We'll soon introduce a new gesture tracking framework which heavily
depends on ClutterActions seeing all events of a sequence. For this to
work, a larger change to event delivery is needed: Implicit grabbing of
all events for button and touch press->motion->release sequences to
ensure ClutterActions continue receiving events for the whole sequence.
This commit takes care of that: At the start of an event sequence we
collect all the event-handling actors and actions to a GArray that lives
in the PointerDeviceEntry, and then deliver all events belonging to
that sequence to the same actors/actions until the sequence ends.
To avoid events getting pulled from under our feet when mutters event
filter returns CLUTTER_EVENT_STOP, this also introduces private API
(maybe_lost_implicit_grab()) on ClutterStage so that we can't end up
with stale sequences.
Note that this also slightly changes behavior when it comes to event
delivery to actions: Because we now store actions separated from their
actors, any action returning CLUTTER_EVENT_STOP now stops event
propagation immediately. That was different before, where we'd emit
events to all actions of the actor and only then stop propagation.
Note that this isn't handling ClutterGrabs correctly right now,
this will be a little tricky, so we'll take care of that in a future
commit.
To handle actors getting destroyed or unmapped during a grab, listen to
notify::grab on the deepmost actor in the implicit grab tree. This gives
us a notification when any actor inside the tree goes unmapped.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2342>
_clutter_actor_handle_event() currently allocates a new GPtrArray on the
heap for every single event emission, let's avoid this by keeping an
array around in ClutterStage and reusing that.
This is moving the last few bits of event emission into ClutterStage,
which will be useful when we introduce implicit grabbing in subsequent
commits.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2342>
When we remove a child, we stop its transitions (animations), but we
didn't stop animations on grand children. What we did, however, was to
clear the stage views of the grand children, and this caused a bunch of
orphaned transitions (ClutterTimeline) and accompanied warnings.
Make it so that if we stop transitions, and clear stage views, also stop
transitions for the grand children. Detached children don't have a way
to continue animating anyway, since they have no stage view (thus frame
clock) to be driven by.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2716>
Updating the last_paint_volume while painting has proven itself to be
quite prone to issues: First we had to make sure actors painted by
offscreen effects get their last_paint_volumes updated correctly (see
0320649a1c50993f308344e0dd296abaad0ee6d4), and now a new issue turned up
where we don't update the paint volumes while a fullscreen unredirect is
happening.
To stop those issues from happening and to lay the foundation for using
the last_paint_volume for other things, update the last_paint_volume in
a separate step before painting instead of doing it in
clutter_actor_paint().
To save some resources, avoid introducing another traversal of the
scenegraph and add that step into the existing step of updating the
stage_views lists of actors. To properly update the paint volumes, we
need to do that after finishing the queued redraws, which is why we move
clutter_stage_maybe_finish_queue_redraws() to happen before the new
clutter_stage_finish_layout().
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1699
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1773>
Putting together the redraw clip of the stage never really fitted nicely
with the "queue-redraw" signal emission, it forces us to emit the
signals in a batch and we also use a weird trick to get the old paint
volume that's already on-screen into the final redraw clip (we call
_clutter_actor_propagate_queue_redraw() on the stage).
So start breaking up this association by making the stage explicitely
request the redraw clip from the actor and removing the
ClutterPaintVolume argument from _clutter_actor_finish_queue_redraw().
This is done by adding a private function
clutter_actor_get_redraw_clip() which returns our old (currently
visible) paint volume and the new paint volume.
This also allows removing the check whether a full stage redraw has been
queued in clutter_actor_real_queue_redraw() and we can now just stop the
signal emission if a propagation happened at least once.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1511>
Queueing a redraw with a clip is easy enough and this function is
private anyway, so remove it and call _clutter_actor_queue_redraw_full()
instead in the one function using it.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1527
ClutterRedrawFlags are a way to give Clutter additional context
about what it needs to redraw. There currently is only one flag defined,
CLUTTER_REDRAW_CLIPPED_TO_ALLOCATION, this flag would clip the redraw to
the actors current allocation.
Since ClutterActor also provides the clip_to_allocation property (which
affects the paint volume of the actor instead of only one redraw), the
additional CLIPPED_TO_ALLOCATION flag seems unnecessary. It's also only
defined to be used privately in Clutter, which it never is, so let's
remove it.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1527
Add new private API to ClutterActor, returning TRUE in case the actor is
being painted while unmapped. This is useful for implementations of the
paint() vfunc or for signal handlers of the "notify::mapped" signal.
Use this API in CallyActor to properly detect "notify::mapped" emissions
while painting unmapped, this fixes detecting the case where
painting-unmapped is used for screencasting.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1366
CoglMatrix already is a typedef to graphene_matrix_t. This commit
simply drops the CoglMatrix type, and align parameters. There is
no functional change here, it's simply a find-and-replace commit.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1439
For ClutterText, the resource scale the text is drawn with affects the
size of the allocation: ClutterText will choose a font scale based on
the resource scale, and that font scale can lead to a slight difference
in size compared to the unscaled font.
We currently handle that by queuing a relayout inside the
"resource-scale-changed" signal handler. This solution is a bit
problematic though since it will take one more allocation cycle until
the allocation is actually updated after a scale-change, so the actor is
painted using the wrong allocation for one frame.
Also the current solution can lead to relayout loops in a few cases, for
example if a ClutterText is located near the edge on a 1x scaled monitor
and is moved to intersect a 2x scaled monitor: Now the resource scale
will change to 2 and a new allocation box is calculated; if this
allocation box is slightly smaller than the old one because of the new
font scale, the allocation won't intersect the 2x scaled monitor again
and the resource scale switches back to 1. Now the allocation gets
larger again and intersects the 2x scaled monitor again.
This commit introduces a way to properly support those actors: In case
an actors resource scale might affect its allocation, it should call the
private function clutter_actor_queue_immediate_relayout(). This will
make sure the actor gets a relayout before the upcoming paint happens
afte every resource scale change. Also potential relayout loops can
be handled by the actors themselves using a "phase" argument that's
passed to implementations of the calculate_resource_scale() vfunc.
The new API is private because resource scales are not meant to be used
in a way where the scale affects the allocation. With ClutterText and
the current behavior of Pango, that can't be avoid though, so we need it
anyway.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1276
Since we now always return a resource scale, we can remove the boolean
return value from clutter_actor_get_resource_scale() and
_clutter_actor_get_real_resource_scale(), and instead simply return the
scale.
While at it, also remove the underscore from the
_clutter_actor_get_real_resource_scale() private API.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1276
There are certain rendering techniques and optimizations, for example
the unredirection of non-fullscreen windows, where information about the
output/stage-view an actor is on is needed to determine whether the
optimization can be enabled.
So add a new method to ClutterActor that allows listing the stage-views
the actor is being painted on: clutter_actor_peek_stage_views()
With the way Clutter works, the only point where we can reliably get
this information is during or right before the paint phase, when the
layout phase of the stage has been completed and no more changes to the
actors transformation matrices happen. So to get the stage views the
actor is on, introduce a new step that's done on every master clock tick
between layout and paint cycle: Traversing through the actor tree and
updating the stage-views the mapped actors are going to be painted on.
We're doing this in a separate step instead of inside
clutter_actor_paint() itself for a few reasons: It keeps the code
separate from the painting code, making profiling easier and issues
easier to track down (hopefully), it allows for a new
"stage-views-changed" signal that doesn't interfere with painting, and
finally, it will make it very easy to update the resource scales in the
same step in the future.
Currently, this list is only invalidated on allocation changes of
actors, but not on changes to the transformation matrices. That's
because there's no proper API to invalidate the transformation matrices
ClutterActor implementations can apply through the apply_transform()
vfunc.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1196
When the stage views the stage is shown on are changed, ClutterStage
currently provides a clutter_stage_update_resource_scales() method
that allows invalidating the resource scales of all actors. With the new
stage-views API that's going to be added to ClutterActor, we also need a
method to invalidate the stage-views lists of actors in case the stage
views are rebuilt and fortunately we can re-use the infrastructure for
invalidating resource scales for that.
So since resource scales depend on the stage views an actor is on,
rename clutter_stage_update_resource_scales() and related methods to
clutter_stage_clear_stage_views(), which also covers resource scales.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1196
When clutter actors with key focus are destroyed we emit ::key-focus-out on
them just after their destruction. This is against our assumption that no
signal should be emitted after "::destroy" (see GNOME/mutter!769 [1]), and
in fact could cause the shell to do actions that we won't ever stop on
destroy callback.
To avoid this to happen, use a private function to set its key-state (so we
can avoid looking for the stage) and emit ::key-focus-in/out events and use
this value in both clutter_actor_has_key_focus(),
clutter_actor_grab_key_focus() and on unmap and destruction to unset the
stage key focus before we emit the ::destroy signal.
As result of this, we can now avoid to unset the key focus on actor
destruction in the stage.
[1] https://gitlab.gnome.org/GNOME/mutter/merge_requests/769
Fixes https://gitlab.gnome.org/GNOME/gnome-shell/issues/1704
`_clutter_actor_get_transition` is almost identical to
`clutter_actor_get_transition` and isn't used anywhere in the code (we
stopped using it with ee00e37b), remove it!
https://gitlab.gnome.org/GNOME/mutter/merge_requests/791
Currently, Clutter does picking by drawing with Cogl and reading
the pixel that's beneath the given point. Since Cogl has a journal
that records drawing operations, and has optimizations to read a
single pixel from a list of rectangle, it would be expected that
we would hit this fast path and not flush the journal while picking.
However, that's not the case: dithering, clipping with scissors, etc,
can all flush the journal, issuing commands to the GPU and making
picking slow. On NVidia-based systems, this glReadPixels() call is
extremely costly.
Introduce geometric picking, and avoid using the Cogl journal entirely.
Do this by introducing a stack of actors in ClutterStage. This stack
is cached, but for now, don't use the cache as much as possible.
The picking routines are still tied to painting.
When projecting the actor vertexes, do it manually and take the modelview
matrix of the framebuffer into account as well.
CPU usage on an Intel i7-7700, tested with two different GPUs/drivers:
| | Intel | Nvidia |
| ------: | --------: | -----: |
| Moving the mouse: |
| Before | 10% | 10% |
| After | 6% | 6% |
| Moving a window: |
| Before | 23% | 81% |
| After | 19% | 40% |
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/154,
https://gitlab.gnome.org/GNOME/mutter/issues/691
Helps significantly with: https://gitlab.gnome.org/GNOME/mutter/issues/283,
https://gitlab.gnome.org/GNOME/mutter/issues/590,
https://gitlab.gnome.org/GNOME/mutter/issues/700
v2: Fix code style issues
Simplify quadrilateral checks
Remove the 0.5f hack
Differentiate axis-aligned rectangles
https://gitlab.gnome.org/GNOME/mutter/merge_requests/189
A clutter actor might be painted on a stage view with a view scale
other than 1. In this case, to show the content in full resolution, the
actor must use a higher resolution resource (e.g. texture), which will
be down scaled to the stage coordinate space, then scaled up again to
the stage view framebuffer scale.
Use a 'resource-scale' property to save information and notify when it
changes.
The resource scale is the ceiled value of the highest stage view scale a
actor is visible on. The value is ceiled because using a higher
resolution resource consistently results in better output quality. One
reason for this is that rendering is often not perfectly pixel aligned,
meaning even if we load a resource with a suitable size, due to us still
scaling ever so slightly, the quality is affected. Using a higher
resolution resource avoids this problem.
For situations inside clutter where the actual maximum view scale is
needed, a function _clutter_actor_get_real_resource_scale() is provided,
which returns the non-ceiled value.
Make sure we ignore resource scale computation requests during size
requests or allocation while ensure we've proper resource-scale on
pre-paint.
https://bugzilla.gnome.org/show_bug.cgi?id=765011https://gitlab.gnome.org/GNOME/mutter/merge_requests/3
This is an ABI break, hopefully an unimportant one since this signal/vmethod
is barely overridden.
The signal has been added an extra ClutterPaintVolume argument, and has been
given a boolean return value. The recursion to the parents has been taken
out of the default implementation and into the caller, using the returned
boolean parameter to control further propagation.
Passing the ClutterPaintVolume is easier on performance, as we don't need
setting this pointer as gobject data just to retrieve/unset it further
in propagation.
https://bugzilla.gnome.org/show_bug.cgi?id=782344