Create the device manager during the event initialization, where it
makes sense.
This allows us to get rid of the per-backend get_device_manager()
virtual function, and just store the DeviceManager pointer into the
ClutterBackend structure.
The Clutter backend split is opaque enough that should allow us to just
build all possible backends inside the same shared object, and select
the wanted backend at initialization time.
This requires some work in the build system, as well as the
initialization code, to remove duplicate functions that might cause
conflicts at build and link time. We also need to defer all the checks
of the internal state of the platform-specific API to run-time type
checks.
This function is called when the backend is being disposed - as a way
of releasing all ClutterShader. This doesn't take into account three
things:
- ClutterShader is deprecated
- the Backend is *never* disposed
- once the process terminates, all its resources are automatically
released by the OS
So the _clutter_shader_release_all() function is a pointless exercise
in futility.
The G_CONST_RETURN define in GLib is, and has always been, a bit fuzzy.
We always used it to conform to the platform, at least for public-facing
API.
At first I assumed it has something to do with brain-damaged compilers
or with weird platforms where const was not really supported; sadly,
it's something much, much worse: it's a define that can be toggled at
compile-time to remove const from the signature of public API. This is a
truly terrifying feature that I assume was added in the past century,
and whose inception clearly had something to do with massive doses of
absynthe and opium — because any other explanation would make the
existence of such a feature even worse than assuming drugs had anything
to do with it.
Anyway, and pleasing the gods, this dubious feature is being
removed/deprecated in GLib; see bug:
https://bugzilla.gnome.org/show_bug.cgi?id=644611
Before deprecation, though, we should just remove its usage from the
whole API. We should especially remove its usage from Cally's internals,
since there it never made sense in the first place.
Until Cogl gains native win32/OSX support this remove the osx and win32
winsys files and instead we'll just rely on the stub-winsys.c to handle
these platforms. Since the only thing the platform specific files were
providing anyway was a get_proc_address function; it was trivial to
simply update the clutter backend code to handle this directly for now.
This gives us a way to clearly track the internal Cogl API that Clutter
depends on. The aim is to split Cogl out from Clutter into a standalone
3D graphics API and eventually we want to get rid of any private
interfaces for Clutter so its useful to have a handle on that task.
Actually it's not as bad as I was expecting though.
Instead of asking all backends to do that for us, we can call
ClutterStageWindow::redraw ourselves by default.
This changeset fixes all backends to actually do the right thing, and
move the stage implementation redraw inside the ClutterStageWindow
implementation itself.
This adds a stop-gap mechanism for Cogl to know when the window system
is requested to present the current backbuffer to the frontbuffer by
adding a _cogl_swap_buffers_notify function that backends are now
expected to call right after issuing the equivalent request to OpenGL
vie the platforms OpenGL binding layer. This (blindly) updates all the
backends to call this new function.
For now Cogl doesn't do anything with the notification but the intention
is to use it as part of a planned read-pixel optimization which will
need to reset some state at the start of each new frame.
Previously when trying to destroy all of the stages in the backend
dispose function it would poke directly in the ClutterStageManager
struct to get the list. In 8613013ab08 the defintion of
ClutterStageManager moved to a different header which isn't included
by the Win32 backend so it wouldn't compile. In that commit the X11
backend was changed to unref the stage manager instead of poking in
the internals so we should do the same for the win32 backend.
* private-cleanup:
Add copyright notices
Clean up clutter-private.h/6
Clean up clutter-private.h/5
Clean up clutter-private.h/4
Clean up clutter-private.h/3
Clean up clutter-private.h/2
Clean up clutter-private.h/1
There was previously a flag that gets set when this function was
called but nothing checked it so the function effectively did
nothing. Also the flag was a member of the backend struct but this
can't be used because the function should be called before
clutter_init so the backend is not ready yet. This patch makes the
event disabling work more like the X11 backend and set a global
variable instead.
This uses actor paint volumes to perform culling during
clutter_actor_paint.
When performing a clipped redraw (because only a few localized actors
changed) then as we traverse the scenegraph painting the actors we can
now ignore actors that don't intersect the clip region. Early testing
shows this can have a big performance benefit; e.g. 100% fps improvement
for test-state with culling enabled and we hope that there are even much
more compelling examples than that in the real world,
Most Clutter applications are 2Dish interfaces and have quite a lot of
actors that get continuously painted when anything is animated. The
dynamic actors are often localized to an area of user focus though so
with culling we can completely avoid painting any of the static actors
outside the current clip region.
Obviously the cost of culling has to be offset against the cost of
painting to determine if it's a win, but our (limited) testing suggests
it should be a win for most applications.
Note: we hope we will be able to also bring another performance bump
from culling with another iteration - hopefully in the 1.6 cycle - to
avoid doing the culling in screen space and instead do it in the stage's
model space. This will hopefully let us minimize the cost of
transforming the actor volumes for culling.
This is a fairly extensive second pass at exposing paint volumes for
actors.
The API has changed to allow clutter_actor_get_paint_volume to fail
since there are times - such as when an actor isn't a descendent of the
stage - when the volume can't be determined. Another example is when
something has connected to the "paint" signal of the actor and we simply
have no way of knowing what might be drawn in that handler.
The API has also be changed to return a const ClutterPaintVolume pointer
(transfer none) so we can avoid having to dynamically allocate the
volumes in the most common/performance critical code paths. Profiling was
showing the slice allocation of volumes taking about 1% of an apps time,
for some fairly basic tests. Most volumes can now simply be allocated on
the stack; for clutter_actor_get_paint_volume we return a pointer to
&priv->paint_volume and if we need a more dynamic allocation there is
now a _clutter_stage_paint_volume_stack_allocate() mechanism which lets
us allocate data which expires at the start of the next frame.
The API has been extended to make it easier to implement
get_paint_volume for containers by using
clutter_actor_get_transformed_paint_volume and
clutter_paint_volume_union. The first allows you to query the paint
volume of a child but transformed into parent actor coordinates. The
second lets you combine volumes together so you can union all the
volumes for a container's children and report that as the container's
own volume.
The representation of paint volumes has been updated to consider that
2D actors are the most common.
The effect apis, clutter-texture and clutter-group have been update
accordingly.
Commit eae45619299 tried to clean how it checks for the private actor
flags. However the check for the 'IN_DESTRUCTION' flag in the Win32
backend got inverted so it would always clear the current
context. This was causing _cogl_check_driver_valid to fail later and
then the realize would get stuck in a infinite loop.
Since using addresses that might change is something that finally
the FSF acknowledge as a plausible scenario (after changing address
twice), the license blurb in the source files should use the URI
for getting the license in case the library did not come with it.
Not that URIs cannot possibly change, but at least it's easier to
set up a redirection at the same place.
As a side note: this commit closes the oldes bug in Clutter's bug
report tool.
http://bugzilla.openedhand.com/show_bug.cgi?id=521
The DeviceManager class should be abstract in Clutter, and implemented
by each backend, as different backends will have different ways to
detect, initialize and list devices; the X11 backend alone has *two*
ways of dealing with devices.
This commit makes DeviceManager an abstract class and delegates the
device initialization and enumeration to per-backend sub-classes.
The responsible for creating the device manager is, obviously, the
backend singleton.
The X11 and Win32 backends have been updated to the new layout; the
Win32 backend has been updated blindly, so it might require additional
testing.
The Win32 backend now implements the create_context method which
creates a context and binds it to a 1x1 invisible window. That way
there will always be a context bound and the features can be retrieved
without creating the default stage. This reflects the changes in
1c6ffc8..b245d55 to the GLX backend.
Mostly lifted from the core pointer and keyboard X11 backend support.
The win32 backend registers two devices (a core pointer and a core
keyboard) and assigns them to the event structure when doing the
translation from native events to Clutter events.
Thanks to: Samuel Degrande <Samuel.Degrande@lifl.fr> for testing this
patch.
The win32 backend now handles the WM_SETCURSOR message and sets a
fully transparent cursor if the cursor-visible property has been
cleared on the stage. The icon is stored in the library via a resource
file. The instance handle for the DLL is needed to load the resource
so there is now a DllMain function to grab the handle.
This function should only need to be called in exceptional circumstances
since Cogl can normally determine internally when a flush is necessary.
As an optimization Cogl drawing functions may batch up primitives
internally, so if you are trying to use raw GL outside of Cogl you stand a
better chance of being successful if you ask Cogl to flush any batched
geometry before making your state changes.
cogl_flush() ensures that the underlying driver is issued all the commands
necessary to draw the batched primitives. It provides no guarantees about
when the driver will complete the rendering.
This provides no guarantees about the GL state upon returning and to avoid
confusing Cogl you should aim to restore any changes you make before
resuming use of Cogl.
If you are making state changes with the intention of affecting Cogl drawing
primitives you are 100% on your own since you stand a good chance of
conflicting with Cogl internals. For example clutter-gst which currently
uses direct GL calls to bind ARBfp programs will very likely break when Cogl
starts to use ARBfb programs internally for the material API, but for now it
can use cogl_flush() to at least ensure that the ARBfp program isn't applied
to additional primitives.
This does not provide a robust generalized solution supporting safe use of
raw GL, its use is very much discouraged.
Previously the journal was always flushed at the end of
_cogl_rectangles_with_multitexture_coords, (i.e. the end of any
cogl_rectangle* calls) but now we have broadened the potential for batching
geometry. In ideal circumstances we will only flush once per scene.
In summary the journal works like this:
When you use any of the cogl_rectangle* APIs then nothing is emitted to the
GPU at this point, we just log one or more quads into the journal. A
journal entry consists of the quad coordinates, an associated material
reference, and a modelview matrix. Ideally the journal only gets flushed
once at the end of a scene, but in fact there are things to consider that
may cause unwanted flushing, including:
- modifying materials mid-scene
This is because each quad in the journal has an associated material
reference (i.e. not copy), so if you try and modify a material that is
already referenced in the journal we force a flush first)
NOTE: For now this means you should avoid using cogl_set_source_color()
since that currently uses a single shared material. Later we
should change it to use a pool of materials that is recycled
when the journal is flushed.
- modifying any state that isn't currently logged, such as depth, fog and
backface culling enables.
The first thing that happens when flushing, is to upload all the vertex data
associated with the journal into a single VBO.
We then go through a process of splitting up the journal into batches that
have compatible state so they can be emitted to the GPU together. This is
currently broken up into 3 levels so we can stagger the state changes:
1) we break the journal up according to changes in the number of material layers
associated with logged quads. The number of layers in a material determines
the stride of the associated vertices, so we have to update our vertex
array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc)
2) we further split batches up according to material compatability. (e.g.
materials with different textures) We flush material state at this level.
3) Finally we split batches up according to modelview changes. At this level
we update the modelview matrix and actually emit the actual draw command.
This commit is largely about putting the initial design in-place; this will be
followed by other changes that take advantage of the extended batching.
The clutter_context_get_default() function is private, but shared
across Clutter. For this reason, it should be prefixed by '_' so
that the symbol is hidden from the shared object.
* clutter/clutter-actor.c:
(clutter_actor_set_min_width),
(clutter_actor_set_min_height),
(clutter_actor_set_natural_width),
(clutter_actor_set_natural_height): Ignore any override of the
minimum and natural size of the stage on backends that only
support static stages.
* clutter/clutter-stage.c (clutter_stage_allocate): Use the
preferred size of the ClutterStage implementation instead of
the display size.
* clutter/clutter-backend.[ch]: Remove get_display_size() and
clutter_backend_get_display_size().
* clutter/eglnative/clutter-backend-egl.c:
* clutter/fruity/clutter-backend-fruity.c:
* clutter/osx/clutter-backend-osx.c:
* clutter/sdl/clutter-backend-sdl.c:
* clutter/win32/clutter-backend-win32.c:
* clutter/x11/clutter-backend-x11.c: Remove get_display_size()
implementations.
signedness of old_xpos and old_ypos to get rid of compiler
warnings.
* clutter/win32/clutter-backend-win32.c
(clutter_backend_win32_get_features): Cast the result of
glGetString to a signed char pointer to avoid compiler warnings.
* clutter/win32/clutter-backend-win32.c: Reflect changes to the
GLX/X11 backend in revisions 2708-2709 and 2713-2715 which
simplify the backend a little.
* clutter/win32/clutter-stage-win32.c
(clutter_stage_win32_request_coords): Don't resize foreign
windows.
(clutter_stage_win32_unrealize): Don't destroy foreign windows.
(clutter_stage_win32_init): Added initialiser for is_foreign_win.
(clutter_win32_get_stage_from_window): Resort to looking in the
stage list if the window isn't the right window class so that it
can still find stages with foreign windows.
(clutter_win32_set_stage_foreign): New public function to set a
foreign window for a stage.
* clutter/win32/clutter-event-win32.c
(clutter_win32_disable_event_retrieval): New public function to
disable event retrieval.
(message_translate): Don't handle WM_SIZE or WM_MOVE for foreign
windows.
* clutter/win32/clutter-backend-win32.h (struct
_ClutterBackendWin32): Added a flag to disable event retrieval
* clutter/win32/clutter-backend-win32.c
(clutter_backend_win32_ensure_context): Update debug note to
include whether the stage is foreign or not.
subclassing code.
* clutter/win32/clutter-stage-win32.h:
* clutter/win32/clutter-stage-win32.c: Now inherits from
ClutterGroup and implements ClutterStageWindow instead of
inheriting directly from ClutterStage.
* clutter/win32/clutter-event-win32.c (message_translate): Now
takes an extra parameter to return whether DefWindowProc should be
called. This is needed to prevent the default WM_CLOSE handler
from destroying the window.
* clutter/win32/clutter-backend-win32.c
(clutter_backend_win32_dispose): Destroy all of the stages using
g_slist_foreach as per bug #871. Now also destroys the GL context.
(clutter_backend_win32_get_features): Added assertions to ensure
there is a valid GL context.
(clutter_backend_win32_ensure_context): Accepts NULL stage. Gets
implementation pointer from the stage.
* clutter/win32/clutter-backend-win32.c
(clutter_backend_win32_init): Added a call to
timeBeginPeriod. Without this the frame rates are terrible because
the glib timeouts are not accurate enough. However this requires
Glib >= 2.16.0 to take any effect because of a change in the way
g_poll is implemented. See revision 6597 of glib.
(clutter_backend_win32_finalize): Added a call to timeEndPeriod.
* configure.ac: Added -lwinmm to the library dependencies for the
Win32 backend.
* clutter/win32/clutter-win32.h:
* clutter/win32/clutter-stage-win32.h:
* clutter/win32/clutter-stage-win32.c:
* clutter/win32/clutter-event-win32.c:
* clutter/win32/clutter-backend-win32.h:
* clutter/win32/clutter-backend-win32.c:
Upgraded for multi-stage support.
* clutter/win32/clutter-stage-win32.c
(clutter_stage_win32_request_coords): Fixed so that it doesn't set
the position or size if it hasn't changed. This was causing
problems when the window was resized using the top left corner. In
that case the window receives resize and move messages separately
which caused the window to flash at a different size or position
while one message was handled before the other.
(clutter_stage_win32_realize): Added PFD_GENERIC_ACCELERATED to
the list of pixel format flags to force it to use hardware
acceleration.
2008-03-30 Neil Roberts <neil@o-hand.com>
* clutter-sections.txt: Added clutter_win32_get_stage_from_window