Move the UpClients notify::lid-is-closed signal handling into
MetaMonitorManager, and put the getter behind a vfunc. This means
Placing it behind a vfunc allows custom backends to implement it
differently; for example the test backend can mock the state.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Adds an API to get the position suggested by the backend. This
translates to position advertised by some VM:s, used to hint at a
position making the position more natural (i.e. placed similarly to how
it may be placed on the host desktop).
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The new monitor configuration system (MetaMonitorConfigManager) aims to
replace the current MetaMonitorConfig. The main difference between the
two is that MetaMonitorConfigManager works with higher level input
(MetaMonitor, MetaMonitorMode) instead of directly looking at the CRTC
and connector state. It still produces CRTC and connector configuration
later applied by the respective backends.
Other difference the new system aims to introduce is that the
configuration system doesn't manipulate the monitor manager state; that
responsibility is left for the monitor manager to handle (it only
manages configuration and creates CRTC/connector assignments, it
doesn't apply anything).
The new configuration system allows backends to not rely on deriving the
current configuration from the CRTC/connector state, as this may no longer be
possible (i.e. when using KMS and multiple framebuffers).
The MetaMonitorConfigManager system is so far disabled by default, as
it does not yet have all the features of the old system, but eventually
it will replace MetaMonitorConfig which will at that point be removed.
This will make it possible to remove old hacks introduced due to
limitations in the old system.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Operate on MetaMonitor's instead of MetaOutput's, as the latter may be
only a subset of an actual "monitor" when referring to the physical
computer equipment.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
When a logical monitor constains monitors with different subpixel
ordering, make the wl_output have the subpixel order 'unknown' so that
clients don't make assumptions given only a subset of the monitors of
the given region.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Sometimes we hit a race on hot-plug where we try to read the KMS
resources and the EDID blob is not yet ready. This would normally
result in a ENOENT when retrieving the blob. Handle this by retrying
after 50 milliseconds after a hot-plug event. Do this up to 10 times,
and after that give up trying to get the EDID blob and continue with
best effort.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The function meta_monitor_manager_read_current_config() was renamed to
meta_monitor_manager_read_current_state() as it does not read any
configuration, but reads the current state as described by the backend.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
In preparation of replacing the configuration system with one working
with high level monitors instead of low level outputs etc, move
configuarion handling code into obviously named function (containing
the word 'legacy'.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
A monitor spec object is meant to be used to identify a certain monitor
on a certain output. The spec is unique per actual monitor and connector,
meaning that a monitor that changes from one connector from another
(e.g. HDMI1 to HDMI2) will not be identified as the same. It is meant
to associate for example a configuration entry with an actual monitor.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add a "mode spec" concept, meaning to be used as a identifier for an
actual monitor mode. It consists of details making a mode unique, i.e.
the total resolution and refresh rate. This will later be used to get
the actual monitor mode (set of one or more CRTC modes).
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add "monitor modes" abstracting the modes set on a monitor. On normal
monitors, this directly maps to the CRTC modes, but on tiled monitors,
a monitor mode can consist modes per tiled output.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Don't try to mirror the physical dimension, since that's a property of
one of the monitors, not of the logical monitor. Callers are changed to
deal with choosing the monitor to represent the logical monitor.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Don't deal with adding/removing tiled Xrandr monitors in the generic
backend, but leave it to the Xrandr backend. The tiled monitor will
itself notify the backend when such a monitor is added and removed.
Tiled Xrandr monitors are now based no MetaMonitor instead of
MetaLogicalMonitor. This means that mirrored tiled monitors will now be
represented correctly.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Instead of using crtcs and outputs to generate logical monitors, use
the ready made monitor abstraction that hides irrelevant things such as
monitor tiling etc.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Generate a set of "monitors" abstracting the physical concepts. Each
monitor is built up of one or more outputs; multiple outputs being
tiled monitors. Logical monitors will later be built from these.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The MetaMonitorMode referred to the mode of a CRTC, and with the future
introduction of a MetaMonitor, theh old name would be confusing.
Instead call it what it is.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Set up the expected result in a declarative way in the same place as
the test case setup is declared. This way we have a completely
declarative way to create test cases.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Add private API for overriding the compositor configuration, i.e. the
compositor type (X11 WM or Wayland compositor) and backend type. This
will make it possible to add a special test backend used by src/tests/.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Put the monitor xinerama index in a separate struct that is attached to
the logical monitor using g_object_set/get_qdata(). Eventually this
should be moved to some "X11 window manager" object, but lets keep it
in MetaScreen until we have such a thing.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Don't store logical monitor specific state in an array where the index
from the monitor manager is used as index locally. Instead just use
table associating a logical monitor with a monitor specific state
holder, and store the state in there. This way we don't have the
workspace implementation relying on implementation details of other
units.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Instead of storing the logical monitors in an array and having users
either look up them in the array given an index or iterate using
indices, put it in a GList, and use GList iterators when iterating and
alternative API where array indices were previously used.
This allows for more liberty regarding the type of the logical monitor.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Refactor the tiled monitor assembly code (that constructs a logical
monitor out of tiling information. Part of the reason is to move away
from array based storage, part is to make the code easier to follow,
and part is to separate logical monitor construction from list
manipulation.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Rewrite check_fullscreen_func to not use indexes (and
offset-index-as-pointer) tricks. This also removes the usage of an API
constructing temporary logical monitor arrays carrying indices.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Change meta_monitor_manager_get_logical_monitor_at() to use floats,
replace users of meta_monitor_manager_get_monitor_at_point() to use the
API that returns a logical monitor and remove the now unused function.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Move the last piece of monitor grid getter API to the monitor manager
away from MetaScreen. The public facing API are still there, but are
thin wrappers around the MetaMonitorManager API.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The method used for getting the current logical monitor (the monitor
where the pointer cursor is currently at) depends on the backend type,
so move that logic to the corresponding backends.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Turning a rectangle into a logical monitor also has nothing to do with
the screen (MetaScreen) so move it to MetaMonitorManager which has that
information.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Let the backend initialize the cursor tracker, and change all call
sites to get the cursor tracker from the backend instead of from the
screen. It wasn't associated with the screen anyway, so the API was
missleading.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Instead of keeping around array indexes, keep track of them by storing
a pointer instead. This also changes from using an array (imitating the
X11 behaviour) to more explicit storing.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
To complement the current API which takes an index referencing a
logical monitor in the logical monitor array, add API that takes a
direct reference to the logical monitor itself. The intention is to
replace the usage of the index based API with one that doesn't rely on
internal implementation details.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
This is the current equivalent of looking up the logical monitor in the
logical monitor array using the number, but eventually that will be
deprecated, and before that done differently, so add a temporary helper
for the places that has not been ported yet.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
It was just pointer to the actual list; having to synchronize a list of
logical monitors with the actual monitors managed by the backend is
unnecessary.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The fullscreen monitors state is set given a set of xinerama monitor
identification numbers. When the monitor configuration changes (e.g. by
a hotplug event) these are no longer valid, and may point to
uninitialized or unallocated data. Avoid accessing
uninitialized/unallocated memory by clearing the fullscreen monitor
state when the monitor configuration changes.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
It checks whether a surface is on a given "logical monitor", not
output. Output here is the Wayland name for the same thing, but should
not be confused with MetaOutput.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
In preparation for further refactorizations, rename the MetaMonitorInfo
struct to MetaLogicalMonitor. Eventually, part of MetaLogicalMonitor
will be split into a MetaMonitor type.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
src/backends/meta-egl.c: In function ‘set_egl_error’:
src/backends/meta-egl.c:144:16: error: format not a string literal and no format arguments [-Werror=format-security]
error_str);
^~~~~~~~~
https://bugzilla.gnome.org/show_bug.cgi?id=777389
Use the proposed EGL_WL_wayland_eglstream EGL extension instead of the
file descriptor hack that was used as a temporary solution.
Note that this results in EGL clients will no longer work if they are
running on a Nvidia driver with a version older than 370.
https://bugzilla.gnome.org/show_bug.cgi?id=773629
Instead of having a way to determine the type of a buffer, add a
realization step that implicitly detects the buffer type. This makes it
possible to both realize (i.e. creating needed objects from the buffer)
and determine the type at the same time, which may be the only possible
way (for example, the only way to know whether a buffer is a EGLStream
is to create the EGLStream from it).
https://bugzilla.gnome.org/show_bug.cgi?id=773629
When the monitor the surface is on has a scale other than 1, the
coordinate of the window menu popup position needs to be scaled, as it
is reported in logical pixels, while the stage is still in physical
pixels.
https://bugzilla.gnome.org/show_bug.cgi?id=776055
A window manager must select the SubstructureRedirect mask on the root
window to receive the MapRequest from the X11 clients and manage the
windows. Without this event mask set, a window manager won't be able to
map any new window.
The Wayland selection code in mutter can change/clear the event mask on
the requestor window from a XSelectionRequest event when the window is
not managed by mutter/gnome-shell.
A rogue or simply buggy X11 client may send a XConvertSelection() on the
root window and mutter will happily change/clear its own event mask on
the root window, effectively turning itself into a regular X11 client
unable to map any new X11 window from the other X11 clients.
To avoid this, simply check that the requestor window is not the root
window prior to change/clear the event mask on that window.
https://bugzilla.gnome.org/show_bug.cgi?id=776128
Commit 5eb5f72 - wayland: Check surface outputs after mapped state
changes connected the ::mapped signal handler, we need to disconnect it
on destroy to avoid a possible assertion failure in
update_surface_output_state()
https://bugzilla.gnome.org/show_bug.cgi?id=776036
Commit 4295fdb892 made us skip focusing
all xdg_popups instead of just non-grabbing ones as intended. This
means that when unmanaging a window we might select a xdg_popup window
to focus (in meta_stack_get_default_focus_window() ) but then since we
don't actually focus it we go on unmanaging the focused window which
triggers an assertion, as it should.
To avoid this and still fixing bug 771694 we can make use of the
MetaWindow->input property for non-grabbing xdg_popup windows since
their semantics, in this regard, are the same as no input X11 windows.
This way, when unmanaging a focused window while a xdg_popup is up,
we'll either give focus to the xdg_popup or not select the popup at
all to be focused if it's non-grabbing.
https://bugzilla.gnome.org/show_bug.cgi?id=775986
We need to do swap notifications asynchronously from flip events since
these might be processed during swap buffers if we are waiting for the
previous frame's flip to continue with the current.
This means that we might have more than one swap notification queued
to be delivered when the idle handler runs. In that case we must
deliver all notifications for which we've already seen a flip event.
Failing to do so means that if a new frame, that only swaps buffers on
such a swap notification backlogged Onscreen, is started, when later
we get its flip event, we'd notify only an old frame which would hit
this MetaStageNative's frame_cb() early exit:
if (global_frame_counter <= presented_frame_counter)
return;
and we'd never finish the new frame and thus clutter's master clock
would be waiting forever stuck.
https://bugzilla.gnome.org/show_bug.cgi?id=774557
We currently only focus unfocused windows on button press if no
modifiers (or just ignored modifiers) are in effect. This behavior
seems surprising and counter-intuitive so let's do it for any modifier
combination instead.
https://bugzilla.gnome.org/show_bug.cgi?id=746642
There's no reason to keep this ~15 year old piece of code around as
well as the preference handling that would only make sense if this
hunk was actually enabled.
https://bugzilla.gnome.org/show_bug.cgi?id=746642
When flush-swap-notify is already queued, we might end up trying to
requeue it, for example when handling flip callbacks inside
swap-buffers. Actually queuing it there is harmless, since old frames
will be discarded anyway.
https://bugzilla.gnome.org/show_bug.cgi?id=774923
We might still end up in swap-buffer without the previous flip callback
having been invoked. This can happen if there are two monitors, and we
manage to draw before having all monitor flip callbacks invoked.
https://bugzilla.gnome.org/show_bug.cgi?id=774923
A window's unconstrained_rect is essentially just the target rectangle
we hand to meta_window_move_resize_internal() except it's not updated
until the window actually moves or resizes.
As such, for wayland client resizes, since they're async, using
window->unconstrained_rect right after calling move_resize_internal()
to update the grab anchor position on unmaximize doesn't work as it
does for X clients.
To fix this, we can just use the target rectangle for the grab
anchor. Note that comment here was already wrong since it says we
should be taking constraints into account and yet the code used the
unconstrained rect anyway.
https://bugzilla.gnome.org/show_bug.cgi?id=770345
This reverts commit 989ec7fc60.
We now rely on accurately knowing if a window moved and/or resized in
meta_window_move_resize_internal() so the wayland implementation can't
lie any longer.
https://bugzilla.gnome.org/show_bug.cgi?id=770345
In order for the compositor plugin to be able to animate window size
changes properly we need to let it know of the starting and final
window sizes.
For X clients this can be done synchronously and thus with a single
call into the compositor plugin since it's us (the window manager)
who's in charge of the final window size.
Wayland clients though, have the final say over their window size
since it's determined from the client allocated buffer.
This patch moves the meta_compositor_size_change_window() calls before
move_resize_internal() which lets the compositor plugin know the old
window size and freezes the MetaWindowActor.
Then we get rid of the META_MOVE_RESIZE_DONT_SYNC_COMPOSITOR flag
since it's not needed anymore as the window actor is frozen and that
means we can use meta_compositor_sync_window_geometry() as the point
where we inform the compositor plugin of the final window size.
https://bugzilla.gnome.org/show_bug.cgi?id=770345
This will be used to let plugins know when a previous size change
actually becomes effective. This is needed to handle wayland client
resizing properly since, unlike X, it's async.
https://bugzilla.gnome.org/show_bug.cgi?id=770345
Normally textures in OpenGL are inverted on the Y axis, and we only
apply our rotation transform when it is not. To make the common case
work as normal, default to assuming textures are Y inverted.
https://bugzilla.gnome.org/show_bug.cgi?id=773629
This commit adds for a new type of buffer being attached to a Wayland
surface: buffers from an EGLStream. These buffers behave very
differently from regular Wayland buffers; instead of each buffer
reperesenting an actual frame, the same buffer is attached over and
over again, and EGL API is used to switch the content of the OpenGL
texture associated with the buffer attached. It more or less
side-tracks the Wayland buffer handling.
It is implemented by creating a MetaWaylandEglStream object, dealing
with the EGLStream state. The lifetime of the MetaWaylandEglStream is
tied to the texture object (CoglTexture), which is referenced-counted
and owned by both the actors and the MetaWaylandBuffer.
When the buffer is reattached and committed, the EGLStream is triggered
to switch the content of the associated texture to the new content.
This means that one cannot keep old texture content around without
copying, so any feature relying on that will effectively be broken.
https://bugzilla.gnome.org/show_bug.cgi?id=773629
Add support for inverted Y Wayland buffers. OpenGL textures are by
default inverted, so adding support for EGL_WAYLAND_Y_INVERTED_WL
effectively means adding support for non-inverted, which makes the
MetaShapedTexture apply a transformation when drawing only when querying
EGL_WAYLAND_Y_INVERTED_WL resulted in the response "EGL_FALSE".
https://bugzilla.gnome.org/show_bug.cgi?id=773629
Don't rely on the Cogl layer having Wayland specific paths by
determining the buffer type and creating the EGLImage ourself, while
using the newly exposed CoglTexture from EGLImage API. This changes the
API used by MetaWaylandSurface to make the MetaWaylandBuffer API be
aware when the buffer is being attached. For SHM and EGL buffers, only
the first time it is attached will result in a new texture being
allocated, but later for EGLStream's, more logic on every attach is
needed.
https://bugzilla.gnome.org/show_bug.cgi?id=773629
This commit adds support for using a EGLDevice and EGLStreams for
rendering on top of KMS instead of gbm. It is disabled by default; to
enable it pass --enable-egl-device to configure.
By default gbm is first tried, and if it fails, the EGLDevice path is
tried. If both fails, mutter will terminate just as before.
https://bugzilla.gnome.org/show_bug.cgi?id=773629
There is no way to pass any backend specific parameters to a
CoglFramebuffer until after it has been allocated by
cogl_framebuffer_allocate() (since this is where the winsys/platform
fields are initialized). This can make it hard to actually allocate
anything, if the platform depends on some backend specific data.
A proper solution would be to refactor the onscreens and framebuffers to
use a GObject based type system instead of the home baked Cogl one, but
that'll be left for another day. For now, allocate in two steps, one to
allocate the backend specific parts (MetaOnscreenNative), and one to
allocate the actual onscreen framebuffer (via
meta_onscreen_native_allocate()).
So far there is nothing that forces this separation, but in the future
there will, for example EGLDevice's need to know about the CRTC in
order to create the EGLSurface.
https://bugzilla.gnome.org/show_bug.cgi?id=773629
A swap-buffers should never be issued when we are waiting for a flipped
callback, so instead of trying to handle a situation that sholud never
happen, warn instead.
https://bugzilla.gnome.org/show_bug.cgi?id=773629
When a swap failed with EACCES (possibly due to VT switching), don't
mark the framebuffer as 'in use', so that it'll be cleaned up properly
and not set as current.
https://bugzilla.gnome.org/show_bug.cgi?id=773629
For when there is no gbm available, for example when using
EGLDevice/EGLStream's, just fall back to the OpenGL texture based
cursor rendering path.
https://bugzilla.gnome.org/show_bug.cgi?id=773629
Drivers may be bad at guessing what is passed to eglGetDisplay, ending
up return non-functioning EGLDisplay's. Using eglGetPlatformDisplay
avoids this issue.
https://bugzilla.gnome.org/show_bug.cgi?id=773629
Lets use a pbuffer surface as a dummy surface instead of a gbm based
one, so that we don't need to rely on the availability of gbm to create
a dummy surface when there is no need for it.
https://bugzilla.gnome.org/show_bug.cgi?id=773629
Separate gbm initialization from general renderer initialization. Do
this even though no other initialization is done for now; later there
will will be other types of rendering mode, initialized in their own
functions.
https://bugzilla.gnome.org/show_bug.cgi?id=773629