Make sure it is only the special modifier (hardcoded to 1 currently)
which is being pressed (not counting locked modifiers) before notifying
that the special modifier is pressed, as we are interested in it being
pressed alone and not in combination with other modifier keys.
This helps in two ways:
- Pressing alt, then ctrl, then releasing both won't trigger the locate
pointer action.
- Pressing alt, then ctrl, then down/up to switch workspace won't interpret
the last up/down keypress as an additional key on top of the special ctrl
modifier, thus won't be forwarded down to the focused client in the last
second.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/812https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1014
If you first press a key that triggers the "special modifier key" paths
(ctrl, super), and then press another key that doesn't match (yet?) any
keybindings (eg. ctrl+alt, super+x), the second key press goes twice
through process_event(), once in the processing of this so far special
combination and another while we let the event through.
In order to keep things consistent, handle it differently depending on
whether we are a wayland compositor or not. For X11, consider the event
handled after the call to process_event() in process_special_modifier_key().
For Wayland, as XIAllowEvents is not the mechanism that allows clients see
the key event, we can just fall through the regular paths, without this
special handling.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1014
Commit 41992757e0 introduced a change to use CoglContext.glFenceSync
but this method is only available when GL_ARB_sync is defined (as
defined on gl-prototypes/cogl-all-functions.h).
This change fixes that.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1123
There is a race where an output can be used as a fullscreen target, but
it has already been removed due to a hotplug. Handle this gracefully by
ignoring said output in such situations.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1120
To keep consistent and avoid confusion, rename the function:
`meta_window_x11_buffer_rect_to_frame_rect()`
to:
`meta_window_x11_surface_rect_to_frame_rect()`
As this function doesn't deal with the `window->buffer_rect` at all.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1091
The code in `build_and_scan_frame_mask` predates the introduction of the
`MetaShapedTexture` API to get the texture width hand height.
Use the new `meta_shaped_texture_get_width/height` API instead of using
the CoGL paint texture.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1091
For X11 clients running on Wayland, the actual texture is set by
Xwayland.
The shape, input and opaque regions, however are driven by X11
properties meaning that those may come at a different time than the
actual update of the content.
This results in black areas being visible at times on resize with
Xwayland clients.
To make sure we update all the regions at the same time the buffer is
updated, update the shape, input and opaque regions when the texture is
committed from when the Xwayland surface state is synchronized.
That fixes the remaining black areas being sometimes visible when
resizing client-side decorations windows on Xwayland.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/1007https://gitlab.gnome.org/GNOME/mutter/merge_requests/1091
For X11 clients running on Xwayland, the opaque, input and shape regions
are processed from different properties and may occur at a different
time, before the actual buffer is eventually committed by Xwayland.
Add a new API `update_regions` to window actor to trigger the update of
those regions when needed.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1091
Commit 7dbb4bc3 cached the client area when the client was frozen.
This is not sufficient though, because the buffer size might still be
lagging waiting for the buffer from Xwayland to be committed.
So instead of caching the client size from the expected size, deduce the
client area rectangle from the surface size, like we did for the frame
bounds in commit 1ce933e2.
This partly reverts commit 7dbb4bc3 - "window-actor/x11: Cache the
client area"
https://gitlab.gnome.org/GNOME/mutter/issues/1007https://gitlab.gnome.org/GNOME/mutter/merge_requests/1091
Listen for GPU hotplug events to initialize their cursor support.
This fixes one reason for why DisplayLink devices may not be using a hardware
cursor. Particularly, when a DisplayLink device is hotplugged for the first
time such that EVDI creates a new DRM device node after gnome-shell has already
started, we used to forget to initialize the cursor support.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1097
Extract the code to initialize a single GPU cursor support into its own
function. The new function will be used by GPU hotplug in the future.
This is a pure refactoring without any behavioral changes.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1097
For every stream src, we created and attached a GSource. Upon stream
src destruction, we g_source_destroy():ed the GSource. What
g_source_destroy() does, hawever, is not really "destroy" it but only
detaches it from the main context removing the reference the context had
added for it via g_source_attach(). This caused the GSource to leak,
although in a detached state, as the reference taken on creation was
still held.
Fix this by also removing our own reference to it when finalizing.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1106
PipeWire will be unable to dequeue a buffer if all are already busy.
This can happen for valid reasons, e.g. the stream consumer not being
fast enough, so don't complain in the journal if it happens.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1115
While we will always have cursor planes, as we'll currently create fake
ones when real ones are missing (See #1058), eventually we will run into
situations where we can't create fake ones, for example for atomic KMS
drivers that don't advertise any cursor planes.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1079
If we don't force the placement, we enter the constrain machinery with
the position (0, 0), meaning we always get the "current work area" setup
to correspond to whatever logical monitor was at that position.
Avoid this by doing the same as "meta_window_force_placement()" and set
"window->calc_placement" to TRUE while move-resizing, causing the
move-resize to first calculate the initial position.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/1098https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1110
This commit completes the implementation of `xdg_wm_base` version 3,
which introduces support for synchronized implicit and explicit popup
repositioning.
Explicit repositioning works by the client providing a new
`xdg_positioner` object via a new request `xdg_popup.reposition`. If the
repositioning is done in combination with the parent itself being
reconfigured, the to be committed state of the parent is provided by the
client via the `xdg_positioner` object, using
`xdg_positioner.set__parent_configure`.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
This sets the `is_reactive` flag on the window placement rules, causing
the popups to be reconfigured as they are affected by environmental
changes, such as the parent moving in a way making the popup partially
offscreen.
As with synchronization, the implementation is dormant, as the
version of the advertised global isn't bumped yet, as the new protocol
version is not yet fully implemented.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
This commits adds support on the MetaWindow and constraints engine side
for asynchronously repositioning a window with a placement rule, either
due to environmental changes (e.g. parent moved) or explicitly done so
via `meta_window_update_placement_rule()`.
This is so far unused, as placement rules where this functionality is
triggered are not yet constructed by the xdg-shell implementation, and
no users of `meta_window_update_placement_rule()` exists yet.
To summarize, it works by making it possible to produce placement rules
with the parent rectangle a window should be placed against, while
creating a pending configuration that is not applied until acknowledged
by the client using the xdg-shell configure/ack_configure mechanisms.
An "temporary" constrain result is added to deal with situations
where the client window *must* move immediately even though it has not yet
acknowledged a new configuration that was sent. This happens for example
when the parent window is moved, causing the popup window to change its
relative position e.g. because it ended up partially off-screen. In this
situation, the temporary position corresponds to the result of the
movement of the parent, while the pending (asynchronously configured)
position is the relative one given the new constraining result.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
MetaGravity is an enum, where the values match the X11 macros used for
gravity, with the exception that `ForgetGravity` was renamed
`META_GRAVITY_NONE` to have less of a obscure name.
The motivation for this is to rely less on libX11 data types and macros
in generic code.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
A placement rule placed window positions itself relative to its parent,
thus converting between relative coordinates to absolute coordinates,
then back to relative coordinates implies unwanted restrictions for
example when the absolute coordinate should not be calculated againts
the current parent window position.
Deal with this by keeping track of the relative position all the way
from the constraining engine to the move-resize window implementation.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
To organize things a bit better, put the fields related to the placement
rule state in its own anonymous struct inside MetaWindow. While at it,
rename the somewhat oddly named variable that in practice means the
current relative window position.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
After popup placement rules have gone through the constraints engine has
ended up resulting in an actual move, pass the window configuration down
the path using relative coordinates, as that is what the next layer
(xdg-shell implementation) actually cares about.
In the future, this will also be helpful when the configured position is
not against the current state of the parent.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
A placement rule is always about placing a window relative to its
parent. In order to eventually place it against predicted future parent
positions, make the placement rule processing output relative
coordinates, having the caller deal with turning them into absolute.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
meta_window_wayland_finish_move_resize() inhibited window moves to be
finished if there was a resize grab active at the time, in order to
handle window resizing. Change this to only affect the grabbed window
itself, so that e.g. a popup can be positioned according to a pending
configuration while there is an active resize grab.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
This is made a signal, so the upper layers (read: gnome-shell) may
decide what services to spawn. The signal argument contains a task
that will resume MetaX11Display startup after it is returned upon.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/945