This is an optimised version of CoglTexture2DSliced that always deals
with a single texture and always uses the GL_TEXTURE_2D
target. cogl_texture_new_from_bitmap now tries to use this backend
first. If it can't create a texture with that size then it falls back
the sliced backend.
cogl_texture_upload_data_prepare has been split into two functions
because the sliced backend needs to know the real internal format
before the conversion is performed. Otherwise the converted bitmap
will be wasted if the backend can't support the size.
This provides a way to upload the entire data for a texture without
having to first call glTexImage and then glTexSubImage. This should be
faster especially with indirect rendering where it would needlessy
send the data for the texture twice.
new_from_data and new_from_file can be implemented in terms of
new_from_bitmap so it makes sense to move these to cogl-texture rather
than having to implement them in every texture backend.
This adds a new texture backend which represents a sub texture of a
larger texture. The texture is created with a reference to the full
texture and a set of coordinates describing the region. The backend
simply defers to the full texture for all operations and maps the
coordinates to the other range. You can also use coordinates outside
the range [0,1] to create a repeated version of the full texture.
A new public API function called cogl_texture_new_from_sub_texture is
available to create the sub texture.
The CoglTextureSliceCallback function pointer now takes const pointers
for the texture coordinates. This makes it clearer that the callback
should not modify the array and therefore the backend can use the same
array for both sets of coords.
Given a region of texture coordinates this utility invokes a callback
enough times to cover the region with a subregion that spans the
texture at most once. Eg, if called with tx1 and tx2 as 0.5 and 3.0 it
it would invoke the callback with:
0.5,1.0 1.0,2.0 2.0,3.0
Manual repeating is needed by all texture backends regardless of
whether they can support hardware repeating because when Cogl calls
the foreach_sub_texture_in_region method then it sets the wrap mode to
GL_CLAMP_TO_EDGE and no hardware repeating is possible.
In _cogl_multitexture_quad_single_primitive we use a wrap mode of
GL_CLAMP_TO_EDGE if the texture coordinates are all in the range [0,1]
or GL_REPEAT otherwise. This is to avoid pulling in pixels from either
side when using GL_LINEAR filter mode and rendering the entire
texture. Previously it was checking using the unconverted texture
coordinates. This is ok unless the texture backend is radically
transforming the texture coordinates, such as in the sub texture
backend where the coordinates may map to something completely
different. We now check whether the coordinates are in range after
converting them.
Most of the fields that were previously in CoglTexture are specific to
the implementation of CoglTexture2DSliced so they should be placed
there instead. For example, the 'mipmaps_dirty' flag is an
implementation detail of the ensure_mipmaps function so it doesn't
make sense to force all texture backends to have this function.
Other fields such as width, height, gl_format and format may make
sense for all textures but I've added them as virtual functions
instead. This may make more sense for a sub-texture backend for
example where it can calculate these based on the full texture.
The CoglTexture struct previously contained some fields which are only
used to upload data such as the CoglBitmap and the source GL
format. These are now moved to a separate CoglTextureUploadData struct
which only exists for the duration of one of the cogl_texture_*_new
functions. In cogl-texture there are utility functions which operate
on this new struct rather than on CoglTexture directly.
Some of the fields that were previously stored in the CoglBitmap
struct are now copied to the CoglTexture such as the width, height,
format and internal GL format.
The rowstride was previously stored in CoglTexture and this was
publicly accessible with the cogl_texture_get_rowstride
function. However this doesn't seem to be a useful function because
there is no need to use the same rowstride again when uploading or
downloading new data. Instead cogl_texture_get_rowstride now just
calculates a suitable rowstride from the format and width of the
texture.
Commit 558b17ee1e added support for rectangle textures to the
framebuffer code. Under GLES there is no GL_TEXTURE_RECTANGLE_ARB
definition so this was breaking the build. The rest of Cogl uses
ifdef's around that constant so we should do the same here.
The correct blend function for the alpha channel is:
GL_ONE, GL_ONE_MINUS_SRC_ALPHA
As per bug 1406. This fix was dropped when the switch to premultiplied
alpha was merged.
* text-direction:
docs: Add text-direction accessors
Set the default language on the Pango context
actor: Set text direction on parenting
tests: Display the index inside text-box-layout
box-layout: Honour :text-direction
text: Dirty layout cache on text direction changes
actor: Add :text-direction property
Use the newly added ClutterTextDirection enumeration
Add ClutterTextDirection enumeration
We currently enable blending if the material colour has
transparency. This patch makes it also enable blending if any of the
lighting colours have transparency. Arguably this isn't neccessary
because we don't expose any API to enable lighting so there is no
bug. However it is currently possible to enable lighting with a direct
call to glEnable and this otherwise works so it is a shame not to have
it.
http://bugzilla.openedhand.com/show_bug.cgi?id=1907
cogl_push_draw_buffer, cogl_set_draw_buffer and cogl_pop_draw_buffer are now
deprecated and new code should use the new cogl_framebuffer_* API instead.
Code that previously did:
cogl_push_draw_buffer ();
cogl_set_draw_buffer (COGL_OFFSCREEN_BUFFER, buffer);
/* draw */
cogl_pop_draw_buffer ();
should now be re-written as:
cogl_push_framebuffer (buffer);
/* draw */
cogl_pop_framebuffer ();
As can be seen from the example above the rename has been used as an
opportunity to remove the redundant target argument from
cogl_set_draw_buffer; it now only takes one call to redirect to an offscreen
buffer, and finally the term framebuffer may be a bit more familiar to
anyone coming from an OpenGL background.
Instead of storing an enum with the backend type for each texture and
then using a switch statement to decide which function to call, we
should store pointers to all of the functions in a struct and have
each texture point to that struct. This is potentially slightly faster
when there are more backends and it makes implementing new backends
easier because it's more obvious which functions have to be
implemented.
cogl_offscreen_new_to_texture previously bailed out if the given texture's
GL target was anything but GL_TEXTURE_2D, but it now also allows
foreign GL_TEXTURE_RECTANGLE_ARB textures.
Thanks to Owen for reporting this issue, ref:
https://bugzilla.gnome.org/show_bug.cgi?id=601032
cogl_material_copy can be used to create a new CoglHandle referencing a copy
of some given material.
From now on we will advise that developers always aim to use this function
instead of cogl_material_new() when creating a material that is in any way
derived from another.
By using cogl_material_copy, Cogl can maintain an ancestry for each material
and keep track of "similar" materials. The plan is that Cogl will use this
information to minimize the cost of GPU state transitions.
This function was #if 0'd before we released Clutter 1.0 so there's no
implementation of it. At some point we thought it might assist with
developers breaking out into raw OpenGL. Breaking out to raw GL is a
difficult problem though so we decided instead we will wait for a specific
use case to arrise before trying to support it.
_cogl_material_get_layer expects a CoglMaterial* pointer but it was
being called with a CoglHandle. This doesn't matter because the
CoglHandle is actually just the CoglMaterial* pointer anyway but it
breaks the ability to change the _cogl_material_pointer_from_handle
macro.
The Clutter API reference has an index of the symbols for each minor
version, and a list of deprecated symbols. The Cogl API reference
should have the same layout.
• Use the same style for the Cogl API reference as the one used for
the Clutter API reference.
• Fix the introspection annotations for cogl_bitmap_get_size_from_file()
The imported Mesa matrix code has some documentation annotations
that make gtk-doc very angry. Since it's all private anyway we
can safely make gtk-doc ignore the offending stuff.
$(COGL_DRIVER)/cogl-defines.h is generated in the configure script so
it ends up in the build directory. Therefore the build rule for
cogl/cogl-defines.h should depend on the file in $(builddir) not
$(srcdir).
The deprecation notices in gtk-doc should also refer to the
release that added the deprecation, and if the deprecated
symbol has been replaced by something else then the new symbol
should be correctly referenced.
The main COGL header cogl.h is currently created at configure time
because it conditionally includes the driver-dependent defines. This
sometimes leads to a stale cogl.h with old definitions which can
break the build until you clean out the whole tree and start from
scratch.
We can generate a stable cogl-defines.h at build time from the
equivalent driver-dependent header and let cogl.h include that
file instead.
_cogl_feature_check expects the array of function names to be
terminated with a NULL pointer but I forgot to add this. This was
causing crashes depending on what happened to be in memory after the
array.
For VBOs, we don't need to check for the extension if the GL version
is greater than 1.5. Non-power-of-two textures are given in 2.0.
We could also assume shader support in GL 2.0 except that the function
names are different from those in the extension so it wouldn't work
well with the current mechanism.
Previously if you need to depend on a new GL feature you had to:
- Add typedefs for all of the functions in cogl-defines.h.in
- Add function pointers for each of the functions in
cogl-context-driver.h
- Add an initializer for the function pointers in
cogl-context-driver.c
- Add a check for the extension and all of the functions in
cogl_features_init. If the extension is available under multiple
names then you have to duplicate the checks.
This is quite tedious and error prone. This patch moves all of the
features and their functions into a list of macro invocations in
cogl-feature-functions.h. The macros can be redefined to implement all
of the above tasks from the same header.
The features are described in a struct with a pointer to a table of
functions. A new function takes the feature description from this
struct and checks for its availability. The feature can take a list of
extension names with a list of alternate namespaces (such as "EXT" or
"ARB"). It can also detect the feature from a particular version of
GL.
The typedefs are now gone and instead the function pointer in the Cogl
context just directly contains the type.
Some of the functions in the context were previously declared with the
'ARB' extension. This has been removed so that now all the functions
have no suffix. This makes more sense when the extension could
potentially be merged into GL core as well.
There is a new internal Cogl function called _cogl_check_driver_valid
which looks at the value of the GL_VERSION string to determine whether
the driver is supported. Clutter now calls this after the stage is
realized. If it fails then the stage is marked as unrealized and a
warning is shown.
_cogl_features_init now also checks the version number before getting
the function pointers for glBlendFuncSeparate and
glBlendEquationSeparate. It is not safe to just check for the presence
of the functions because some drivers may define the function without
fully implementing the spec.
The GLES version of _cogl_check_driver_valid just always returns TRUE
because there are no version requirements yet.
Eventually the function could also check for mandatory extensions if
there were any.
http://bugzilla.openedhand.com/show_bug.cgi?id=1875
When _cogl_add_path_to_stencil_buffer is used to draw a path we don't
need to clear the entire stencil buffer. Instead it can clear just the
bounding box of the path. This adds an extra parameter called
'need_clear' which is only set if the stencil buffer is being used for
clipping.
http://bugzilla.openedhand.com/show_bug.cgi?id=1829
This fixes a warning about an uninitialised value. It could also
potentially fix some crashes for example if the enable_flags value
happened to include a bit for enabling a vertex array if no vertex
buffer pointer was set.