mutter/clutter/clutter/clutter-util.c

650 lines
19 KiB
C
Raw Normal View History

2006-05-29 04:59:36 -04:00
/*
* Clutter.
*
* An OpenGL based 'interactive canvas' library.
*
* Authored By Matthew Allum <mallum@openedhand.com>
*
* Copyright (C) 2006 OpenedHand
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*
2006-05-29 04:59:36 -04:00
*/
/**
* SECTION:clutter-util
* @short_description: Utility functions
*
* Various miscellaneous utilility functions.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
#include "clutter-debug.h"
2006-05-29 04:59:36 -04:00
#include "clutter-main.h"
#include "clutter-interval.h"
2012-03-07 07:34:06 -05:00
#include "clutter-private.h"
#include "deprecated/clutter-util.h"
/**
* clutter_util_next_p2:
* @a: Value to get the next power
*
* Calculates the nearest power of two, greater than or equal to @a.
*
* Return value: The nearest power of two, greater or equal to @a.
*
* Deprecated: 1.2
*/
gint
clutter_util_next_p2 (gint a)
{
int rval = 1;
while (rval < a)
rval <<= 1;
return rval;
}
/* Help macros to scale from OpenGL <-1,1> coordinates system to
* window coordinates ranging [0,window-size]
*/
#define MTX_GL_SCALE_X(x,w,v1,v2) ((((((x) / (w)) + 1.0f) / 2.0f) * (v1)) + (v2))
#define MTX_GL_SCALE_Y(y,w,v1,v2) ((v1) - (((((y) / (w)) + 1.0f) / 2.0f) * (v1)) + (v2))
#define MTX_GL_SCALE_Z(z,w,v1,v2) (MTX_GL_SCALE_X ((z), (w), (v1), (v2)))
void
_clutter_util_fully_transform_vertices (const CoglMatrix *modelview,
const CoglMatrix *projection,
const float *viewport,
const ClutterVertex *vertices_in,
ClutterVertex *vertices_out,
int n_vertices)
{
CoglMatrix modelview_projection;
ClutterVertex4 *vertices_tmp;
int i;
vertices_tmp = g_alloca (sizeof (ClutterVertex4) * n_vertices);
if (n_vertices >= 4)
{
/* XXX: we should find a way to cache this per actor */
cogl_matrix_multiply (&modelview_projection,
projection,
modelview);
cogl_matrix_project_points (&modelview_projection,
3,
sizeof (ClutterVertex),
vertices_in,
sizeof (ClutterVertex4),
vertices_tmp,
n_vertices);
}
else
{
cogl_matrix_transform_points (modelview,
3,
sizeof (ClutterVertex),
vertices_in,
sizeof (ClutterVertex4),
vertices_tmp,
n_vertices);
cogl_matrix_project_points (projection,
3,
sizeof (ClutterVertex4),
vertices_tmp,
sizeof (ClutterVertex4),
vertices_tmp,
n_vertices);
}
for (i = 0; i < n_vertices; i++)
{
ClutterVertex4 vertex_tmp = vertices_tmp[i];
ClutterVertex *vertex_out = &vertices_out[i];
/* Finally translate from OpenGL coords to window coords */
vertex_out->x = MTX_GL_SCALE_X (vertex_tmp.x, vertex_tmp.w,
viewport[2], viewport[0]);
vertex_out->y = MTX_GL_SCALE_Y (vertex_tmp.y, vertex_tmp.w,
viewport[3], viewport[1]);
}
}
/*< private >
* _clutter_util_rectangle_union:
* @src1: first rectangle to union
* @src2: second rectangle to union
* @dest: (out): return location for the unioned rectangle
*
* Calculates the union of two rectangles.
*
* The union of rectangles @src1 and @src2 is the smallest rectangle which
* includes both @src1 and @src2 within it.
*
* It is allowed for @dest to be the same as either @src1 or @src2.
*
* This function should really be in Cairo.
*/
void
_clutter_util_rectangle_union (const cairo_rectangle_int_t *src1,
const cairo_rectangle_int_t *src2,
cairo_rectangle_int_t *dest)
{
int dest_x, dest_y;
dest_x = MIN (src1->x, src2->x);
dest_y = MIN (src1->y, src2->y);
dest->width = MAX (src1->x + src1->width, src2->x + src2->width) - dest_x;
dest->height = MAX (src1->y + src1->height, src2->y + src2->height) - dest_y;
dest->x = dest_x;
dest->y = dest_y;
}
float
_clutter_util_matrix_determinant (const ClutterMatrix *matrix)
{
return matrix->xw * matrix->yz * matrix->zy * matrix->wz
- matrix->xz * matrix->yw * matrix->zy * matrix->wz
- matrix->xw * matrix->yy * matrix->zz * matrix->wz
+ matrix->xy * matrix->yw * matrix->zz * matrix->wz
+ matrix->xz * matrix->yy * matrix->zw * matrix->wz
- matrix->xy * matrix->yz * matrix->zw * matrix->wz
- matrix->xw * matrix->yz * matrix->zx * matrix->wy
+ matrix->xz * matrix->yw * matrix->zx * matrix->wy
+ matrix->xw * matrix->yx * matrix->zz * matrix->wy
- matrix->xx * matrix->yw * matrix->zz * matrix->wy
- matrix->xz * matrix->yx * matrix->zw * matrix->wy
+ matrix->xx * matrix->yz * matrix->zw * matrix->wy
+ matrix->xw * matrix->yy * matrix->zx * matrix->wz
- matrix->xy * matrix->yw * matrix->zx * matrix->wz
- matrix->xw * matrix->yx * matrix->zy * matrix->wz
+ matrix->xx * matrix->yw * matrix->zy * matrix->wz
+ matrix->xy * matrix->yx * matrix->zw * matrix->wz
- matrix->xx * matrix->yy * matrix->zw * matrix->wz
- matrix->xz * matrix->yy * matrix->zx * matrix->ww
+ matrix->xy * matrix->yz * matrix->zx * matrix->ww
+ matrix->xz * matrix->yx * matrix->zy * matrix->ww
- matrix->xx * matrix->yz * matrix->zy * matrix->ww
- matrix->xy * matrix->yx * matrix->zz * matrix->ww
+ matrix->xx * matrix->yy * matrix->zz * matrix->ww;
}
static void
_clutter_util_matrix_transpose_vector4_transform (const ClutterMatrix *matrix,
const ClutterVertex4 *point,
ClutterVertex4 *res)
{
res->x = matrix->xx * point->x
+ matrix->xy * point->y
+ matrix->xz * point->z
+ matrix->xw * point->w;
res->y = matrix->yx * point->x
+ matrix->yy * point->y
+ matrix->yz * point->z
+ matrix->yw * point->w;
res->z = matrix->zx * point->x
+ matrix->zy * point->y
+ matrix->zz * point->z
+ matrix->zw * point->w;
res->w = matrix->wz * point->x
+ matrix->wy * point->w
+ matrix->wz * point->z
+ matrix->ww * point->w;
}
void
_clutter_util_matrix_skew_xy (ClutterMatrix *matrix,
float factor)
{
matrix->yx += matrix->xx * factor;
matrix->yy += matrix->xy * factor;
matrix->yz += matrix->xz * factor;
matrix->yw += matrix->xw * factor;
}
void
_clutter_util_matrix_skew_xz (ClutterMatrix *matrix,
float factor)
{
matrix->zx += matrix->xx * factor;
matrix->zy += matrix->xy * factor;
matrix->zz += matrix->xz * factor;
matrix->zw += matrix->xw * factor;
}
void
_clutter_util_matrix_skew_yz (ClutterMatrix *matrix,
float factor)
{
matrix->zx += matrix->yx * factor;
matrix->zy += matrix->yy * factor;
matrix->zz += matrix->yz * factor;
matrix->zw += matrix->yw * factor;
}
static float
_clutter_util_vertex_length (const ClutterVertex *vertex)
{
return sqrtf (vertex->x * vertex->x + vertex->y * vertex->y + vertex->z * vertex->z);
}
static void
_clutter_util_vertex_normalize (ClutterVertex *vertex)
{
float factor = _clutter_util_vertex_length (vertex);
if (factor == 0.f)
return;
vertex->x /= factor;
vertex->y /= factor;
vertex->z /= factor;
}
static float
_clutter_util_vertex_dot (const ClutterVertex *v1,
const ClutterVertex *v2)
{
return v1->x * v2->x + v1->y * v2->y + v1->z * v2->z;
}
static void
_clutter_util_vertex_cross (const ClutterVertex *v1,
const ClutterVertex *v2,
ClutterVertex *res)
{
res->x = v1->y * v2->z - v2->y * v1->z;
res->y = v1->z * v2->x - v2->z * v1->x;
res->z = v1->x * v2->y - v2->x * v1->y;
}
static void
_clutter_util_vertex_combine (const ClutterVertex *a,
const ClutterVertex *b,
double ascl,
double bscl,
ClutterVertex *res)
{
res->x = (ascl * a->x) + (bscl * b->x);
res->y = (ascl * a->y) + (bscl * b->y);
res->z = (ascl * a->z) + (bscl * b->z);
}
void
_clutter_util_vertex4_interpolate (const ClutterVertex4 *a,
const ClutterVertex4 *b,
double progress,
ClutterVertex4 *res)
{
res->x = a->x + (b->x - a->x) * progress;
res->y = a->y + (b->y - a->y) * progress;
res->z = a->z + (b->z - a->z) * progress;
res->w = a->w + (b->w - a->w) * progress;
}
/*< private >
* clutter_util_matrix_decompose:
* @src: the matrix to decompose
* @scale_p: (out caller-allocates): return location for a vertex containing
* the scaling factors
* @shear_p: (out) (array length=3): return location for an array of 3
* elements containing the skew factors (XY, XZ, and YZ respectively)
* @rotate_p: (out caller-allocates): return location for a vertex containing
* the Euler angles
* @translate_p: (out caller-allocates): return location for a vertex
* containing the translation vector
* @perspective_p: (out caller-allocates: return location for a 4D vertex
* containing the perspective
*
* Decomposes a #ClutterMatrix into the transformations that compose it.
*
* This code is based on the matrix decomposition algorithm as published in
* the CSS Transforms specification by the W3C CSS working group, available
* at http://www.w3.org/TR/css3-transforms/.
*
* The algorithm, in turn, is based on the "unmatrix" method published in
* "Graphics Gems II, edited by Jim Arvo", which is available at:
* http://tog.acm.org/resources/GraphicsGems/gemsii/unmatrix.c
*
* Return value: %TRUE if the decomposition was successful, and %FALSE
* if the matrix is singular
*/
gboolean
_clutter_util_matrix_decompose (const ClutterMatrix *src,
ClutterVertex *scale_p,
float shear_p[3],
ClutterVertex *rotate_p,
ClutterVertex *translate_p,
ClutterVertex4 *perspective_p)
{
CoglMatrix matrix = *src;
CoglMatrix perspective;
ClutterVertex4 vertex_tmp;
ClutterVertex row[3], pdum;
int i, j;
#define XY_SHEAR 0
#define XZ_SHEAR 1
#define YZ_SHEAR 2
#define MAT(m,r,c) ((float *)(m))[(c) * 4 + (r)]
/* normalize the matrix */
if (matrix.ww == 0.f)
return FALSE;
for (i = 0; i < 4; i++)
{
for (j = 0; j < 4; j++)
{
MAT (&matrix, j, i) /= MAT (&matrix, 3, 3);
}
}
/* perspective is used to solve for perspective, but it also provides
* an easy way to test for singularity of the upper 3x3 component
*/
perspective = matrix;
/* transpose */
MAT (&perspective, 3, 0) = 0.f;
MAT (&perspective, 3, 1) = 0.f;
MAT (&perspective, 3, 2) = 0.f;
MAT (&perspective, 3, 3) = 1.f;
if (_clutter_util_matrix_determinant (&perspective) == 0.f)
return FALSE;
if (MAT (&matrix, 3, 0) != 0.f ||
MAT (&matrix, 3, 1) != 0.f ||
MAT (&matrix, 3, 2) != 0.f)
{
CoglMatrix perspective_inv;
ClutterVertex4 p;
vertex_tmp.x = MAT (&matrix, 3, 0);
vertex_tmp.y = MAT (&matrix, 3, 1);
vertex_tmp.z = MAT (&matrix, 3, 2);
vertex_tmp.w = MAT (&matrix, 3, 3);
/* solve the equation by inverting perspective... */
cogl_matrix_get_inverse (&perspective, &perspective_inv);
/* ... and multiplying vertex_tmp by the inverse */
_clutter_util_matrix_transpose_vector4_transform (&perspective_inv,
&vertex_tmp,
&p);
*perspective_p = p;
/* clear the perspective part */
MAT (&matrix, 3, 0) = 0.0f;
MAT (&matrix, 3, 1) = 0.0f;
MAT (&matrix, 3, 2) = 0.0f;
MAT (&matrix, 3, 3) = 1.0f;
}
else
{
/* no perspective */
perspective_p->x = 0.0f;
perspective_p->y = 0.0f;
perspective_p->z = 0.0f;
perspective_p->w = 1.0f;
}
/* translation */
translate_p->x = MAT (&matrix, 0, 3);
MAT (&matrix, 0, 3) = 0.f;
translate_p->y = MAT (&matrix, 1, 3);
MAT (&matrix, 1, 3) = 0.f;
translate_p->z = MAT (&matrix, 2, 3);
MAT (&matrix, 2, 3) = 0.f;
/* scale and shear; we split the upper 3x3 matrix into rows */
for (i = 0; i < 3; i++)
{
row[i].x = MAT (&matrix, i, 0);
row[i].y = MAT (&matrix, i, 1);
row[i].z = MAT (&matrix, i, 2);
}
/* compute scale.x and normalize the first row */
scale_p->x = _clutter_util_vertex_length (&row[0]);
_clutter_util_vertex_normalize (&row[0]);
/* compute XY shear and make the second row orthogonal to the first */
shear_p[XY_SHEAR] = _clutter_util_vertex_dot (&row[0], &row[1]);
_clutter_util_vertex_combine (&row[1], &row[0],
1.0, -shear_p[XY_SHEAR],
&row[1]);
/* compute the Y scale and normalize the second row */
scale_p->y = _clutter_util_vertex_length (&row[1]);
_clutter_util_vertex_normalize (&row[1]);
shear_p[XY_SHEAR] /= scale_p->y;
/* compute XZ and YZ shears, orthogonalize the third row */
shear_p[XZ_SHEAR] = _clutter_util_vertex_dot (&row[0], &row[2]);
_clutter_util_vertex_combine (&row[2], &row[0],
1.0, -shear_p[XZ_SHEAR],
&row[2]);
shear_p[YZ_SHEAR] = _clutter_util_vertex_dot (&row[1], &row[2]);
_clutter_util_vertex_combine (&row[2], &row[1],
1.0, -shear_p[YZ_SHEAR],
&row[2]);
/* get the Z scale and normalize the third row*/
scale_p->z = _clutter_util_vertex_length (&row[2]);
_clutter_util_vertex_normalize (&row[2]);
shear_p[XZ_SHEAR] /= scale_p->z;
shear_p[YZ_SHEAR] /= scale_p->z;
/* at this point, the matrix (inside row[]) is orthonormal.
* check for a coordinate system flip; if the determinant
* is -1, then negate the matrix and scaling factors
*/
_clutter_util_vertex_cross (&row[1], &row[2], &pdum);
if (_clutter_util_vertex_dot (&row[0], &pdum) < 0.f)
{
scale_p->x *= -1.f;
for (i = 0; i < 3; i++)
{
row[i].x *= -1.f;
row[i].y *= -1.f;
row[i].z *= -1.f;
}
}
/* now get the rotations out */
rotate_p->y = asinf (-row[0].z);
if (cosf (rotate_p->y) != 0.f)
{
rotate_p->x = atan2f (row[1].z, row[2].z);
rotate_p->z = atan2f (row[0].y, row[0].x);
}
else
{
rotate_p->x = atan2f (-row[2].x, row[1].y);
rotate_p->z = 0.f;
}
#undef XY_SHEAR
#undef XZ_SHEAR
#undef YZ_SHEAR
#undef MAT
return TRUE;
}
typedef struct
{
GType value_type;
ClutterProgressFunc func;
} ProgressData;
G_LOCK_DEFINE_STATIC (progress_funcs);
static GHashTable *progress_funcs = NULL;
gboolean
_clutter_has_progress_function (GType gtype)
{
const char *type_name = g_type_name (gtype);
if (progress_funcs == NULL)
return FALSE;
return g_hash_table_lookup (progress_funcs, type_name) != NULL;
}
gboolean
_clutter_run_progress_function (GType gtype,
const GValue *initial,
const GValue *final,
gdouble progress,
GValue *retval)
{
ProgressData *pdata;
gboolean res;
G_LOCK (progress_funcs);
if (G_UNLIKELY (progress_funcs == NULL))
{
res = FALSE;
goto out;
}
pdata = g_hash_table_lookup (progress_funcs, g_type_name (gtype));
if (G_UNLIKELY (pdata == NULL))
{
res = FALSE;
goto out;
}
res = pdata->func (initial, final, progress, retval);
out:
G_UNLOCK (progress_funcs);
return res;
}
static void
progress_data_destroy (gpointer data_)
{
g_slice_free (ProgressData, data_);
}
/**
* clutter_interval_register_progress_func: (skip)
* @value_type: a #GType
* @func: a #ClutterProgressFunc, or %NULL to unset a previously
* set progress function
*
* Sets the progress function for a given @value_type, like:
*
* |[
* clutter_interval_register_progress_func (MY_TYPE_FOO,
* my_foo_progress);
* ]|
*
* Whenever a #ClutterInterval instance using the default
* #ClutterInterval::compute_value implementation is set as an
* interval between two #GValue of type @value_type, it will call
* @func to establish the value depending on the given progress,
* for instance:
*
* |[
* static gboolean
* my_int_progress (const GValue *a,
* const GValue *b,
* gdouble progress,
* GValue *retval)
* {
* gint ia = g_value_get_int (a);
* gint ib = g_value_get_int (b);
* gint res = factor * (ib - ia) + ia;
*
* g_value_set_int (retval, res);
*
* return TRUE;
* }
*
* clutter_interval_register_progress_func (G_TYPE_INT, my_int_progress);
* ]|
*
* To unset a previously set progress function of a #GType, pass %NULL
* for @func.
*
* Since: 1.0
*/
void
clutter_interval_register_progress_func (GType value_type,
ClutterProgressFunc func)
{
ProgressData *progress_func;
const char *type_name;
g_return_if_fail (value_type != G_TYPE_INVALID);
type_name = g_type_name (value_type);
G_LOCK (progress_funcs);
if (G_UNLIKELY (progress_funcs == NULL))
progress_funcs = g_hash_table_new_full (NULL, NULL,
NULL,
progress_data_destroy);
progress_func =
g_hash_table_lookup (progress_funcs, type_name);
if (G_UNLIKELY (progress_func))
{
if (func == NULL)
{
g_hash_table_remove (progress_funcs, type_name);
g_slice_free (ProgressData, progress_func);
}
else
progress_func->func = func;
}
else
{
progress_func = g_slice_new (ProgressData);
progress_func->value_type = value_type;
progress_func->func = func;
g_hash_table_replace (progress_funcs,
(gpointer) type_name,
progress_func);
}
G_UNLOCK (progress_funcs);
}