COPY_MODE_PRIMARY has two paths, automatically chosen. For debugging purposes,
e.g. why is my DisplayLink screen slowing down the whole desktop, it will be
useful to know which copy path is taken. Debug prints are added to both when
the primary GPU copy succeeds the first time and when it fails the first time.
This is not the full truth, because theoretically the success/failure could
change every frame, but we don't want to spam the logs (even in debug mode)
every frame. In practise, it should be rare for the success or failure to ever
change. Hence, saying what happened on the first time is enough. This does
indicate if it ever changes even once, too, so we know if that unexpected thing
happens.
The debug prints are per secondary GPU since there could be several.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/615
When the preferred path META_SHARED_FRAMEBUFFER_COPY_MODE_SECONDARY_GPU cannot
be used, as is the case for e.g. DisplayLink devices which do not actually have
a GPU, try to use the primary GPU for the copying before falling back to
read-pixels which is a CPU copy.
When the primary GPU copy works, it should be a significant performance win
over the CPU copy by avoiding stalling libmutter for the duration.
This also renames META_SHARED_FRAMEBUFFER_COPY_MODE_* because the new names are
more accurate. While the secondary GPU copy is always a GPU copy, the primary
copy might be either a CPU or a GPU copy.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/615
This bit of code was more or less duplicated in meta-renderer-native-gles3.c
and meta-wayland-dma-buf.c. Start consolidating the two implementations by
moving the *-gles3.c function into meta-egl.c and generalizing it so it could
also accommodate the meta-wayland-dma-buf.c usage.
The workaround in the *-gles3.c implementation is moved to the caller. It is
the caller's responsibility to check for the existence of the appropriate EGL
extensions.
Commit 6f59e4858e worked around the lack of
EGL_EXT_image_dma_buf_import_modifiers with the assumption that if the modifier
is linear, there is no need to pass it into EGL. The problem is that not
passing a modifier explicitly to EGL invokes implementation-defined behaviour,
so we should not have that workaround in meta-egl.c.
This patch intends to be pure refactoring, no behavioral changes. The one
change is the addition of g_assert to catch overwriting arbitrary memory.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/615
We currently don't handle the lack of DRM_CLIENT_CAP_UNIVERSAL_PLANES
KMS capability. Fail constructing a device that can't handle this up
front, so later made assumptions, such as presence of a primary plane,
are actually valid.
If we want to support lack of said capability, the required planes need
to be emulated by a dummy MetaKmsPlane object.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/665
There were fallbacks in place in case IN_FORMATS didn't yield any usable
formats: the formats in the drmModePlane struct, and a hard coded array.
The lack of these fallbacks in place could result in a segfault as code
using the supported plane formats assumed there were at least something
in there.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/662
Simplify the call site a bit and make the native renderer know it should
queue mode reset itself when views have been rebuilt. This is done
partly due to more things needing to be dealt with after views have been
rebuilt.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/630
When building without EGL device support, the following compiler warning
is seen:
```
src/backends/native/meta-renderer-native.c:2637:20: warning: unused
variable ‘cogl_renderer_egl’ [-Wunused-variable]
```
Fix the warning by placing the relevant variable declarations within the
`#ifdef HAVE_EGL_DEVICE/#endif` statement.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/656
We used to have wayland-specific paths for this in src/wayland, now we
have ClutterKeymap that we can rely on in order to do state tracking,
and can do this all on src/backend domain.
This accomodates the feature in common code, so will work on both
Wayland and X11.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/590
This commit introduces, and makes use of, a transactional API used for
setting up KMS state, later to be applied, potentially atomically. From
an API point of view, so is always the case, but in the current
implementation, it still uses legacy drmMode* API to apply the state
non-atomically.
The API consists of various buliding blocks:
* MetaKmsUpdate - a set of configuration changes, the higher level
handle for handing over configuration to the impl backend. It's used to
set mode, assign framebuffers to planes, queue page flips and set
connector properties.
* MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane.
Currently used to map a framebuffer to the primary plane of a CRTC. In
the legacy KMS implementation, the plane assignment is used to derive
the framebuffer used for mode setting and page flipping.
This also means various high level changes:
State, excluding configuring the cursor plane and creating/destroying
DRM framebuffer handles, are applied in the end of a clutter frame, in
one go. From an API point of view, this is done atomically, but as
mentioned, only the non-atomic implementation exists so far.
From MetaRendererNative's point of view, a page flip now initially
always succeeds; the handling of EBUSY errors are done asynchronously in
the MetaKmsImpl backend (still by retrying at refresh rate, but
postponing flip callbacks instead of manipulating the frame clock).
Handling of falling back to mode setting instead of page flipping is
notified after the fact by a more precise page flip feedback API.
EGLStream based page flipping relies on the impl backend not being
atomic, as the page flipping is done in the EGLStream backend (e.g.
nvidia driver). It uses a 'custom' page flip queueing method, keeping
the EGLStream logic inside meta-renderer-native.c.
Page flip handling is moved to meta-kms-impl-device.c from
meta-gpu-kms.c. It goes via an extra idle callback before reaching
meta-renderer-native.c to make sure callbacks are invoked outside of the
impl context.
While dummy power save page flipping is kept in meta-renderer-native.c, the
EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the
frame clock, actual page flip callbacks are postponed until all EBUSY retries
have either succeeded or failed due to some other error than EBUSY. This
effectively inhibits new frames to be drawn, meaning we won't stall waiting on
the file descriptor for pending page flips.
https://gitlab.gnome.org/GNOME/mutter/issues/548https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
The MetaKmsImpl implementation may need to add a GSource that should be
invoked in the right context; e.g. a idle callback, timeout etc. It
cannot just add it itself, since it's the responsibility of MetaKms to
determine what is the impl context and what is the main context, so add
API to MetaKms to ensure the callback is invoked correctly.
It's the responsibility of the caller to eventually remove and destroy
the GSource.
https://gitlab.gnome.org/GNOME/mutter/issues/548https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
As with CRTC state, variable connector state is now fetched via the
MetaKmsConnector. The existance of a connector state is equivalent of
the connector being connected. MetaOutputKms is changed to fetch
variable connector state via MetaKmsConnector intsead of KMS directly.
The drmModeConnector is still used for constructing the MetaOutputKms to
find properties used for applying configuration.
https://gitlab.gnome.org/GNOME/mutter/issues/548https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
Move reading state into a struct for MetaCrtcKms to use instead of
querying KMS itself. The state is fetched in the impl context, but
consists of only simple data types, so is made accessible publicly. As
of this, MetaCrtcKms construction does not involve any manual KMS
interaction outside of the MetaKms abstraction.
https://gitlab.gnome.org/GNOME/mutter/issues/548https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
Represents drmModeConnector; both connected and disconnected. Currently
only provides non-changing meta data. MetaOutputKms is changed to use
MetaKmsConnector to get basic metadata, but variable metadata, those
changing depending on what is connected (e.g. physical dimension, EDID,
etc), are still manually retrieved by MetaOutputKms.
https://gitlab.gnome.org/GNOME/mutter/issues/548https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
A plane is one of three possible: primary, overlay and cursor. Each
plane can have various properties, such as possible rotations, formats
etc. Each plane can also be used with a set of CRTCs.
A primary plane is the "backdrop" of a CRTC, i.e. the primary output for
the composited frame that covers the whole CRTC. In general, mutter
composites to a stage view frame onto a framebuffer that is then put on
the primary plane.
An overlay plane is a rectangular area that can be displayed on top of
the primary plane. Eventually it will be used to place non-fullscreen
surfaces, potentially avoiding stage redraws.
A cursor plane is a plane placed on top of all the other planes, usually
used to put the mouse cursor sprite.
Initially, we only fetch the rotation properties, and we so far
blacklist all rotations except ones that ends up with the same
dimensions as with no rotations. This is because non-180° rotations
doesn't work yet due to incorrect buffer modifiers. To make it possible
to use non-180° rotations, changes necessary include among other things
finding compatible modifiers using atomic modesetting. Until then,
simply blacklist the ones we know doesn't work.
https://gitlab.gnome.org/GNOME/mutter/issues/548https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
Add MetaKmsCrtc to represent a CRTC on the associated device. Change
MetaCrtcKms to use the ones discovered by the KMS abstraction. It still
reads the resources handed over by MetaGpuKms, but eventually it will
use only MetaKmsCrtc.
MetaKmsCrtc is a type of object that is usable both from an impl task
and from outside. All the API exposed via the non-private header is
expected to be accessible from outside of the meta-kms namespace.
https://gitlab.gnome.org/GNOME/mutter/issues/548https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
The intention with KMS abstraction is to hide away accessing the drm
functions behind an API that allows us to have different kind of KMS
implementations, including legacy non-atomic and atomic. The intention
is also that the code interacting with the drm device should be able to
be run in a different thread than the main thread. This means that we
need to make sure that all drm*() API usage must only occur from within
tasks that eventually can be run in the dedicated thread.
The idea here is that MetaKms provides a outward facing API other places
of mutter can use (e.g. MetaGpuKms and friends), while MetaKmsImpl is
an internal implementation that only gets interacted with via "tasks"
posted via the MetaKms object. These tasks will in the future
potentially be run on the dedicated KMS thread. Initially, we don't
create any new threads.
Likewise, MetaKmsDevice is a outward facing representation of a KMS
device, while MetaKmsImplDevice is the corresponding implementation,
which only runs from within the MetaKmsImpl tasks.
This commit only moves opening and closing the device to this new API,
while leaking the fd outside of the impl enclosure, effectively making
the isolation for drm*() calls pointless. This, however, is necessary to
allow gradual porting of drm interaction, and eventually the file
descriptor in MetaGpuKms will be removed. For now, it's harmless, since
everything still run in the main thread.
https://gitlab.gnome.org/GNOME/mutter/issues/548https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
Fix the following compiler warning:
../src/backends/native/meta-renderer-native.c: In function ‘meta_renderer_native_create_view’:
/usr/include/glib-2.0/glib/gmacros.h:523:17: warning: ‘formats’ may be used uninitialized in this function [-Wmaybe-uninitialized]
523 | { if (_ptr) (cleanup) ((ParentName *) _ptr); } \
| ^
../src/backends/native/meta-renderer-native.c:773:22: note: ‘formats’ was declared here
773 | g_autoptr (GArray) formats;
| ^~~~~~~
https://gitlab.gnome.org/GNOME/mutter/merge_requests/632
Make sure to destroy the EGL surface after releasing held buffers,
otherwise we'll get the following valgrind warnings:
==24016== Invalid read of size 8
==24016== at 0x1739943F: release_buffer (platform_drm.c:73)
==24016== by 0x49AC355: meta_drm_buffer_gbm_finalize (meta-drm-buffer-gbm.c:213)
==24016== by 0x4B75B61: g_object_unref (gobject.c:3346)
==24016== by 0x49B4B41: free_current_bo (meta-renderer-native.c:991)
==24016== by 0x49B816F: meta_renderer_native_release_onscreen (meta-renderer-native.c:2971)
==24016== by 0x5209441: _cogl_onscreen_free (cogl-onscreen.c:167)
==24016== by 0x5208D81: _cogl_object_onscreen_indirect_free (cogl-onscreen.c:51)
==24016== by 0x51C8066: _cogl_object_default_unref (cogl-object.c:103)
==24016== by 0x5207989: _cogl_framebuffer_unref (cogl-framebuffer.c:1814)
==24016== by 0x51C80B1: cogl_object_unref (cogl-object.c:115)
==24016== by 0x53673C7: clutter_stage_view_dispose (clutter-stage-view.c:304)
==24016== by 0x4B75AF2: g_object_unref (gobject.c:3309)
==24016== Address 0x18e742a8 is 536 bytes inside a block of size 784 free'd
==24016== at 0x4839A0C: free (vg_replace_malloc.c:540)
==24016== by 0x17399764: dri2_drm_destroy_surface (platform_drm.c:231)
==24016== by 0x1738550A: eglDestroySurface (eglapi.c:1145)
==24016== by 0x5440286: eglDestroySurface (in /home/jonas/Dev/gnome/install/lib/libEGL.so.1.1.0)
==24016== by 0x49613A5: meta_egl_destroy_surface (meta-egl.c:432)
==24016== by 0x49B80F9: meta_renderer_native_release_onscreen (meta-renderer-native.c:2954)
==24016== by 0x5209441: _cogl_onscreen_free (cogl-onscreen.c:167)
==24016== by 0x5208D81: _cogl_object_onscreen_indirect_free (cogl-onscreen.c:51)
==24016== by 0x51C8066: _cogl_object_default_unref (cogl-object.c:103)
==24016== by 0x5207989: _cogl_framebuffer_unref (cogl-framebuffer.c:1814)
==24016== by 0x51C80B1: cogl_object_unref (cogl-object.c:115)
==24016== by 0x53673C7: clutter_stage_view_dispose (clutter-stage-view.c:304)
==24016== Block was alloc'd at
==24016== at 0x483AB1A: calloc (vg_replace_malloc.c:762)
==24016== by 0x173997AE: dri2_drm_create_window_surface (platform_drm.c:145)
==24016== by 0x17388906: _eglCreateWindowSurfaceCommon (eglapi.c:929)
==24016== by 0x5440197: eglCreateWindowSurface (in /home/jonas/Dev/gnome/install/lib/libEGL.so.1.1.0)
==24016== by 0x49612FF: meta_egl_create_window_surface (meta-egl.c:396)
==24016== by 0x49B752E: meta_renderer_native_create_surface_gbm (meta-renderer-native.c:2538)
==24016== by 0x49B7E6C: meta_onscreen_native_allocate (meta-renderer-native.c:2870)
==24016== by 0x49B8BCF: meta_renderer_native_create_view (meta-renderer-native.c:3387)
==24016== by 0x48D274B: meta_renderer_create_view (meta-renderer.c:78)
==24016== by 0x48D27DE: meta_renderer_rebuild_views (meta-renderer.c:111)
==24016== by 0x49BB4FB: meta_stage_native_rebuild_views (meta-stage-native.c:142)
==24016== by 0x49A733C: meta_backend_native_update_screen_size (meta-backend-native.c:517)
https://gitlab.gnome.org/GNOME/mutter/merge_requests/622
When making a new surface/context pair current, mesa may want to flush
the old context. Make sure we don't try to flush any freed memory by
unmaking a surface/context pair current before freeing it.
Not doing this results in the following valgrind warnings:
==15986== Invalid read of size 8
==15986== at 0x69A6D80: dri_flush_front_buffer (gbm_dri.c:92)
==15986== by 0x1750D458: intel_flush_front (brw_context.c:251)
==15986== by 0x1750D4BB: intel_glFlush (brw_context.c:296)
==15986== by 0x1739D8DD: dri2_make_current (egl_dri2.c:1461)
==15986== by 0x17393A3A: eglMakeCurrent (eglapi.c:869)
==15986== by 0x54381FB: InternalMakeCurrentVendor (in /home/jonas/Dev/gnome/install/lib/libEGL.so.1.1.0)
==15986== by 0x5438515: eglMakeCurrent (in /home/jonas/Dev/gnome/install/lib/libEGL.so.1.1.0)
==15986== by 0x522A782: _cogl_winsys_egl_make_current (cogl-winsys-egl.c:303)
==15986== by 0x49B64C8: meta_renderer_native_create_view (meta-renderer-native.c:3076)
==15986== by 0x48D26E7: meta_renderer_create_view (meta-renderer.c:78)
==15986== by 0x48D277A: meta_renderer_rebuild_views (meta-renderer.c:111)
==15986== by 0x49BF46E: meta_stage_native_rebuild_views (meta-stage-native.c:142)
==15986== Address 0x1b076600 is 0 bytes inside a block of size 48 free'd
==15986== at 0x4839A0C: free (vg_replace_malloc.c:540)
==15986== by 0x49B59F3: meta_renderer_native_release_onscreen (meta-renderer-native.c:2651)
==15986== by 0x5211441: _cogl_onscreen_free (cogl-onscreen.c:167)
==15986== by 0x5210D81: _cogl_object_onscreen_indirect_free (cogl-onscreen.c:51)
==15986== by 0x51D0066: _cogl_object_default_unref (cogl-object.c:103)
==15986== by 0x520F989: _cogl_framebuffer_unref (cogl-framebuffer.c:1814)
==15986== by 0x51D00B1: cogl_object_unref (cogl-object.c:115)
==15986== by 0x536F3C7: clutter_stage_view_dispose (clutter-stage-view.c:304)
==15986== by 0x4B7DAF2: g_object_unref (gobject.c:3309)
==15986== by 0x4A9596C: g_list_foreach (glist.c:1013)
==15986== by 0x4A9599A: g_list_free_full (glist.c:223)
==15986== by 0x48D2737: meta_renderer_rebuild_views (meta-renderer.c:100)
==15986== Block was alloc'd at
==15986== at 0x483AB1A: calloc (vg_replace_malloc.c:762)
==15986== by 0x69A76B2: gbm_dri_surface_create (gbm_dri.c:1252)
==15986== by 0x69A6BFE: gbm_surface_create (gbm.c:600)
==15986== by 0x49B4E29: meta_renderer_native_create_surface_gbm (meta-renderer-native.c:2221)
==15986== by 0x49B57DB: meta_onscreen_native_allocate (meta-renderer-native.c:2569)
==15986== by 0x49B6423: meta_renderer_native_create_view (meta-renderer-native.c:3062)
==15986== by 0x48D26E7: meta_renderer_create_view (meta-renderer.c:78)
==15986== by 0x48D277A: meta_renderer_rebuild_views (meta-renderer.c:111)
==15986== by 0x49BF46E: meta_stage_native_rebuild_views (meta-stage-native.c:142)
==15986== by 0x49A75B5: meta_backend_native_update_screen_size (meta-backend-native.c:520)
==15986== by 0x48B01BB: meta_backend_sync_screen_size (meta-backend.c:224)
==15986== by 0x48B09B7: meta_backend_real_post_init (meta-backend.c:501)
https://gitlab.gnome.org/GNOME/mutter/merge_requests/622
Currently the EGLDevice code gets the display and calls eglInitialize.
As a follow-up it checks the required EGL extensions - technically it
could check the EGL device extensions earlier.
In either case, eglTerminate is missing. Thus the connection to the
display was still bound.
This was highlighted with Mesa commit d6edccee8da ("egl: add
EGL_platform_device support") + amdgpu.
In that case, since the eglTerminate is missing, we end up reusing the
underlying amdgpu_device due to some caching in libdrm_amdgpu. The
latter in itself being a good solution since it allows buffer sharing
across primary and render node of the same device.
Note: we should really get this in branches all the way back to 3.30.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/619
Fixes: 934184e23 ("MetaRendererNative: Add EGLDevice based rendering support")
Cc: Jonas Ådahl <jadahl@gmail.com>
Signed-off-by: Emil Velikov <emil.velikov@collabora.com>
Extract the next buffer -logic into a new function. This allows to
simplify copy_shared_framebuffer_cpu () making it more readable.
This change is a pure refactoring, no functional changes.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/593
There is no reason why we should have an internal type enum when we have
all the infrastructure to just use multiple GObject types. Also there
was no code sharing between the old "types", the only common API was
getting the framebuffer ID, so lets make that a vfunc.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/584
Since "renderer/native: make EGL initialization failure not fatal" it is
possible, under specific failure conditions, to end up with a primary GPU whose
EGL initialization failed. That cannot work.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/521
The failure to initialize EGL does not necessarily mean the KMS device cannot
be used. The device could still be used as a "secondary GPU" with the CPU copy
mode.
If meta_renderer_native_create_renderer_gpu_data () fails,
meta_renderer_native_get_gpu_data () will return NULL, which may cause crashes.
This patch removes most of the failures, but does not fix the NULL dereferences
that will still happen if creating gpu data fails.
This patch reorders create_renderer_gpu_data_gbm () so that it fails hard only
if GBM device cannot be created, and otherwise always returns an initialized
gpu data structure. Users of the gpu data structure are responsible for
checking egl_display validity.
The GBM device creation failure is a hard failure because presumably GBM is
necessary for cursors.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/542https://gitlab.gnome.org/GNOME/mutter/merge_requests/521
We're currently always waiting for unfinished page flips before flipping
again. This is awkward when we are in an asynchronous retry-page-flip
loop, as we can synchronously wait for any KMS page flip event.
To avoid ending up with such situations, just freeze the frame clock
while we're retrying, then thaw it when we succeded.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/506
We rely on the frame clock to compress input events, thus if the frame
clock stops, input events are not dispatched. At the same time, there
is no reason to redraw at a full frame rate, as nothing will be
presented anyway, so slow down to 10Hz (compared to the most common
60Hz). Note that we'll only actually reach 10Hz if there is an active
animation being displayed, which won't happen e.g. if there is a screen
shield in the way.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/506
When we're in a page-flip retry loop due to the FIFO being full
(drmModePageFlip() failing with EBUSY), we should not continue to try
when starting to power save, as that means we're blocking new frames,
which itself blocks input events due to them being compressed using the
frame clock.
We'd also hit an assert assuming we only try to page flip when not power
saving.
Thus, fake we flipped if we ended up reaching a power saving state while
retrying.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/509https://gitlab.gnome.org/GNOME/mutter/merge_requests/506
It tried to add a (implicitly casted) float to a uint64_t, and due to
floating point precision issues resulted in timestamps intended to be
in the future to actually be in the past. Fix this by first casting the
delay to an uint64_t, then add it to the time stamp.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/506
DPMS is configured from a bit all over the place: via D-Bus, via X11 and
when reading the current KMS state. Each of these places did it slightly
differently, directly poking at the field in MetaMonitorManager.
To make things a bit more managable, move the field into a new
MetaMonitorManagerPrivate, and add helpers to get and set the current
value. Prior to this, there were for example situations where the DPMS
setting was changed, but without signal listeners being notified about
it.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/506
The 'underscan' property is a drm connector property, not a CRTC
property, so we would never find it. We also didn't advertise support
for the feature, meaning even if it was on the CRTC, Settings wouldn't
know about it.
Fix this by moving the property to where it belongs: in MetaOutputKms,
and properly advertise support for it if the property is found.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/507
A clutter actor might be painted on a stage view with a view scale
other than 1. In this case, to show the content in full resolution, the
actor must use a higher resolution resource (e.g. texture), which will
be down scaled to the stage coordinate space, then scaled up again to
the stage view framebuffer scale.
Use a 'resource-scale' property to save information and notify when it
changes.
The resource scale is the ceiled value of the highest stage view scale a
actor is visible on. The value is ceiled because using a higher
resolution resource consistently results in better output quality. One
reason for this is that rendering is often not perfectly pixel aligned,
meaning even if we load a resource with a suitable size, due to us still
scaling ever so slightly, the quality is affected. Using a higher
resolution resource avoids this problem.
For situations inside clutter where the actual maximum view scale is
needed, a function _clutter_actor_get_real_resource_scale() is provided,
which returns the non-ceiled value.
Make sure we ignore resource scale computation requests during size
requests or allocation while ensure we've proper resource-scale on
pre-paint.
https://bugzilla.gnome.org/show_bug.cgi?id=765011https://gitlab.gnome.org/GNOME/mutter/merge_requests/3
We might fail to page flip a new buffer, often after resuming, due to
the FIFO being full. Prior to this commit, we handled this by switching
over to plain mode setting instead of page flipping. This is bad because
we won't be synchronized to the refresh rate anymore, but just the
clock.
Instead, deal with this by trying again until the FIFO is no longer
full. Do this on a v-sync based interval, until it works.
This also changes the error handling code for drivers not supporting
page flipping to rely on them returning -EINVAL. The handling is moved
from pretending a page flip working to explicit mode setting in
meta-renderer-native.c.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/460
A renderer view will, under the native backend, since long ago always
have a logical monitor associated with it, so remove the code handling
the legacy non-stage view case.
https://gitlab.gnome.org/GNOME/mutter/issues/460
When we freed the cursor GPU state including the gbm_bo objects attached
to it, we didn't unset the cursor renderer private of the CRTCs of the
associated GPU. This means that HW cursor invalidation could potentially
break if a new gbm_bo happened to be allocated at the same memory
address as the previous one.
To avoid this, iterate through the CRTCs of the GPU of which the cursor
data is freed, and unset the cursor renderer private if it was the one
destroyed.
https://gitlab.gnome.org/GNOME/mutter/issues/199
This means we need to make sure we don't accidentally free the provided
source GError (which automatically happens with `g_autoptr`), so use
`g_steal_pointer()`.
This fixes an issue where, when launched in a bubblewrap environment
(such as the one provided by Buildstream), mutter would give the
following warning message:
```
mutter-WARNING **: 8:31:35:069: Can't initialize KMS backend: (null)
```
... which isn't that useful when trying to debug the actual issue.
If the extension is missing, the GPU copy path would not work. The code sets
the error, but forgets to return a failure. Fix this.
While adding the necessary return FALSE, also destroy the EGL context we just
created. Code refactoring shares the destroying code.
Found by reading code.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/416
If the GPU copy path would use a software renderer, fall back to the CPU
copy path. The CPU copy path is possibly faster and avoids screen
corruption issues that were observed on an Intel Haswell desktop. The
corruption was likely due to texturing from an unfinished rendering or
memory caching issues.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/325
Print the pixel format chosen for an output on a secondary GPU for
debugging. Knowing the format can aid in debugging e.g. red/blue channel
swaps and CPU copy performance issues.
This adds a DRM format printing helper in meta-crtc-kms.h. This header
is included in most native backend files making it widely available,
while DRM formats are specific to the native backend. It could be shared
with Wayland bits, DRM format codes are used there too.
The helper makes the pixel format much more readable than a "%x".
https://gitlab.gnome.org/GNOME/mutter/merge_requests/341
When setting up an output on a secondary GPU with the CPU copy mode,
allocate the dumb buffers with a DRM format that is advertised supported
instead of hardcoding a format.
Particularly, DisplayLink devices do not quite yet support the hardcoded
DRM_FORMAT_XBGR8888. The proprietary driver stack actually ignores the
format assuming it is DRM_FORMAT_XRGB8888 which results the display
having red and blue channels swapped. This patch fixes the color swap
right now, while taking advantage if the driver adds support for XBGR
later.
The preferred_formats ordering is somewhat arbitrary. Here it is written
from glReadPixels point of view, based on my benchmarks on Intel Haswell
Desktop machine. This ordering prefers the format that was hardcoded
before.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/341
These functions allow inspecting which pixel formats a CRTC's primary
plane supports. Future patches will inspect the supported formats and
pick a framebuffer format accordingly instead of hardcoding a format.
The copy list function will be used to initialize a formats list, and
the supports format function will be used to intersect that list against
another CRTC's supported formats.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/341
This avoids having to hardcode the same fallbacks elsewhere multiple
times when determining what formats might be suitable for a set of
CRTCs. The formats_modifiers hash table is now guaranteed to be
populated with at least something, so future code will not need to
handle it being empty.
The hardcoded fallback formats are a minimal set probably supported by
most hardware. XRGB8888 is the format that, according to ancient lore,
all DRM devices should support, especially if they don't have the
capability to advertise otherwise. Mutter also hardcodes XRGB8888 as the
GBM surface format, so it is already required on primary GPUs.
XBGR8888 matches the most common OpenGL format, sans alpha channel since
scanout hardware has not traditionally supported alpha. XBGR8888 is here
also because Mutter hardcodes that format for secondary GPU outputs when
using the CPU copy path.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/341
If the IN_FORMATS property is not found, copy the formats from the DRM
plane instead. This is the fallback for getting a list of formats the
primary plane supports when DRM universal planes capability is enabled.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/341
Rather than picking just one format, parse and store all the formats and
their modifiers.
This gives us a list of supported formats (and modifiers) on a CRTC
primary plane. Later I will be using this list to choose a framebuffer
format instead of hardcoding it.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/341
Commit 25f416c13d added additional compilation warnings, including
-Werror=return-type. There are several places where this results
in build failures if `g_assert_not_reached()` is disabled at compile
time and the compiler misses a return value.
https://gitlab.gnome.org/GNOME/mutter/issues/447
As with the commits earlier, this also adds const qualifiers where
expected. However, the const variables are casted to non-const variants
so they can be passed to glib functions that take non-const variants but
expect const-like input.
There may be reasons to temporarly inhibit the HW cursor under certain
circumstances. Allow adding such inhibitations by adding API to the
cursor renderer to allow API users to add generic inhibitors with
whatever logic is deemed necessary.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/357
Mutter prefers platform devices over anything else as the primary GPU.
This will not work too well, when a platform device does not actually
have a rendering GPU but is a display-only device. An example of this
are DisplayLink devices with the proprietary driver stack, which exposes
a DRM KMS platform device but without any rendering driver.
Mutter cannot rely on EGL init failing on such devices either, because
nowadays Mesa supports software renderers on GBM, so the initialization
may well succeed.
The hardware rendering capability is recognized by matching the GL
renderer string to the known Mesa software renderers. At this time,
there is no better alternative to detecting this.
The secondary GPU data is abused for the GL renderer, as the Cogl
context may not have been created yet. Also, the Cogl context would
only be created on the primary GPU, but at this point the primary GPU
has not been chosen yet. Hence, GPU copy path GL context is used as a
proxy and predictor of what the Cogl context might be if it was created.
Mind, that even the GL flavour are not the same between Cogl and
secondary contexts, so this is stretch but it should be just enough.
The logic to choose the primary GPU is changed to always prefer hardware
rendering devices while also maintaining the old order of preferring
platform over boot_vga devices.
Co-authored by: Emilio Pozuelo Monfort <emilio.pozuelo@collabora.co.uk>
https://gitlab.gnome.org/GNOME/mutter/merge_requests/271
Moves the primary GPU choosing to after all secondary gpu data has been
created.
This makes it possible for a future patch to start looking at secondary
gpu data in choose_primary_gpu () to determine if it is using a hardware
driver or a software renderer.
Co-authored by: Pekka Paalanen <pekka.paalanen@collabora.com>
https://gitlab.gnome.org/GNOME/mutter/merge_requests/271
Initialize the secondary GPU data for all GPUs, even the primary one. By
not looking at the primary_gpu_kms member, a future patch is allowed to
postpone choosing the primary GPU.
A future patch will use the secondary GPU data to decide which GPU will
become the primary GPU.
Co-authored by: Pekka Paalanen <pekka.paalanen@collabora.com>
https://gitlab.gnome.org/GNOME/mutter/merge_requests/271
create_renderer_gpu_data_egl_device () relied on the primary GPU being
already chosen for the "EGLDevice currently only works with single GPU
systems" error message. A future patch will choose the primary GPU after
this, not before, so this check needs to be rewritten before the
initialization order is changed.
The new check is implemented exactly as the error message says: there
must be exactly one GPU, otherwise fail.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/271
Make the choosing and identity of the primary GPU an internal detail to
the native renderer. MonitorManagerKms did not need it for anything.
The primary GPU logic remains unchanged.
This allows follow-up patches to change how the renderer chooses the
primary GPU. It will be easier for the renderer to use private
information for choosing.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/271