There are several places where we need to compare the texture state of a
pipeline and sometimes we need to take into consideration if the
underlying texture has changed but other times we may only care to know
if the texture target has changed.
For example the fragends typically generate programs that they want to
share with all pipelines with equivalent fragment processing state, and
in this case when comparing pipelines we only care about the texture
targets since changes to the underlying texture won't affect the
programs generated.
Prior to this we had tried to handle this by passing around some special
flags to various functions that evaluate pipeline state to say when we
do/don't care about the texture data, but this wasn't working in all
cases and was more awkward to manage than the new approach.
Now we simply have two state bits:
COGL_PIPELINE_LAYER_STATE_TEXTURE_TARGET and
COGL_PIPELINE_LAYER_STATE_TEXTURE_DATA and CoglPipelineLayer has an
additional target member. Since all the appropriate code takes masks of
these state bits to determine what to evaluate we don't need any extra
magic flags.
The GLES2 wrapper is no longer needed because the shader generation is
done within the GLSL fragend and vertend and any functions that are
different for GLES2 are now guarded by #ifdefs.
Once the GLES2 wrapper is removed then we won't have the GLenums
needed for setting up the layer combine state. This adds Cogl enums
instead which have the same values as the corresponding GLenums. The
enums are:
CoglPipelineCombineFunc
CoglPipelineCombineSource
and
CoglPipelineCombineOp
The code to display the source when the show-source debug option is
given has been moved to _cogl_shader_set_source_with_boilerplate so
that it will show both user shaders and generated shaders. It also
shows the code with the full boilerplate. To make it the same for
ARBfp, cogl_shader_compile_real now also dumps user ARBfp shaders.
The GLSL vertend is mostly only useful for GLES2. The fixed function
vertend is kept at higher priority than the GLSL vertend so it is
unlikely to be used in any other circumstances.
'progend' is short for 'program backend'. The progend is intended to
operate on combined state from a fragment backend and a vertex
backend. The progend has an 'end' function which is run whenever the
pipeline is flushed and the two pipeline change notification
functions. All of the progends are run whenever the pipeline is
flushed instead of selecting a single one because it is possible that
multiple progends may be in use for example if the vertends and
fragends are different. The GLSL progend will take the shaders
generated by the fragend and vertend and link them into a single
program. The fragend code has been changed to only generate the shader
and not the program. The idea is that pipelines can share fragment
shader objects even if their vertex state is different. The authority
for the progend needs to be the combined authority on the vertend and
fragend state.
The pipeline function _cogl_pipeline_find_codegen_authority has been
renamed to _cogl_pipeline_find_equivalent_parent and it now takes a
set of flags for the pipeline and layer state that affects the
authority. This is needed so that we can reuse the same code in the
vertend and progends.
Previously enabling and disabling textures was done whatever the
backend in cogl-pipeline-opengl. However enabling and disabling
texture targets only has any meaning if no fragment shaders are being
used so this patch moves the code to cogl-pipeline-fragend-fixed.
The GLES2 wrapper has also been changed to ignore enabledness when
deciding whether to update texture coordinate attribute pointers.
The current Cogl pipeline backends are entirely concerned with the
fragment processing state. We also want to eventually have separate
backends to generate shaders for the vertex processing state so we
need to rename the fragment backends. 'Fragend' is a somewhat weird
name but we wanted to avoid ending up with illegible symbols like
CoglPipelineFragmentBackendGlslPrivate.