The first phase happens early, which discards pending page flips,
meaning the references held by those page flip closures are released.
The second phase happens late, after other units depending on the KMS
abstraction, have been cleaned up.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1822>
We already swapped the front buffer, and even if it didn't get
presented, we should still swap our representation of the state, to not
get into a confused buffer tracking state.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1822>
All pointer a11y is a fabrication of Clutter backend-independent
code, with the help of a ClutterVirtualInputDevice and with some
UI on top.
On the other hand, MetaInputSettings is a backend implementation
detail, this has 2 gotchas:
- In the native backend, the MetaInputSettings (and pointer a11y
with it) are initialized early, before the ClutterSeat core
pointer is set up.
- Doing this from the MetaInputSettings also means another dubious
access from the input thread into main thread territory.
Move the pointer a11y into ClutterSettings, making this effectively
backend-independent business, invariably done from the main thread
and ensured to happen after seat initialization.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1765
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1849>
Since commit d2f8a30625e we use Graphene to union paint volumes, it
turns out a quite severe issue snuck in during review of that MR though:
Unioned paint volumes (so paint volumes of any actors with children) now
have negative heights. Once projected to 2d coordinates they luckily are
correct again, which is why everything is still working.
The problem is that obvious once looking closer: For the y coordinates
of the unioned paint volume we confused the maximum and the minimum
points and simply used the wrong coordinates to create the unioned paint
volume.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1827>
The graphene functions used by clutter for picking assume that boxes are
inclusive in both there start and end coordinates, so picking at y
coordinate 32 for an actor with the height 32 placed at y coordinate 0
would still be considered a hit. This however is wrong as 32 is the
first position that is not in the actor anymore.
Usually this would not be much of a problem, because motion events are
rarely ever at exactly these borders and even if they are there will be
another motion event soon after. But since actors in gnome-shell usually
are aligned with the pixel grid and on X11 enter/leave events are
generated by the X server at integer coordinates, this case is much
more likely for those.
This can cause issues with Firefox which when using client side
decorations, still requests MWM_DECOR_BORDER via _MOTIF_WM_HINTS to have
mutter draw a border + shadow. This means that the Firefox window even
when using CSD is still reparented. For such windows we receive among
others XI_RawMotion and XI_Enter events, but no XI_Motion events. And
the raw motion events are discarded after an enter event, because that
sets has_pointer_focus to TRUE in MetaSeatX11. So when moving the cursor
from the panel to a maximized Firefox window the last event clutter
receives is the enter event at exactly integer coordinates. Since the
panel is 32px tall and the generated enter event is at y position 32,
the picking code will pick a panel actor and the focus will remain on it
as long as the cursor does not leave the Firefox window.
Fix this by excluding the bottom and right border of a box when picking.
Fixes https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/4041
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1842>
Compositor behaviour when calling `wl_data_device_manager_get_data_device`
for the same seat multiple times is not very clearly defined in
the spec and both Mutter and Weston currently don't handle
the DnD case properly.
While Weston handles DnD only for the last created data device,
Mutter, because of some internal reshuffling, ends up toggling
between two devices.
Properly handling this case requires some bigger changes. So
in order to behave predictable and in line with Weston,
only take the last created data device into account while
still keeping the previous created ones around.
The main affect client here is Firefox, which gets very
confused by the toggling behaviour and becomes more stable
with this patch.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1841>
Virtual Kernel Mode Setting (vkms) is a virtual /dev/dri/card* device
not backed by any actual hardware. It's intended for testing purposes,
e.g. to run tests suites with a reproducable setup, or in continuous
integration pipelines.
Currently mutter don't have any tests that can run on top of vkms, but
will eventually get that. To prepare for the ability to do that, and
having said kernel module loaded without causing wierd issues with any
active session, add an udev rule that tells mutter to ignore any vkms
device.
Otherwise, when vkms is loaded, mutter would detect it, assume it's a
regular monitor, configure it as such, thus add a region of the stage
that ends up nowhere, which isn't very helpful. It might also conflict
with running actual tests that need to interact with vkms if the active
session has taken control of it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1740>
With atomic mode setting, commits don't work when CRTCs aren't enabled,
which they aren't when we're power saving. This means the gamma state
fails to being update. To fix night light and for whatever other reason
gamma ramps was changed during power saving by marking the CRTC gamma
state as invalid when leaving power saving, as well as when resuming.
This means that the next frame will append the CRTC gamma state to the
KMS commit.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1755
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1835>
This GSource is not being properly unref nor the variable holding it
cleared. This on one hand leaks the GSource memory, on the other hand
may trigger warnings in keyboard_repeat() as the source may be
(reentrantly) cleared, yet we don't exit early as
seat_impl->repeat_source is never NULL.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1839>
When a viewport source rect or destination size is set, `stex->dst_width`
gives us the the cropped and/or scaled size. At this step, we need the
uncropped/unscaled size however.
Note: this is only ever relevant if buffer transform and viewport are
used together - otherwise the values are the same.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1836>
The shadow size is factored into the paint volume MetaWindowActorX11
returns in its get_paint_volume() vfunc override, so we should
invalidate the paint volume every time that shadow might change.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1829>
Turns out ClutterClones need a bit of extra handling as always, there's
currently nothing that invalidates a clones paint volume when the source
actors paint volume changes.
Since ClutterClones get_paint_volume() implementation simply takes the
source actors paint volume and returns that, we should make sure they
are kept in sync and invalidate the clones paint volume as soon as the
source actor gets its PV invalidated.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1829>
When using buffer transforms and viewports together, we currently
apply the transformation (read: rotation) first, resulting in
wrong buffer coordinates for viewport source rects.
Flip the order in whitch we apply our matrix transformations.
This can be tested e.g. via:
`weston-simple-damage --use-viewport --transform=flipped-180`
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1832>
If a subsurface first gets reordered and afterwards detached from
the parent before the parent surface got commited, we currently
would end up reattaching the subsurface to its previous parent.
While clients should avoid this behaviour, it's legit according
to the spec.
We already prevent similar cases where the subsurface is destroyed -
extend that check to detaching, which includes the destroy case.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1831>
Currently when reordering subsurfaces, we un- and reparent all child
actors of the window actor. This is unnecessarily wasteful and
triggers bugs in clutter. While the underlying issue should be fixed
eventually, simply reorder the actors with the tools clutter provides
us with, avoiding those bugs and likely being faster as well.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1831>
Users who customized their workspace shortcuts before updating to
GNOME 40 are experiencing troubles when trying to use the same
keybinding for the horizontal shortcuts, because of hidden conflicts
with the vertical ones.
We can address this by registering the old shortcuts with Settings
without showing them in the UI, so that they are taken into account
by Settings' conflict resolution.
https://gitlab.gnome.org/GNOME/mutter/-/issues/1740
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1814>
The X server generates a property change notification whenever it processes a
property change request, even if the value of the property is not changing. This
triggers libgdk to probe all display outputs, which can be slow depending on
which display driver and hardware are in use.
#0 0x00007f8e4d5e91a0 in XRRUpdateConfiguration () at /usr/lib/libXrandr.so.2
#1 0x00007f8e505208da in _gdk_x11_screen_size_changed (screen=0x5566e4b7e080, event=0x7ffe0e44bd60) at ../gdk/x11/gdkscreen-x11.c:1199
#2 0x00007f8e505066d1 in gdk_x11_display_translate_event (translator=0x5566e4b5b110, display=0x5566e4b5b110, event=0x7f8dec001b20, xevent=0x7ffe0e44bd60) at ../gdk/x11/gdkdisplay-x11.c:1201
#3 0x00007f8e505135a0 in _gdk_x11_event_translator_translate (translator=0x5566e4b5b110, display=0x5566e4b5b110, xevent=0x7ffe0e44bd60) at ../gdk/x11/gdkeventtranslator.c:51
#4 0x00007f8e50512c97 in gdk_event_source_translate_event (event_source=0x5566e4b764a0, xevent=0x7ffe0e44bd60) at ../gdk/x11/gdkeventsource.c:243
#5 0x00007f8e50512f57 in _gdk_x11_display_queue_events (display=0x5566e4b5b110) at ../gdk/x11/gdkeventsource.c:341
#6 0x00007f8e50497644 in gdk_display_get_event (display=0x5566e4b5b110) at ../gdk/gdkdisplay.c:442
#7 0x00007f8e5051301f in gdk_event_source_dispatch (source=0x5566e4b764a0, callback=0x0, user_data=0x0) at ../gdk/x11/gdkeventsource.c:363
#8 0x00007f8e516ecf9c in g_main_context_dispatch () at /usr/lib/libglib-2.0.so.0
#9 0x00007f8e51740a49 in () at /usr/lib/libglib-2.0.so.0
#10 0x00007f8e516ec503 in g_main_loop_run () at /usr/lib/libglib-2.0.so.0
#11 0x00007f8e508ef5fd in meta_run_main_loop () at ../src/core/main.c:928
#12 0x00007f8e508ef60e in meta_run () at ../src/core/main.c:943
#13 0x00005566e450842a in ()
#14 0x00007f8e50649b25 in __libc_start_main () at /usr/lib/libc.so.6
When GNOME is animating a display fade when the night light feature is toggled
on or off, it sends a lot of change requests for the CTM property in the
process, which triggers a lot of display probes from gdk. In the case of the
night light feature, the CTM itself is not actually changing, so these requests
are redundant. Fix this by caching the CTM value in the MetaOutputXrandr and
skipping the server requests if it's not being changed.
Fixes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/3978
Signed-off-by: Aaron Plattner <aplattner@nvidia.com>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1816>
When we set the matrix, we checked the device mapping mode in the main
thread, then passed along the calculated matrix to the input thread for
application. This could however be racy, as the mapping mode is managed
in the input thread. Fix this by sending the unaltered matrix, having
the input thread checking the mapping mode.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1806>
The connector state wasn't properly predicted, as it earlied out if
the connector wasn't part of a mode set connector list.
Instead use the old CRTC to check whether it was used in any mode set,
and whether the connector was part of any new mode set, to predict
whether the connector is inactive or active.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1821>
When a device only had mode sets which turned off monitors, not enabling
anything, there would be no KMS update created and posted, and the
active monitors would remain on.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1821>
On hybrid graphics system, the primary path used to transfer the stage
framebuffer onto the dedicated GPU's video memory preparing for scanout,
is using the dedicated GPU to glBlitFramebuffer() the content from the
iGPU texture onto the scanout buffer.
After we have done this, we reset the current EGL context back to the
one managed by cogl. What we failed to do, however, was to reset the
current EGL context when we inhibited the actual page flip due to having
entered power save mode.
When we later started to paint again, Cogl thought the current EGL
context was still the correct one, but in fact it was the one used for
the iGPU -> dGPU blit, causing various EGL surface errors, and as a side
effect, eventually hitting an assert.
Fix this by making sure we reset to the Cogl managed EGL context also
for this case.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1803>
Destroying the EGLSurface frees the underlying container structs. When
we call gbm_surface_release_buffer() with a gbm_surface the EGLSurface
was created from, doing that after the EGLSurface was destroyed results
in attempts to access freed memory. Fix this by releasing any buffer
first, followed by destroying the EGLSurface, and lastly, the
gbm_surface.
This was not a problem prior to CoglOnscreen turning into a GObject, as
in that case, the dispose-chain was not setup correctly, and the
EGLSurface destruction was done in the native backend implementation.
This also changes a g_return_if_fail() to a g_warn_if_fail(), as if we
hit the unexpected case, we still need to call up to the parent dispose
vfunc to not cause critical issues.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1803>
It's handled by CoglOnscreenEgl's dispose() implementation. It was
failed to be invoked in the past because the old non-GObject web of
vtables were not setup correctly, meaning the old generic EGL layer of
the CoglOnscreen de-init was never invoked.
When the type inheritence was cleaned up, this mistake was not cleaned
up, so do that now.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1803>
Mutter would deny the application the right to resize itself during an
interactive resize, to avoid the user and the client to fight for the
size.
When the client is not allowed to resize, it would use the client rect
rather than the buffer rect.
As a result, the client window with client side decorations would
quickly shrink to its minimum size.
Use the buffer rect instead, so that the size really remains the same.
https://gitlab.gnome.org/GNOME/mutter/-/issues/1674
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1777>
Meson doesn't seem to handle depending on generated headers, at least
when those headers are pulled in indirectly via another header file.
Luckily, we don't actually need to include the generated D-Bus boiler
plate in meta-monitor-manager-private.h, since the MetaMonitorManager
type no longer is based on the D-Bus service skeleton.
So, by moving the inclusion of the generated D-Bus header file into
meta-monitor-manager.c, we should hopefully get rid of the sporadic
build issues.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1682
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1819>