugzilla.gnome.org/show_bug.cgi?id=691752
(cherry picked from commit e6d37470da9294adc1554c0a8c91aa2af560ed9f)
This adds a _cogl_poll_renderer_add_idle api that can be used internally
for queuing an idle callback without needing to make any assumption
about the system mainloop that is being used. This is now used to avoid
having the _cogl_poll_renderer_dispatch() directly check for all kinds of
events to dispatch, and to avoid having the winsys dispatch vfuncs need
to directly know about CoglContext. This means we can now avoid having a
back reference from CoglRenderer to the CoglContext.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit a1e169f18f4257caec58760adccfe4ec09b9805d)
This updates the cogl_poll_ apis to allow dispatching events before we
have a CoglContext and to also enables pollfd state to be changed in a
more add-hoc way by different Cogl components by replacing the
winsys->get_poll_info with _cogl_poll_renderer_add/remove_fd functions
and a winsys->get_dispatch_timeout vfunc.
One of the intentions here is that applications should be able to run
their mainloop before creating a CoglContext to potentially get events
relating to CoglOutputs.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 667e58c9cb2662aef5f44e580a9eda42dc8d0176)
If we make this per-context and create two Cogl contexts, some types
won't re-register, and we'll be in a broken state where some types will
be considered not to be texture types.
https://bugzilla.gnome.org/show_bug.cgi?id=693696
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 567f049d20554bb8ea4e40fa5e72a9fd0bbd409e)
Add an API to get the current time in the time system that Cogl
is reporting timestamps. This is to be used to convert timestamps
into a different time system.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 9f3735a0c37adcfcffa485f81699b53a4cc0caf8)
Add a CoglFrameInfo object that tracks timing information for frames
that are drawn. We track a frame counter and frame timing information
for each CoglOnscreen. Internally a CoglFrameInfo is automatically
created for each frame, delimited by cogl_onscreen_swap_buffers() or
cogl_onscreen_swap_region() calls.
CoglFrameInfos are delivered to applications via frame event callbacks
that can be registered with a new cogl_onscreen_add_frame_callback()
api. Two initial event types (dispatched on all platforms) have been
defined; a _SYNC event used for throttling the frame rate of
applications and a _COMPLETE event used so signify the end of a frame.
Note: This new _add_frame_callback() api makes the
cogl_onscreen_add_swap_complete_callback() api redundant and so it
should be considered deprecated. Since the _add_swap_complete_callback()
api is still experimental api, we will be looking to quickly migrate
users to the new api so we can remove the old api.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 700401667db2522045e4623d78797b17f9184501)
The GLES2 driver wasn't compiling unless the GL driver is also enabled
because some run-time conditional code was directly using GL-only
defines.
This should also fix compiling using the stock GL headers on OS X
which don't define GL_NUM_EXTENSIONS.
https://bugzilla.gnome.org/show_bug.cgi?id=692420
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 661e1719aa0b95c409c568ec91ea52b8ff90519b)
This remove cogl-internal.h in favour of using cogl-private.h. Some
things in cogl-internal.h were moved to driver/gl/cogl-util-gl-private.h
and the _cogl_gl_error_to_string function whose prototype was moved from
cogl-internal.h to cogl-util-gl-private.h has had its implementation
moved from cogl.c to cogl-util-gl.c
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 01cc82ece091aa3bec4c07fdd6bc9e5135fca573)
We have found several times now when writing code using Cogl that it
would really help if Cogl's matrix stack api was public as a utility
api. In Rig for example we want to avoid redundant arithmetic when
deriving the matrices of entities used to render and we aren't able
to simply use the framebuffer's matrix stack to achieve this. Also when
implementing cairo-cogl we found that it would be really useful if we
could have a matrix stack utility api.
(cherry picked from commit d17a01fd935d88fab96fe6cc0b906c84026c0067)
This adds back compatibility for CoglShaders that reference the
cogl_tex_coord_in[] or cogl_tex_coord_out[] varyings. Unlike the
previous way this was done this patch maintains the use of layer numbers
for attributes and maintains forwards compatibility by letting shaders
alternatively access the per-layer tex_coord varyings via
cogl_tex_coord%i_in/out defines that index into the array.
The Intel Mesa gen6 driver doesn't currently handle scissoring offset
viewports correctly, so this implements a workaround to intersect the
current viewport bounds with the scissor rectangle.
(cherry picked from commit afc5daab85e5faca99d6d6866658cb82c3954830)
This adds a new CoglDriver for GL 3 called COGL_DRIVER_GL3. When
requested, the GLX, EGL and SDL2 winsyss will set the necessary
attributes to request a forward-compatible core profile 3.1 context.
That means it will have no deprecated features.
To simplify the explosion of checks for specific combinations of
context->driver, many of these conditionals have now been replaced
with private feature flags that are checked instead. The GL and GLES
drivers now initialise these private feature flags depending on which
driver is used.
The fixed function backends now explicitly check whether the fixed
function private feature is available which means the GL3 driver will
fall back to always using the GLSL progend. Since Rob's latest patches
the GLSL progend no longer uses any fixed function API anyway so it
should just work.
The driver is currently lower priority than COGL_DRIVER_GL so it will
not be used unless it is specificly requested. We may want to change
this priority at some point because apparently Mesa can make some
memory savings if a core profile context is used.
In GL 3, getting the combined extensions string with glGetString is
deprecated so this patch changes it to use glGetStringi to build up an
array of extensions instead. _cogl_context_get_gl_extensions now
returns this array instead of trying to return a const string. The
caller is expected to free the array.
Some issues with this patch:
• GL 3 does not support GL_ALPHA format textures. We should probably
make this a feature flag or something. Cogl uses this to render text
which currently just throws a GL error and breaks so it's pretty
important to do something about this before considering the GL3
driver to be stable.
• GL 3 doesn't support client side vertex buffers. This probably
doesn't matter because CoglBuffer won't normally use malloc'd
buffers if VBOs are available, but it might but worth making
malloc'd buffers a private feature and forcing it not to use them.
• GL 3 doesn't support the default vertex array object. This patch
just makes it create and bind a single non-default vertex array
object which gets used just like the normal default object. Ideally
it would be good to use vertex array objects properly and attach
them to a CoglPrimitive to cache the state.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 66c9db993595b3a22e63f4c201ea468bc9b88cb6)
This adds a new "nop" driver that does nothing. This can be selected at
runtime either with the COGL_DRIVER=nop environment variable or by
passing COGL_DRIVER_NOP to cogl_renderer_set_driver()
Adding the nop driver gives us a way to test workloads without any
driver and hardware overheads which can help us understand how Cogl's
state tracking performs in isolation.
Having a nop driver can also serve as an shell/outline for creating
other drivers later.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 90587418233b6438290741d80aedf193ae660cad)
Although we use GLib internally in Cogl we would rather not leak GLib
api through Cogl's own api, except through explicitly namespaced
cogl_glib_ / cogl_gtype_ feature apis.
One of the benefits we see to not leaking GLib through Cogl's public API
is that documentation for Cogl won't need to first introduce the Glib
API to newcomers, thus hopefully lowering the barrier to learning Cogl.
This patch provides a Cogl specific typedef for reporting runtime errors
which by no coincidence matches the typedef for GError exactly. If Cogl
is built with --enable-glib (default) then developers can even safely
assume that a CoglError is a GError under the hood.
This patch also enforces a consistent policy for when NULL is passed as
an error argument and an error is thrown. In this case we log the error
and abort the application, instead of silently ignoring it. In common
cases where nothing has been implemented to handle a particular error
and/or where applications are just printing the error and aborting
themselves then this saves some typing. This also seems more consistent
with language based exceptions which usually cause a program to abort if
they are not explicitly caught (which passing a non-NULL error signifies
in this case)
Since this policy for NULL error pointers is stricter than the standard
GError convention, there is a clear note in the documentation to warn
developers that are used to using the GError api.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46)
Note: Since we can't change the Cogl 1.x api the patch was changed to
not rename _error_quark() functions to be _error_domain() functions and
although it's a bit ugly, instead of providing our own CoglError type
that's compatible with GError we simply #define CoglError to GError
unless Cogl is built with glib disabled.
Note: this patch does technically introduce an API break since it drops
the cogl_error_get_type() symbol generated by glib-mkenum (Since the
CoglError enum was replaced by a CoglSystemError enum) but for now we
are assuming that this will not affect anyone currently using the Cogl
API. If this does turn out to be a problem in practice then we would be
able to fix this my manually copying an implementation of
cogl_error_get_type() generated by glib-mkenum into a compatibility
source file and we could also define the original COGL_ERROR_ enums for
compatibility too.
Note: another minor concern with cherry-picking this patch to the 1.14
branch is that an api scanner would be lead to believe that some APIs
have changed, and for example the gobject-introspection parser which
understands the semantics of GError will not understand the semantics of
CoglError. We expect most people that have tried to use
gobject-introspection with Cogl already understand though that it is not
well suited to generating bindings of the Cogl api anyway and we aren't
aware or anyone depending on such bindings for apis involving GErrors.
(GnomeShell only makes very-very minimal use of Cogl via the gjs
bindings for the cogl_rectangle and cogl_color apis.)
The main reason we have cherry-picked this patch to the 1.14 branch
even given the above concerns is that without it it would become very
awkward for us to cherry-pick other beneficial patches from master.
This splits out most of the OpenGL specific code from cogl-framebuffer.c
into cogl-framebuffer-gl.c and extends the CoglDriverVtable interface
for cogl-framebuffer.c to use.
There are hopes to support several different backends for Cogl
eventually to hopefully get us closer to the metal so this makes some
progress in organizing which parts of Cogl are OpenGL specific so these
parts can potentially be switched out later.
The only remaining use of OpenGL still in cogl-framebuffer.c is to
handle cogl_framebuffer_read_pixels.
cogl_context_new() had a mixture of references to the file scope context
variable (_context) and the local (context) variable. This renames the
file scope variable to _cogl_context to catch unnecessary references to
the old name and fixes the code accordingly to reference the local
variable instead.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 33a9397ee1ae1729200be2e5084cf43cebb64289)
This adds two new configuration environment variables:
COGL_DISABLE_GL_EXTENSIONS and
COGL_OVERRIDE_GL_VERSION
The variables can also be set in the cogl.conf file using the same
names.
The first one is a list of GL extension names separated by commas.
When set Cogl will assume any extension listed here is not available
by removing it from the string returned from
glGetString(GL_EXTENSIONS). If the string is set in both the config
file and the environment variable then the union of the two lists will
be used.
The second overrides the value returned from glGetString(GL_VERSION).
If the string is set in both places the version from the environment
variable will take priority.
These are sometimes useful for debugging Cogl to test the various
combinations of extensions. It could also be useful to work around
driver bugs where an extension is badly supported and it would be
better not to use it.
The variables in cogl-config that just set a global char * variable
have been put together in an array instead of having a separate blob
of code for each one in order to make it simpler to add new variables.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit ec69c2dc576c78664e0b73879365cb7414ecf441)
This makes it possible to integrate existing GLES2 code with
applications using Cogl as the rendering api.
Currently all GLES2 usage is handled with separate GLES2 contexts to
ensure that GLES2 api usage doesn't interfere with Cogl's own use of
OpenGL[ES]. The api has been designed though so we can provide tighter
integration later.
The api would allow us to support GLES2 virtualized on top of an
OpenGL/GLX driver as well as GLES2 virtualized on the core rendering api
of Cogl itself. Virtualizing the GLES2 support on Cogl will allow us to
take advantage of Cogl debugging facilities as well as let us optimize
the cost of allocating multiple GLES2 contexts and switching between
them which can both be very expensive with many drivers.
As as a side effect of this patch Cogl can also now be used as a
portable window system binding API for GLES2 as an alternative to EGL.
Parts of this patch are based on work done by Tomeu Vizoso
<tomeu.vizoso@collabora.com> who did the first iteration of adding GLES2
API support to Cogl so that WebGL support could be added to
webkit-clutter.
This patch adds a very minimal cogl-gles2-context example that shows how
to create a gles2 context, clear the screen to a random color and also
draw a triangle with the cogl api.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 4bb6eff3dbd50d8fef7d6bdbed55c5aaa70036a8)
This detects when we are running on any of Mesa's software rasterizer
backends and disables use of glBlitFramebuffer and glXCopySubBuffer.
Both of these currently result in full-screen copies so there's little
point in using these to optimize how much of the screen we present.
To help ensure we re-evaluate this workaround periodically we have added
a comment marker of "ONGOING BUG" above the workaround and added a note
to our RELEASING document that says we should grep for this marker and
write a NEWS section about ongoing bug workarounds.
https://bugzilla.gnome.org/show_bug.cgi?id=674208
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 11f2f6ebb42398978ec8dd92b3c332ae8140a728)
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.
Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.
The first node in a matrix-stack is always a LOAD_IDENTITY operation.
As an example consider if an application where to draw three rectangles
A, B and C something like this:
cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_translate (fb, 10, 0, 0);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
cogl_framebuffer_draw_rectangle (...); /* A */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_draw_rectangle (...); /* B */
cogl_framebuffer_pop_matrix(fb);
cogl_framebuffer_push_matrix(fb);
cogl_framebuffer_set_modelview_matrix (fb, &mv);
cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);
That would result in a graph of nodes like this:
LOAD_IDENTITY
|
SCALE
/ \
SAVE LOAD
| |
TRANSLATE RECTANGLE(C)
| \
SAVE RECTANGLE(B)
|
ROTATE
|
RECTANGLE(A)
Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.
Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
complete, immutable transformation that can be logged for example
into a journal. Previously we were storing a full CoglMatrix in
each journal entry which is 16 floats for the matrix itself as well
as space for flags and another 16 floats for possibly storing a
cache of the inverse. This means that we significantly reduce
the size of the journal when drawing lots of primitives and we also
avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
(unlikely) false negatives are allowed simply comparing the pointers
of two matrix stack graph entries is enough. Previously we would use
memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
for the common ancestry between nodes we can determine the operations
that differentiate the transforms and use those to gain a high level
understanding of the differences. For example we use this in the
journal to be able to efficiently determine when two rectangle
transforms only differ by some translation so that we can perform
software clipping.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
Removing CoglHandle has been an on going goal for quite a long time now
and finally this patch removes the last remaining uses of the CoglHandle
type and the cogl_handle_ apis.
Since the big remaining users of CoglHandle were the cogl_program_ and
cogl_shader_ apis which have replaced with the CoglSnippets api this
patch removes both of these apis.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 6ed3aaf4be21d605a1ed3176b3ea825933f85cf0)
Since the original patch was done after removing deprecated API
this back ported patch doesn't affect deprecated API and so
actually this cherry-pick doesn't remove all remaining use of
CoglHandle as it did for the master branch of Cogl.
If a NULL display is passed to cogl_context_new() then it has to
implicitly create a CoglRenderer and CoglDisplay and propagate any
resulting errors back to the user. Previously the implementation relied
on passing a NULL renderer to cogl_display_new() as the means for
implicitly connecting to a renderer. The problem with this though is
that cogl_display_new() isn't designed to ever return NULL but if it
failed to connect to a renderer automatically it would do and then
cogl_context_new would pass NULL to cogl_display_setup() leading to a
crash.
This patch changes the implementation of cogl_context_new() to now
explicitly create a CoglRenderer and connect to it if a NULL display is
given. This way we can easily propagate any errors. In addition
cogl_display_new has been changed to abort if it fails to implicitly
connect to a renderer due to a NULL renderer argument.
An application needing to gracefully handle problems connecting to a
renderer at runtime should manually instantiate and connect a renderer
passing a GError argument to cogl_renderer_connect.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds a CoglGpuInfo struct to the CoglContext which contains some
enums describing the GL driver in use. This currently includes the
driver package (ie, is it Mesa) the version number of the package and
the vendor of the GPU (ie, is it by Intel). There is also a bitmask
which will contain the workarounds that we should do for that
particular driver configuration. The struct is initialised on context
creation by using a series of string comparisons on the strings
returned from glGetString.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
GL_ARB_sampler_objects provides a GL object which overrides the
sampler state part of a texture object with different values. The
sampler state that Cogl currently exposes is the wrap modes and
filters. Cogl exposes the state as part of the pipeline layer state
but without this extension GL only exposes it as part of the texture
object state. This means that it won't work to use a single texture
multiple times in one primitive with different sampler states. It also
makes switching between different sampler states with a single texture
not terribly efficient because it has to change the texture object
state every time.
This patch adds a cache for sampler states in a shared hash table
attached to the CoglContext. The entire set of parameters for the
sampler state is used as the key for the hash table. When a unique
state is encountered the sampler cache will create a new entry,
otherwise it will return a const pointer to an existing entry. That
means we can have a single pointer to represent any combination of
sampler state.
Pipeline layers now just store this single pointer rather than storing
all of the sampler state. The two separate state flags for wrap modes
and filters have now been combined into one. It should be faster to
compare the sampler state now because instead of comparing each value
it can just compare the pointers to the cached sampler entries. The
hash table of cached sampler states should only need to perform its
more expensive hash on the state when a property is changed on a
pipeline, not every time it is flushed.
When the sampler objects extension is available each cached sampler
state will also get a sampler object to represent it. The common code
to flush the GL state will now simply bind this object to a unit
instead of flushing the state though the CoglTexture when possible.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This adds public constructors which take a CoglBitmap to all primitive
texture types. This constructor should be considered the canonical
constructor for initializing the texture with data because it should
be possible to wrap any type of data in a CoglBitmap. Having at least
this single constructor avoids the need to have an explosion of
constructors such as new_from_data, new_from_pixel_buffer and
new_from_file etc.
The already available internal bitmap constructor for CoglTexture2D
has had its flags parameter removed under the assumption that flags do
not make sense for primitive textures. The meta constructor
cogl_texture_new_from_bitmap now just explicitly calls set_auto_mipmap
after constructing the texture depending on the value of the
COGL_TEXTURE_NO_AUTO_MIPMAP flag.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This adds a context member to CoglBitmap which stores the context it
was created with. That way it can be used in texture constructors
which use a bitmap. There is also an internal private function to get
the context out of the bitmap which all of the texture constructors
now use. _cogl_texture_3d_new_from_bitmap has had its context
parameter removed so that it more closely matches the other bitmap
constructors.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Cogl already had a vtable for the texture driver. This ended up being
used for some things that are not strictly related to texturing such
as converting between pixel formats and GL enums. Some other functions
that are driver dependent such as updating the features were not
indirected through a vtable but instead switched directly by looking
at the ctx->driver enum value. This patch normalises to the two uses
by adding a separate vtable for driver functions not related to
texturing and moves the pixel format conversion functions to it from
the texture driver vtable. It also adds a context parameter to all of
the functions in the new driver vtable so that they won't have to rely
on the global context.
This creates a CoglBitmap which points into an existing buffer in
system memory. That way it can be used to create a texture or to read
pixel data into. The function replaces the existing internal function
_cogl_bitmap_new_from_data but removes the destroy notify call back.
If the application wants notification of destruction it can just use
the cogl_object_set_user_data function as normal. Internally there is
now a convenience function to create a bitmap for system memory and
automatically free the buffer using that mechanism.
The name of the function is inspired by
cairo_image_surface_create_for_data which has similar semantics.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
I don't think there's really any point in this cache because the
pipeline code completely owns the point size state. Pipelines are
already compared for whether their point size state is different
before setting it so it shouldn't result in any extra calls to
glPointSize apart from maybe when the first pipeline is initially
flushed.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
As we move towards Cogl 2.0 we are aiming to remove the need for a
default global CoglContext and so everything should be explicitly
related to a context somehow. CoglPipelines are top level objects and
so this patch adds a context argument to cogl_pipeline_new().
Reviewed-by: Neil Roberts <neil@linux.intel.com>
We are in the process of removing all _EXP suffix mangling for
experimental APIs (Ref: c6528c4b6c) and adding missing gtk-doc
comments so that we can instead rely on the "Stability: unstable"
markers in the gtk-doc comments. This patch tackles the cogl-texture-3d
api symbols.
This patch also replaces use of CoglHandle with a CoglTexture3D type
instead.
Finally this patch also ensures the CoglTexture3D constructors take an
explicit CoglContext pointer but not a CoglTextureFlags argument,
consistent with other CoglTexture constructors.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
The cogl.h header is meant to be the public header for including the 1.x
api used by Clutter so we should stop using that as a convenient way to
include all likely prototypes and typedefs. Actually we already do a
good job of listing the specific headers we depend on in each of the .c
files we have so mostly this patch just strip out the redundant
includes for cogl.h with a few fixups where that broke the build.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
So we can get to the point where cogl.h is merely an aggregation of
header includes for the 1.x api this moves all the function prototypes
and type definitions into a cogl-context.h and a new cogl1-context.h.
Ideally no code internally should ever need to include cogl.h as it just
represents the public facing header for accessing the 1.x api which
should only be used by Clutter.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Instead of storing the GLenum for the target of the last used texture
for a layer it now stores the CoglTextureType instead. The state name
has been renamed to 'texture type' instead of 'texture target'.
Previously the default pipeline layer would store 0 here to represent
that there is no texture. This has been changed to store
COGL_TEXTURE_TYPE_2D instead which means that all pipeline layers
always have a valid value for the texture type. Any places that were
previously fetching the texture from a layer to determine the target
(for example when generating shaders or when enabling a particular
texture target) now use the texture type instead. This means they will
work even for layers that don't have a texture.
This also changes it so that when binding a fallback texture instead
of always using a 2D texture it will now use the default texture
corresponding to the texture type of the layer. That way when the
generated shader tries to do a texture lookup for that type of texture
it will get a valid texture object. To make this work the patch adds a
default texture for 3D textures to the context and also makes the
default rectangle texture actually be a rectangle texture instead of
using a 2D texture.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Previously flushing the matrices was performed as part of the
framebuffer state. When on GLES2 this matrix flushing is actually
diverted so that it only keeps a reference to the intended matrix
stack. This is necessary because on GLES2 there are no builtin
uniforms so it can't actually flush the matrices until the program for
the pipeline is generated. When the matrices are flushed it would
store the age of modifications on the matrix stack so that it could
detect when the matrix hasn't changed and avoid flushing it.
This patch changes it so that the pipeline is responsible for flushing
the matrices even when we are using the GL builtins. The same
mechanism for detecting unmodified matrix stacks is used in all
cases. There is a new CoglMatrixStackCache type which is used to store
a reference to the intended matrix stack along with its last flushed
age. There are now two of these attached to the CoglContext to track
the flushed state for the global matrix builtins and also two for each
glsl progend program state to track the flushed state for a
program. The framebuffer matrix flush now just updates the intended
matrix stacks without actually trying to flush.
When a vertex snippet is attached to the pipeline, the GLSL vertend
will now avoid using the projection matrix to flip the rendering. This
is necessary because any vertex snippet may cause the projection
matrix not to be used. Instead the flip is done as a forced final step
by multiplying cogl_position_out by a vec4 uniform. This uniform is
updated as part of the progend pre_paint depending on whether the
framebuffer is offscreen or not.
Reviewed-by: Robert Bragg <robert@linux.intel.com>