When we pick the frame clock given the associated actor, that frame
clock in fact comes from a picked actor. In order to not end up with
stale frame clocks, which may happen on e.g. hotplugs, monitor layout
changes, or non-optimal frame clocks, which may happen when the parent
used for picking the clock moves to another view, lets listen to
'stage-views-changed' on the actor used for picking the clock too.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1327https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1404
Flip flop resize, which is the result of respecting ConfigureNotify
makes test annoyingly racy, as one cannot do
clutter_actor_set_size (stage, 1024, 768);
wait_for_paint (stage);
g_assert_assert (clutter_actor_get_width (stage) == 1024);
The reason for this is any lingering ConfigureNotify event that might
arrive in an inconvenient time in response to some earlier resize.
In order to not risk breaking any current behavior in the X11 CM case
(running as a compositing window manager), only avoid changing the stage
size in response to ConfigureNotify when running nested.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1404
Let's not expose that outside of mutter quite yet; it's not used in
gnome-shell, and to avoid future breakage if it starts to be used, lets
move it to clutter-mutter.h so only mutter and clutter itself can use
it.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1404
This aims to make sure a view and its resources are destroyed when it
should. Using references might keep certain components (e.g frame clock)
alive for too long.
We currently don't take any long lived references to the stage view
anywhere, so this doesn't matter in practice, but this may change, and
will be used by a to be added test case.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1404
In order to run gnome-shell as part of the CI pipeline, we need
an additional runtime dependency plus python3 modules to mock
required system services and run gnome-shell-perf-tool.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1401
Just as wl_shm, hook up the Wayland DMA-BUF protocol to the 64 bit half
point pixel formats too. This makes it possible for Wayland EGL clients
to use 64 bit pixel EGL configurations.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/804
Now that cogl understands them, hook wl_shm up so they can be used.
This also bumps the wayland-server version dependency to 1.17.90, which
corresponds to the master branch of wayland. The new formats will be
available in 1.18.0.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/804
In order to support the DRM formats DRM_FORMAT_ABGR16161616F and
friends, as well as the wl_shm formats WL_SHM_FORMAT_ABGR16161616F and
friends, cogl needs to have knowledge about said formats too.
We don't have a software implementation of the half point data types
however, so the pack/unpack methods remain unimplemented. We don't need
them for now, so it's not crucial that we add them.
For the GLES2 driver, currently only two formats are supported, and
since we don't currently have pack/unpack implementations, the other
formats will for now remain unsupported, until we have a half float
implementation.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/804
Without doing this, we'd use the same sprite that was last set by
mutter, most likely a leftptr cursor, and fail to update when e.g.
moving the pointer above a text entry and the displayed cursor updated
to a cursor position marker.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1391
The displayed cursor is the one displayed on the screen, e.g. via the
hardware cursor plane, by Xorg, or using the stage overlay.
When screen recording under X11, we don't get a stream of pointer and
cursor updates, as they might be grabbed by some other client. Because
of this, the cursor tracker or cursor renderer are not kept up to date
with positional and cursor state.
To be able to use the stage overlays when recording, we need to be able
to update the overlay without updating the displayed cursor, as we
shouldn't update the X server with cursor state we just retrieved from
it.
Thus, to achieve this, create a separate overlay cursor pointer. When
being a display server, they are always the same, but when using X11,
during screen recording, the overlay one will be polled at a fixed
interval to get a somewhat up to date state.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1391
Always force-track the cursor position (so that the X11 backend can keep
it up to date), and if the cursor wasn't part of the sampled
framebuffer when reading pixels into CPU memory, draw it in an extra
pass using cairo after the fact. The cairo based cursor painting only
happens on the X11 backend, as we otherwise inhibit the hw cursor.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1391
On X11 we won't always receive cursor positions, as some other client
might have grabbed the pointer (e.g. for implementing a popup menu). To
make screen casting show a somewhat correct cursor position, we need to
actively poll the X server about the current cursor position.
We only really want to do this when screen casting or taking a
screenshot, so add an API that forces the cursor tracker to track the
cursor position.
On the native backend this is a no-op as we by default always track the
cursor position anyway.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1391
Only when the cursor isn't handled by the backend is the overlay made
visible. This is intended to be used when painting the stage to an
offscreen using clutter_stage_paint_to_(frame)buffer() in a way where
the cursor is always included.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1391
Detect displays marked as 'non-desktop' by the kernel and skip them when
creating the outputs. Mutter is not able to render images that are shown
properly on those devices anyway.
This avoids lighting up attached VR HMDs and showing the GDM login
screen between the eyes in a VR HMD instead of on the monitor.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1393
Allowing code from inside mutter to create a child process and
delegate on it some of its tasks is something very useful. This can
be done easily with the g_subprocess and g_subprocess_launcher classes
already available in GLib and GObject.
Unfortunately, although the child process can be a graphical program,
currently it is not possible for the inner code to identify the
windows created by the child in a secure manner (this is: being able
to ensure that a malicious program won't be able to trick the inner
code into thinking it is a child process launched by it).
Under X11 this is not a problem because any program has full control
over their windows, but under Wayland it is a different story: a
program can't neither force their window to be kept at the top (like a
docker program does) or at the bottom (like a program for desktop icons
does), nor hide it from the list of windows. This means that it is not
possible for a "classic", non-priviledged program, to fulfill these
tasks, and it can be done only from code inside mutter (like a
gnome-shell extension).
This is a non desirable situation, because an extension runs in the
same main loop than the whole desktop itself, which means that a
complex extension can need to do too much work inside the main loop,
and freeze the whole desktop for too much time. Also, it is important
to note that javascript doesn't have access to fork(), or threads,
which means that, at most, all the parallel computing that can do is
those available in the _async calls in GLib/GObject.
Also, having to create an extension for any priviledged graphical
element is an stopper for a lot of programmers who already know
GTK+ but doesn't know Clutter.
This patch wants to offer a solution to this problem, by offering a
new class that allows to launch a trusted child process from inside
mutter, and make it to use an specific UNIX socket to communicate
with the compositor. It also allows to check whether an specific
MetaWindow was created by one of this trusted child processes or not.
This allows to create extensions that launch a child process, and
when that process creates a window, the extension can confirm in a
secure way that the window really belongs to that process
launched by it, so it can give to that window "superpowers" like
being kept at the bottom of the desktop, not being listed in the
list of windows or shown in the Activities panel... Also, in future
versions, it could easily implement protocol extensions that only
could be used by these trusted child processes.
Several examples of the usefulness of this are that, with it, it
is possible to write programs that implements:
- desktop icons
- a dock
- a top or bottom bar
...
all in a secure manner, avoiding insecure programs to do the same.
In fact, even if the same code is launched manually, it won't have
those privileges, only the specific process launched from inside
mutter.
Since this is only needed under Wayland, it won't work under X11.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/741