Because Cogl defines the origin of viewport and window coordinates to be
top-left it always needs to know the size of the current window so that Cogl
window/viewport coordinates can be transformed into OpenGL coordinates.
This also fixes cogl_read_pixels to use the current draw buffer height
instead of the viewport height to determine the OpenGL y coordinate to use
for glReadPixels.
First a few notes about Cogl coordinate systems:
- Cogl defines the window origin, viewport origin and texture coordinates
origin to be top left unlike OpenGL which defines them as bottom left.
- Cogl defines the modelview and projection identity matrices in exactly the
same way as OpenGL.
- I.e. we believe that for 2D centric constructs: windows/framebuffers,
viewports and textures developers are more used to dealing with a top left
origin, but when modeling objects in 3D; an origin at the center with y
going up is quite natural.
The way Cogl handles textures is by uploading data upside down in OpenGL
terms so that bottom left becomes top left. (Note: This also has the
benefit that we don't need to flip the data we get from image decoding
libraries since they typically also consider top left to be the image
origin.)
The viewport and window coords are mostly handled with various y =
height - y tweaks before we pass y coordinates to OpenGL.
Generally speaking though the handling of coordinate spaces in Cogl is a bit
fragile. I guess partly because none of it was design to be, it just
evolved from how Clutter defines its coordinates without much consideration
or testing. I hope to improve this over a number of commits; starting here.
This commit deals with the fact that offscreen draw buffers may be bound to
textures but we don't "upload" the texture data upside down, and so if you
texture from an offscreen draw buffer you need to manually flip the texture
coordinates to get it the right way around. We now force offscreen
rendering to be flipped upside down by tweaking the projection matrix right
before we submit it to OpenGL to scale y by -1. The tweak is entirely
hidden from the user such that if you call cogl_get_projection you will not
see this scale.
We were ignoring the possibility that the current modelview matrix may flip
the incoming rectangle in which case we didn't calculate a valid scissor
rectangle for clipping.
This fixes: http://bugzilla.o-hand.com/show_bug.cgi?id=1809
(Clipping doesn't work within an FBO)
Cogl's support for offscreen rendering was originally written just to support
the clutter_texture_new_from_actor API and due to lack of documentation and
several confusing - non orthogonal - side effects of using the API it wasn't
really possible to use directly.
This commit does a number of things:
- It removes {gl,gles}/cogl-fbo.{c,h} and adds shared cogl-draw-buffer.{c,h}
files instead which should be easier to maintain.
- internally CoglFbo objects are now called CoglDrawBuffers. A
CoglDrawBuffer is an abstract base class that is inherited from to
implement CoglOnscreen and CoglOffscreen draw buffers. CoglOffscreen draw
buffers will initially be used to support the
cogl_offscreen_new_to_texture API, and CoglOnscreen draw buffers will
start to be used internally to represent windows as we aim to migrate some
of Clutter's backend code to Cogl.
- It makes draw buffer objects the owners of the following state:
- viewport
- projection matrix stack
- modelview matrix stack
- clip state
(This means when you switch between draw buffers you will automatically be
switching to their associated viewport, matrix and clip state)
Aside from hopefully making cogl_offscreen_new_to_texture be more useful
short term by having simpler and well defined semantics for
cogl_set_draw_buffer, as mentioned above this is the first step for a couple
of other things:
- Its a step toward moving ownership for windows down from Clutter backends
into Cogl, by (internally at least) introducing the CoglOnscreen draw
buffer. Note: the plan is that cogl_set_draw_buffer will accept on or
offscreen draw buffer handles, and the "target" argument will become
redundant since we will instead query the type of the given draw buffer
handle.
- Because we have a common type for on and offscreen framebuffers we can
provide a unified API for framebuffer management. Things like:
- blitting between buffers
- managing ancillary buffers (e.g. attaching depth and stencil buffers)
- size requisition
- clearing
This ensures that glViewport is called before the first stage paint.
Previously _clutter_stage_maybe_setup_viewport (which is done before we
start painting) was bailing out without calling cogl_setup_viewport because
the CLUTTER_STAGE_IN_RESIZE flag may be set if the stage was resized before
the first paint. (NB: The CLUTTER_STAGE_IN_RESIZE flag isn't removed until
we get an explicit event back from the X server since the window manager may
choose to deny/alter the resize.)
We now special case the first resize - where the viewport hasn't previously
been initialized and use the requested geometry to initialize the
glViewport without waiting for a reply from the server.
Over time the two cogl-fbo.c files have needlessly diverged as bug fixes or
cleanups went into one version but not the other. This tries to bring them
back in line with each other. It should actually be simple enough to move
cogl-fbo.c to be a common file, and simply not build it for GLES 1.1, so
maybe I'll follow up with such a patch soon.
The comment just said: "Some implementation require a clear before drawing
to an fbo. Luckily it is affected by scissor test." and did a scissored
clear, which is clearly a driver bug workaround, but for what driver? The
fact that it was copied into the gles backend (or vica versa is also
suspicious since it seems unlikely that the workaround is necessary for both
backends.)
We can easily restore the workaround with a better comment if this problem
really still exists on current drivers, but for now I'd rather minimize
hand-wavey workaround code that can't be tested.
Just like CLUTTER_CHECK_VERSION does version checking at compile
time, we need a way to verify the version of the library that we
are linking against. This is mostly needed for language bindings
and for run-time loadable modules -- when we'll get those.
Otherwise you can't use the alpha channel of the vertex colors unless
the material has a texture with alpha or the material's color has
alpha less than 255.
Apparently, on 64bit systems the floating point noise is enough
to screw up the float-to-int truncation.
The solution is to round up by 0.5 and then use floorf(). This
gives predictable and correct results on both 32bit and 64bit
systems.
When calling remove_child_meta() we check if there is a LayoutMeta
already attached to the Actor, and if that LayoutMeta matches the
(manager, container, actor) tuple. If the LayoutMeta does not match,
though, we create a new LayoutMeta instance -- in order to remove it
right afterwards.
Instead of doing this, we can simply check for a matching LayoutMeta
and if present, remove it.
In case of an existing, non-matching LayoutMeta, we're left with a
dangling instance, but it does not matter: the removal happens in the
unparenting phase of a ClutterContainer, so either the Actor will be
destroyed and thus the LayoutMeta will be disposed along with it; or
it will be parented to another container, and thus the LayoutMeta
will be replaced.
A ClutterBox might not have a ClutterLayoutManager instance
associated -- for instance, during destruction. We should check
for one before calling methods on it.
When cogl_texture_new_from_data() fails in clutter_texture_set_from_data()
and no GError is provided, the clutter app will segfault when dereferencing
the GError ** and emitting LOAD_FINISHED signal.
Based on a patch by: Haakon Sporsheim <haakon.sporsheim@gmail.com>
http://bugzilla.openedhand.com/show_bug.cgi?id=1806
Some changes to make COGL pass distcheck with Automake 1.11 and
anal-retentiveness turned up to 11.
The "major" change is the flattening of the winsys/ part of COGL,
which is built directly inside libclutter-cogl.la instead of an
intermediate libclutter-cogl-winsys.la object.
Ideally, the whole COGL should be flattened out using a
quasi-non-recursive Automake layout; unfortunately, the driver/
sub-section ships with identical targets and Automake cannot
distinguish GL and GLES objects.
If an actor calls directly or indirectly clutter_actor_queue_relayout()
on itself from within the allocate() implementation it will cause a
relayout cycle. This is usually a condition that should be checked by
ClutterActor and we should emit a warning if it is verified.
ClutterActor should check whether the current instance is being
destroyed and avoid performing operations like:
• queueing redraws
• queueing relayouts
It should also warn if the actor is being parented to an actor
currently being destroyed.
When showing a warning in the state checks we perform to verify that
the invariants are maintained when showing, mapping and realizing, we
should also print out the name of the actor failing the checks. If the
actor has no name, the GType name should be used as a fallback.
When defining an Alpha in ClutterScript we should allow setting
the alpha function by using a custom property. This makes it
possible to have both:
{
"id" : "behaviour-1",
"type" : "ClutterBehaviourDepth",
"alpha" : { "timeline" : "timeline-1", "function" : "alpha_func" },
...
}
And:
{
"id" : "alpha-1",
"type" : "ClutterAlpha",
"timeline" : "timeline-1",
"function" : "alpha_func"
},
{
"id" : "behaviour-1",
"type" : "ClutterBehaviourDepth",
"alpha" : "alpha-1",
...
}
The latter allows defining a single alpha function for multiple
behaviours.
The block that allows setting a GObject property holding an object
instance is conditionally depending on the USE_PIXBUF define. This
makes it impossible to reference an object inside ClutterScript on
platforms not using GdkPixbuf.
When an actor is hidden, the parent actor is not required to
size request or allocate it. (ClutterGroup does, but, for example,
NbtkBoxLayout doesn't.) This means that the
needs_width_request/needs_height_request/needs_allocate can be
stale when we go to show it again - they are set for the actor
but not the parent. Explicitly setting them to FALSE avoids
clutter_actor_relayout() improperly short-circuiting.
http://bugzilla.openedhand.com/show_bug.cgi?id=1831
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
The change in commit 3bbc96e17e moved the
:text property setter to use set_text_internal(); this function does not
invalidate the Layout cache and does not queue a relayout, thus breaking
the behaviour of ClutterText when setting the contents of the actor using
the property.
http://bugzilla.openedhand.com/show_bug.cgi?id=1851
Since we no longer depend on the GL matrix API in Cogl we can remove a lot
of wrapper code from the GLES 2 backend. This is particularly nice given
that there was no code shared between the cogl-matrix-stack API and gles2
wrappers so we had a lot of duplicated logic.
The indirection through this API isn't necessary since we no longer
arbitrate between the OpenGL matrix API and Cogl's client side API. Also it
doesn't help to maintain an OpenGL style matrix mode API for internal use
since it's awkward to keep restoring the MODELVIEW mode and easy enough to
directly work with the matrix stacks of interest.
This replaces use of the _cogl_current_matrix API with direct use of the
_cogl_matrix_stack API. All the unused cogl_current_matrix API is removed
and the matrix utility code left in cogl-current-matrix.c was moved to
cogl.c.
This cache of the gl matrix mode lets us avoid repeat calls to glMatrixMode
in _cogl_matrix_stack_flush_to_gl when we have lots of sequential modelview
matrix modifications.
This goes a bit further than the previous patch, and as a special case
we now simply represent identity matrices using a boolean, and only
lazily initialize them when they need to be modified.
The journal always uses an identity matrix since it uses software
transformation. Currently it manually uses glLoadMatrix since previous
experimentation showed that the cogl-matrix-stack gave bad performance, but
it would be nice to fix performance so we only have to care about one path
for loading matrices.
For the common case where we do:
cogl_matrix_stack_push()
cogl_matrix_stack_load_identity()
we were effectively initializing the matrix 3 times. Once due to use of
g_slice_new0, then we had a cogl_matrix_init_identity in
_cogl_matrix_state_new for good measure, and then finally in
cogl_matrix_stack_load_identity we did another cogl_matrix_init_identity.
We don't use g_slice_new0 anymore, _cogl_matrix_state_new is documented as
not initializing the matrix (instead _cogl_matrix_stack_top_mutable now
takes a boolean to choose if new stack entries should be initialised) and so
we now only initialize once in cogl_matrix_stack_load_identity.
This relates back to an earlier commitment to stop using the OpenGL matrix
API which is considered deprecated. (ref 54159f5a1d)
The new texture matrix stacks are hung from a list of (internal only)
CoglTextureUnit structures which the CoglMaterial code internally references
via _cogl_get_texure_unit ().
So we would be left with only the cogl-matrix-stack code being responsible
for glMatrixMode, glLoadMatrix and glLoadIdentity this commit updates the
journal code so it now uses the matrix-stack API instead of GL directly.
• Fix list_stages() and peek_stages() documentation
• Fix clutter_text_set_preedit_string() arguments in the header
to match source and documentation
• Add clutter_units_cm() to the private section for Units
• Rename the LayoutManager section
• Add FlowLayout:homogeneous accessors
* layout-manager: (50 commits)
docs: Reword a link
layout, docs: Add more documentation to LayoutManager
layout, docs: Fix description of Bin properties
layout, bin: Use ceilf() instead of casting to int
layout, docs: Add long description for FlowLayout
layout, box: Clean up
layout, box: Write long description for Box
layout, docs: Remove unused functions
layout: Document BoxLayout
layout: Add BoxLayout, a single line layout manager
layout: Report the correct size of FlowLayout
layout: Resizing the stage resizes the FlowLayout box
layout: Use the get_request_mode() getter in BinLayout
layout: Change the request-mode along with the orientation
actor: Add set_request_mode() method
[layout] Remove FlowLayout:wrap
[layout] Rename BinLayout and FlowLayout interactive tests
[layout] Skip invisible children in FlowLayout
[layout] Clean up and document FlowLayout
[layout] Snap children of FlowLayout to column/row
...
The layout manager reference should have some documentation on how
to use a LayoutManager object inside a container and how to implement
a LayoutManager sub-class correctly.
The JSON conditional rules can be moved outside the introspection
conditional ones to avoid a nested check, as all the JSON rules do
is setting up variables that may or may not be used.
The Journal can be considered a standalone component, so even though
it's currently only used to log quads, it seems better to split it
out into its own file.
When we implement atlas textures we will probably want to use the spans API
to handle texture repeating so it doesn't make sense to leave the code in
cogl-texture-2d-sliced.c. Since it's a standalone set of data structures
and algorithms it also seems reasonable to split out from cogl-texture.
cogl-texture-2d-sliced provides an implementation of CoglTexture and this
seperation lays the foundation for potentially supporting atlas textures,
pixmap textures (as in GLX_EXT_texture_from_pixmap) and fast-path
GL_TEXTURE_{1D,2D,3D,RECTANGLE} textures in a maintainable fashion.
cogl-primitives.c was previously digging right into CoglTextures so it could
manually iterate the texture slices for texturing quads and polygons and
because we were missing some state getters we were lazily just poking into
the structures directly.
This adds some extra state getter functions, and adds a higher level
_cogl_texture_foreach_slice () API that hopefully simplifies the way in
which sliced textures may be used to render primitives. This lets you
specify a rectangle in "virtual" texture coords and it will call a given
callback for each slice that intersects that rectangle giving the virtual
coords of the current slice and corresponding "real" texture coordinates for
the underlying gl texture.
At the same time a noteable bug in how we previously iterated sliced
textures was fixed, whereby we weren't correctly handling inverted texture
coordinates. E.g. with the previous code if you supplied texture coords of
tx1=100,ty1=0,tx2=0,ty2=100 (inverted along y axis) that would result in a
back-facing quad, which could be discarded if using back-face culling.
The descriptions for gl_handle and gl_target were inverted.
Thanks to Young-Ho Cha for spotting that.
Signed-off-by: Robert Bragg <robert@linux.intel.com>
As part of an incremental process to have Cogl be a standalone project we
want to re-consider how we organise the Cogl source code.
Currently this is the structure I'm aiming for:
cogl/
cogl/
<put common source here>
winsys/
cogl-glx.c
cogl-wgl.c
driver/
gl/
gles/
os/ ?
utils/
cogl-fixed
cogl-matrix-stack?
cogl-journal?
cogl-primitives?
pango/
The new winsys component is a starting point for migrating window system
code (i.e. x11,glx,wgl,osx,egl etc) from Clutter to Cogl.
The utils/ and pango/ directories aren't added by this commit, but they are
noted because I plan to add them soon.
Overview of the planned structure:
* The winsys/ API is the API that binds OpenGL to a specific window system,
be that X11 or win32 etc. Example are glx, wgl and egl. Much of the logic
under clutter/{glx,osx,win32 etc} should migrate here.
* Note there is also the idea of a winsys-base that may represent a window
system for which there are multiple winsys APIs. An example of this is
x11, since glx and egl may both be used with x11. (currently only Clutter
has the idea of a winsys-base)
* The driver/ represents a specific varient of OpenGL. Currently we have "gl"
representing OpenGL 1.4-2.1 (mostly fixed function) and "gles" representing
GLES 1.1 (fixed funciton) and 2.0 (fully shader based)
* Everything under cogl/ should fundamentally be supporting access to the
GPU. Essentially Cogl's most basic requirement is to provide a nice GPU
Graphics API and drawing a line between this and the utility functionality
we add to support Clutter should help keep this lean and maintainable.
* Code under utils/ as suggested builds on cogl/ adding more convenient
APIs or mechanism to optimize special cases. Broadly speaking you can
compare cogl/ to OpenGL and utils/ to GLU.
* clutter/pango will be moved to clutter/cogl/pango
How some of the internal configure.ac/pkg-config terminology has changed:
backendextra -> CLUTTER_WINSYS_BASE # e.g. "x11"
backendextralib -> CLUTTER_WINSYS_BASE_LIB # e.g. "x11/libclutter-x11.la"
clutterbackend -> {CLUTTER,COGL}_WINSYS # e.g. "glx"
CLUTTER_FLAVOUR -> {CLUTTER,COGL}_WINSYS
clutterbackendlib -> CLUTTER_WINSYS_LIB
CLUTTER_COGL -> COGL_DRIVER # e.g. "gl"
Note: The CLUTTER_FLAVOUR and CLUTTER_COGL defines are kept for apps
As the first thing to take advantage of the new winsys component in Cogl;
cogl_get_proc_address() has been moved from cogl/{gl,gles}/cogl.c into
cogl/common/cogl.c and this common implementation first trys
_cogl_winsys_get_proc_address() but if that fails then it falls back to
gmodule.
This moves most of cogl-context.{c.h} to cogl/common with some driver
specific members now living in a CoglContextDriver struct. Driver specific
context initialization and typedefs now live in
cogl/{gl,gles}/cogl-context-driver.{c,h}
Driver specific members can be found under ctx->drv.stuff
This splits the limited components that differed between
cogl/{gl,gles}/cogl-texture.c into new {gl,gles}/cogl-texture-driver.c files
and the rest that can now be shared into cogl/common/cogl-texture.c
Most of clutter_stage_egl_realize was renamed to
_clutter_stage_egl_try_realize which now takes a cookie indicating which
fallback number should tried next. clutter_stage_egl_realize now keeps
trying to realize with successive fallback numbers until it succeeds or runs
out of fallbacks.
The only fallback supported for now is for hardware with no stencil buffer
support.
This replaces calls to the old (glx 1.2) functions glXChooseVisual,
glXCreateContext, glXMakeCurrent with the 1.3+ fbconfig varients
glXChooseFBConfig, glXCreateNewContext, glXMakeContextCurrent.
The only backend that tried to implement offscreen stages was the GLX backend
and even this has apparently be broken for some time without anyone noticing.
The property still remains and since the property already clearly states that
it may not work I don't expect anyone to notice.
This simplifies quite a bit of the GLX code which is very desireable from the
POV that we want to start migrating window system code down to Cogl and the
simpler the code is the more straight forward this work will be.
In the future when Cogl has a nicely designed API for framebuffer objects then
re-implementing offscreen stages cleanly for *all* backends should be quite
straightforward.
for the marshal files $(srcdir) was getting prefixed twice since my last
commit (2cc88f1140) since it was already being prefixed including
Makefile.am. The problem with prefixing it in the includer file though is
that the Make variable substitutions like :.list=.h mean we end up
generating into the $(srcdir). This removes the prefix added in
clutter/Makefile.am
We were also missing a $(srcdir) prefix when setting EXTRA_DIST
When validating a new GValue against the ClutterParamSpecUnits, we issue
a warning when the units do not match with both the new value and the
unit we expect to have. Unfortunately we were printing the unit of the
new value twice and not the unit of the ParamSpec.
http://bugzilla.openedhand.com/show_bug.cgi?id=1846
This is really useful when trying to animate GTypes that haven't
registered any progress function. Instead of silently not working it
will warn the developer.
http://bugzilla.openedhand.com/show_bug.cgi?id=1845
To be able to animate CLUTTER_TYPE_UNITS properties we need to register
the GType and its progress function against the ClutterInterval code.
The two ClutterUnits defining the interval can use different units, the
resulting unit will always be in pixels, so calculating a progress
between 10px and 4cm is valid.
http://bugzilla.openedhand.com/show_bug.cgi?id=1844
When computing the pixels value of a ClutterUnits value we should
be caching the value to avoid recomputing for every call of
clutter_units_to_pixels(). We already have a flag telling us to
return the cached value, but we miss the mechanism to evict the
cache whenever the Backend settings affecting the conversion, that
is default font and resolution, change.
In order to implement the eviction we can use a "serial"; the
Backend will have an internal serial field which we retrieve and
put inside the ClutterUnits structure (we split one of the two
64 bit padding fields into two 32 bit fields to maintain ABI); every
time we call clutter_units_to_pixels() we compare the units serial
with that of the Backend; if they match and pixels_set is set to
TRUE then we just return the stored pixels value. If the serials
do not match then we unset the pixels_set flag and recompute the
pixels value.
We can verify this by adding a simple test unit checking that
by changing the resolution of ClutterBackend we get different
pixel values for 1 em.
http://bugzilla.openedhand.com/show_bug.cgi?id=1843
Input Methods require to be able to set a "pre-edit string", that is
a string that it's just displayed into the Text actor without being
committed to the actor's buffer. The string might require custom Pango
attributes, and an update of the cursor position.
Casting a float to int to truncate it before assigning the value
to a float again is wrong. We should use ceilf() instead which
does what we want to achieve (rounding up the size to avoid
sub-pixel positioning of children).
* Use g_list_foreach() instead of iterating over the list inside
the destruction sequence, since we are causing the widgets to be
implicitly removed from the list via the destroy() call.
* Use g_signal_connect_swapped() and spare us from a callback.
FlowLayout should compute the correct height for the assigned width when
in horizontal flow, and the correct width for the assigned height when
in vertical flow. This means pre-computing the number of lines inside
the get_preferred_width() and get_preferred_height(). We can then cache
the computed column width and row height, cache them inside the layout
and then use them when allocating the children.
When changing the orientation of a FlowLayout, the associated
container should also change its request mode. A horizontally
flowing layout has a height depending on the width, since it
will reflow vertically; similarly, a vertically reflowing layout
will have a width depending on the height.
The :wrap property is not implemented, and mostly useless: the
FlowLayout is a reflowing grid. This means that if it receives
less than the preferred width or height in the flow direction
then it should always reflow.
Use the column and row size to align each child; with :homogeneous
set to TRUE, or with children with the same size, the FlowLayout
will behave like a reflowing grid.
FlowLayout is a layout manager that arranges its children in a
reflowing line; the orientation controls the major axis for the
layout: horizontal, for reflow on the Y axis, and vertical, for
reflow on the X axis.