Simplify the bo freeing functions by not checking what the copy mode is. This
matches what swap_secondary_drm_fb () already does. g_clear_object () is safe
to call even if the value is already NULL.
The copy mode does not change mid-operation. If it did, this change would
ensure we still clean up everything. So this is more future-proof too.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/810
To mirror what happens in meta_onscreen_native_swap_buffers_with_damage(), warn
here too if next_fb is not NULL. This makes it clear to the reader of what the
expectations are inside this function.
Ensuring next_fb is NULL as the first thing in the function will make all error
paths equal: no longer some failures reset next_fb while others don't. Removing
such special cases should reduce surprises.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/810
If we end up trying to do a mode set on a DRM state that has already
changed behind our back without us yet having seen the hotplug event we
may fail with `EINVAL`. Since the renderer layer doesn't handle mode set
failure, it'll still try to page flip later on, which will then also
fail. When failing, it'll try to look up the cached mode set in order to
retry the mode set later on, as is needed to handle other error
conditions. However, if the mode set prior to the page flip failed, we
won't cache the mode set, and the page flip error handling code will get
confused.
Instead of asserting that a page flip always has a valid cached mode set
ready to look up, handle it being missing more gracefully by failing to
mode set. It is expected that things will correct themself as there
should be a hotplug event waiting around the the corner, to reconfigure
the monitor configuration setting new modes.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/917https://gitlab.gnome.org/GNOME/mutter/merge_requests/1007
The method `relative_motion_across_outputs` is used to adjust the
distance/delta of a mouse movement across multiple monitors to take the
different scale factors of those monitors into account. This works by
getting the adjacent monitors that the movement-line/vector intersects
with and adjusting the final position (or end point of the
movement-line) by multiplying the parts of the line spanning across
different monitors with the scale factors of those monitors.
In the end of this calculation, we always want to set the new end
coordinates of the relative motion to the new end coordinates of the
adjusted movement-line. We currently only do that if all adjacent
monitors the line is crossing actually exist, because only then we end
up inside the "We reached the dest logical monitor" else-block and set
`x` and `y` to the correct values. Fix that and make sure the returned
values are also correct in case an adjacent monitor doesn't exist by
adding separate `target_x` and `target_y` variables which we update during
each pass of the while loop so we're always prepared for the while loop
exiting before the destination monitor was found.
Thanks to Axel Kittenberger for reporting the initial bug and tracking
the issue down to `relative_motion_across_outputs`.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/774
Presumably this function is supposed to be like
meta_kms_impl_simple_handle_page_flip_callback() but the condition in the
if-statement is inverted. Fix the inversion to make these two functions look
alike.
This is part 2 of 2 fixing a complete desktop freeze when drmModePageFlip()
fails with EINVAL and the fallback to drmModeSetCrtc() succeeds but the success
is not registered correctly as completed "flip". The freeze occurs under
wait_for_pending_flips() which calls down into meta_kms_impl_device_dispatch()
which ends up poll()'ing the DRM fd even though drmModeSetCrtc() will not
produce a DRM event, hence the poll() never returns. The freeze was observed
when hotplugging a DisplayLink dock for the first time on Ubuntu 19.10.
This patch makes meta_set_fallback_feedback_idle() actually end up calling into
notify_view_crtc_presented() which decrements
secondary_gpu_state->pending_flips so that wait_for_pending_flips() can finish.
CC stable: gnome-3-34
https://gitlab.gnome.org/GNOME/mutter/merge_requests/953
mode_set_fallback() schedules a call to mode_set_fallback_feedback_idle(), but
it is possible for Mutter to repaint before the idle callbacks are dispatched.
If that happens, mode_set_fallback_feedback_idle() does not get called before
Mutter enters wait_for_pending_flips(), leading to a deadlock.
Add the needed interfaces so that meta_kms_device_dispatch_sync() can flush all
the implementation idle callbacks before it checks if any "events" are
available. This prevents the deadlock by ensuring
mode_set_fallback_feedback_idle() does get called before potentially waiting
for actual DRM events.
Presumably this call would not be needed if the implementation was running in
its own thread, since it would eventually dispatch its idle callbacks before
going to sleep polling on the DRM fd. This call might even be unnecessary
overhead in that case, synchronizing with the implementation thread needlessly.
But the thread does not exist yet, so this is needed for now.
This is part 1 of 2 fixing a complete desktop freeze when drmModePageFlip()
fails with EINVAL and the fallback to drmModeSetCrtc() succeeds but the success
is not registered correctly as completed "flip". The freeze occurs under
wait_for_pending_flips() which calls down into meta_kms_impl_device_dispatch()
which ends up poll()'ing the DRM fd even though drmModeSetCrtc() will not
produce a DRM event, hence the poll() never returns. The freeze was observed
when hotplugging a DisplayLink dock for the first time on Ubuntu 19.10.
CC stable: gnome-3-34
https://gitlab.gnome.org/GNOME/mutter/merge_requests/953
This is inspired by 98892391d7 where the usage of
`g_signal_handler_disconnect()` without resetting the corresponding
handler id later resulted in a bug. Using `g_clear_signal_handler()`
makes sure we avoid similar bugs and is almost always the better
alternative. We use it for new code, let's clean up the old code to
also use it.
A further benefit is that it can get called even if the passed id is
0, allowing us to remove a lot of now unnessecary checks, and the fact
that `g_clear_signal_handler()` checks for the right type size, forcing us
to clean up all places where we used `guint` instead of `gulong`.
No functional changes intended here and all changes should be trivial,
thus bundled in one big commit.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/940
Properly take the panel_orientation_transform into account in
update_monitor_crtc_cursor. This fixes us sometimes drawing the cursor
on two monitors at the same time as we did not properly swap the crtc
width/height when a panel_orientation_transform is active.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/927
Create the intermediate shadow framebuffer for use exclusively when a
shadowfb is required.
Keep the previous offscreen framebuffer is as an intermediate
framebuffer for transformations only.
This way, we can apply transformations between in-memory framebuffers
prior to blit the result to screen, and achieve acceptable performance
even with software rendering on discrete GPU.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/877
If we did a mode set, the gamma may have been changed by the kernel, and
if we didn't also update the gamma in the same transaction, we have no
way to predict the current gamma ramp state. In this case, read the
gamma state directly from KMS.
This should be relatively harmless regarding the race conditions the
state prediction was meant to solve, as the worst case is we get none or
out of date gamma ramps; and since this is for when gamma ramps are not
updated at mode setting time, we'd get intermediate gamma state to begin
with, so it's not worse than what we currently do anyway.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/851https://gitlab.gnome.org/GNOME/mutter/merge_requests/840
We can't just update the state of the connector and CRTC from KMS since
it might contain too new updates, e.g. from a from a future hot plug. In
order to not add ad-hoc hot plug detection everywhere, predict the state
changes by looking inside the MetaKmsUpdate object, and let the hot-plug
state changes happen after the actual hot-plug event.
This fixes issues where connectors were discovered as disconnected while
doing a mode-set, meaning assumptions about the connectedness of
monitors elsewhere were broken until the hot plug event was processed.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/782https://gitlab.gnome.org/GNOME/mutter/merge_requests/826
It was not the lack of forcing the shadow fb that caused slowness, but
rather due to the method the shadow fb content was copied onto the
scanout fb. With 'clutter: Use cogl_blit_framebuffer() for shadow FB'
we'll use a path that shouldn't be slow when copying onto the scanout
fb.
Also 437f6b3d59 accidentally enabled
shadow fb when using hw accelerated contexts, due to the cap being set
to 1 in majority of drivers. While the kernel documentation for the
related field says "hint to userspace to prefer shadow-fb rendering",
the name of the hint when exposed to userspace is
DRM_CAP_DUMB_PREFER_SHADOW, thus should only be taken into consideration
for dumb buffers, not rendering in general.
This reverts commit 437f6b3d59.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/818
The commit 'renderer/native: Use shadow fb on software GL if preferred'
attempted to force using a shadow fb when using llvmpipe in order to
speed up blending, but instead only did so when llvmpipe AND the drm
device explicityl asked for it.
Now instead always force it for llvmpipe and other software rendering
backends, and otherwise just query the drm device (i.e.
DRM_CAP_DUMB_PREFER_SHADOW).
https://gitlab.gnome.org/GNOME/mutter/merge_requests/807
When suspending, the devices are removed and the virtual device
associated with the corresponding core pointer is disposed.
Add the pointer accessibility virtual device to the core pointer
on resume to restore pointer accessibility on resume if enabled.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/761
The end goal is to have all clutter backend code in src/backends. Input
is the larger chunk of it, which is now part of our specific
MutterClutterBackendNative, this extends to device manager, input devices,
tools and keymap.
This was supposed to be nice and incremental, but there's no sane way
to cut this through. As a result of the refactor, a number of private
Clutter functions are now exported for external backends to be possible.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/672
Add meta-kms and meta-monitor-manager-kms listener for the udev
device-removed signal and on this signal update the device state /
re-enumerate the monitors, so that the monitors properly get updated
to disconnected state on GPU removal.
We really should also have meta-backend-native remove the GPU itself
from our list of GPU objects. But that is more involved, see:
https://gitlab.gnome.org/GNOME/mutter/issues/710
This commit at least gets us to a point where we properly update the
list of monitors when a GPU gets unplugged; and where we no longer
crash the first time the user changes the monitor configuration after
a GPU was unplugged.
Specifically before this commit we would hit the first g_error () in
meta_renderer_native_create_view () as soon as some monitor
(re)configuration is done after a GPU was unplugged.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/713
drmModeGetConnector may fail and return NULL, this may happen when
a connector is removed underneath us (which can happen with e.g.
DP MST or GPU hot unplug).
Deal with this by skipping the connector when enumerating and by
assuming it is disconnected when checking its connection state.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/713
drmModeGetCrtc may fail and return NULL. This will trigger when
meta_kms_crtc_update_state gets called from meta_kms_update_states_sync
after a GPU has been unplugged leading to a NULL pointer deref causing
a crash.
This commit fixes this by checking for NULL and clearing the current_state
when NULL is returned.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/713
Before this commit meta_kms_crtc_read_state was overwriting the
entire MetaKmsCrtcState struct stored in crtc->current_state including
the gamma (sub)struct.
This effectively zero-s the gamma struct each time before calling
read_gamma_state, setting the pointers where the previous gamma values
were stored to NULL without freeing the memory. Luckily this zero-ing
also sets gamma.size to 0, causing read_gamma_state to re-alloc the
arrays on each meta_kms_crtc_update_state call. But this does mean that
were leaking the old gamma arrays on each meta_kms_crtc_update_state call.
This commit fixes this by making meta_kms_crtc_read_state only overwrite
the other values in the MetaKmsCrtcState struct and leaving the gamma
sub-struct alone, this will make read_gamma_state correctly re-use the
gamma tables if the gamma table size is unchanged; or re-alloc them
(freeing the old ones) if the size has changed, fixing the memory leak.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/713
The "device-added" signal should use g_cclosure_marshal_VOID__OBJECT not
g_cclosure_marshal_VOID__VOID.
Instead of fixing this manually, simply replace the closure function for
both signals with NULL, glib will then automatically set the correct
va_marshaller.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/713