A MetaOutput is a connector, not exactly a monitor or a region on the
stage; for example tiled monitors are split up into multiple outputs,
and for what is used in input settings, that makes no sense. Change
this to use logical monitors instead of outputs.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
When no output was specified, the screen limit was used to calculate the
aspect ratio. The screen limit, however, is either just an arbitrary
number if no screen limit is applicable, or a hardware graphics buffer
limit, which has nothing to do with anything actually displayed. Change
it to use the screen size instead, to get something that makes more
sense when no output is found.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
Expose via a new API whether the transform on a logical monitor is
handled by the backend. This was previously only exposed only in the
native backend. This will be used to emulate not supporting transforms
in the backend in the nested backend.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
Previously, the size of the logical monitor was derived directly from
the tiling information. This works fine until we add transformations,
or set modes with a dimension different from the resulting resolution
when tiled. Fix this by traversing the assigned CRTC rects, as these
are already transformed by the configuration system.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
By setting the environment variable MUTTER_DEBUG_TILED_DUMMY_MONITORS
to "1", the dummy MetaMonitorManager backend used when running mutter
nested will create tiled monitors instead of single-output/CRTC
monitors. This makes it possible to test tiled monitor configuration.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
Refactor monitor generation by splitting the generation of modes, CRTCs
and outputs into a separate function. A side effect is that each output
will have its own set of possible modes.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
Split up logical monitor cration into derived (when derived from
current underlying configuration) and non-derived (when creating from a
logical monitor configuration). This avoids that type of logic in the
logical monitor creation function.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
Add support for non-tiled monitor modes on tiled monitors. This is done
by adding all the other supported modes, except the modes with the
same resolution as the tile dimensions.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
When adding a monitor and all its outputs, don't try to set the logical
monitor of the outputs CRTC if none was assigned. This might happen if
a tiled monitor only uses a subset of the connectors it are connected
via.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
Don't set the CRTC rect and screen size at in read_current(), as those
depends on how the configuration is done. Instead, don't set the CRTC
rect at all, and update the screen dimensions when being configured.
https://bugzilla.gnome.org/show_bug.cgi?id=779745
No XDnD events which notify DnD status change comes in Wayland. To emulate XDnD
behavior, MetaDnd checks whether there is a grab or not when the modal window
starts showing. When there is a grab, it processes the raw events from
compositor, and emits DnD signals for plugin.
https://bugzilla.gnome.org/show_bug.cgi?id=765003
Implement MetaDnd for emitting DnD signals to plugins such as gnome-shell. The
xdnd handling code comes from gnome-shell, and it is hidden behind MetaDnd now.
https://bugzilla.gnome.org/show_bug.cgi?id=765003
When running nested, the pointer can be outside of the stage, meaning
outside of any logical monitor. Handle this when getting the current
logical monitor by falling back to the first logical monitor when the
pointer coordinate is outside of any logical monitor.
https://bugzilla.gnome.org/show_bug.cgi?id=779001
Whenever an EGLOutput consumer is temporary unable to handle
eglStreamConsumerAcquire() operations (e.g. during a VT-switch),
an EGL_RESOURCE_BUSY_EXT error is generated.
This change adds the appropriate error handling to flip_egl_stream() in
order to recover from such errors.
https://bugzilla.gnome.org/show_bug.cgi?id=779112
This change adds descriptions for the following errors to
get_egl_error_str():
- EGL_BAD_STREAM_KHR
- EGL_BAD_STATE_KHR
- EGL_BAD_DEVICE_EXT
- EGL_BAD_OUTPUT_LAYER_EXT
https://bugzilla.gnome.org/show_bug.cgi?id=779112
Set up things so that if the INTEL_swap_event extension is not present,
but the driver is known to have good thread support, we use an extra
thread and call glXWaitVideoSync() in the thread. This allows idles
to work properly, even when Mutter is constantly redrawing new frames;
otherwise, without INTEL_swap_event, we'll just block in glXSwapBuffers().
https://bugzilla.gnome.org/show_bug.cgi?id=779039
Split up the X11 backend into two parts, one for running as a
Compositing Manager, and one for running as a nested Wayland
compositor.
This commit also cleans up the compositor configuration calculation,
attempting to make it more approachable.
https://bugzilla.gnome.org/show_bug.cgi?id=777800
As all the relevant backends are expected to provide
ClutterPadButtonEvents, it makes no sense to split the information,
plus all other event fields are now available and might be needed
in the future.
https://bugzilla.gnome.org/show_bug.cgi?id=771098
Using ClutterInputDeviceEvdev::output-aspect-ratio. This only applies
to devices which are not calibratable, so again we need to implement
this at the toolkit level.
https://bugzilla.gnome.org/show_bug.cgi?id=774115
We couldn't properly merge output-mapping matrix and calibration into
one. Now that libinput calibration matrix is free to use, we can
actually implement tablet calibration with it.
https://bugzilla.gnome.org/show_bug.cgi?id=774115
The initial state of the hardware cursor is not known, so always force
update it the first time we update the cursor. Do this by changing the
'force' flag of update_hw_cursor() to an 'invalidated' hw cursor state.
https://bugzilla.gnome.org/show_bug.cgi?id=771056
Clutter assumed seat0 which is most usually, but not always correct.
Add an evdev-backend specific function to allow passing the seat
that will be used for ClutterDeviceManager construction, which we
already obtain in MetaLauncher.
https://bugzilla.gnome.org/show_bug.cgi?id=778092
The MetaOutput::is_primary state was not correctly managed in two cases:
* for tiled monitors, the primary state got overridden when setting
the preferred resolution
* for laptop lid, it was not set if the laptop panel happened to be
the first output
https://bugzilla.gnome.org/show_bug.cgi?id=777732
MetaMonitorConfigStore provides an XML storage mechanism for
MetaMonitorConfigManager. It stores configuration files defined in the
same level as the MetaMonitorsConfig format, i.e. refers to high level
"monitors" and "monitor modes" instead of connectors and CRTCs.
Only reading custom files are implemented and so far unused.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Handle headless setup gracefully by having no logical monitors. This
commit only makes the monitor management code deal with it; other areas
may still not be able to handle it.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add a meta_monitors_config_new() helper. It's exposed outside of
meta-monitor-config-manager.c already, as it'll be used externally in a
later commit.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Handle configuring when the laptop lid is closed. This is so far
handled by creating a linear configuration while ignoring the laptop
panel. Changing the current configuration will come later.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Move the UpClients notify::lid-is-closed signal handling into
MetaMonitorManager, and put the getter behind a vfunc. This means
Placing it behind a vfunc allows custom backends to implement it
differently; for example the test backend can mock the state.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Adds an API to get the position suggested by the backend. This
translates to position advertised by some VM:s, used to hint at a
position making the position more natural (i.e. placed similarly to how
it may be placed on the host desktop).
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The new monitor configuration system (MetaMonitorConfigManager) aims to
replace the current MetaMonitorConfig. The main difference between the
two is that MetaMonitorConfigManager works with higher level input
(MetaMonitor, MetaMonitorMode) instead of directly looking at the CRTC
and connector state. It still produces CRTC and connector configuration
later applied by the respective backends.
Other difference the new system aims to introduce is that the
configuration system doesn't manipulate the monitor manager state; that
responsibility is left for the monitor manager to handle (it only
manages configuration and creates CRTC/connector assignments, it
doesn't apply anything).
The new configuration system allows backends to not rely on deriving the
current configuration from the CRTC/connector state, as this may no longer be
possible (i.e. when using KMS and multiple framebuffers).
The MetaMonitorConfigManager system is so far disabled by default, as
it does not yet have all the features of the old system, but eventually
it will replace MetaMonitorConfig which will at that point be removed.
This will make it possible to remove old hacks introduced due to
limitations in the old system.
https://bugzilla.gnome.org/show_bug.cgi?id=777732