Looks like we need to include this directly, but also need to include
cogl/cogl.h to get COGL_HAS_EGL_SUPPORT, since cogl-egl.h doesn't
include cogl-defines.h first.
Signed-off-by: Daniel Stone <daniel@fooishbar.org>
Since Cogl version 1.11.2, Cogl no longer includes the EGL headers
from cogl.h if COGL_ENABLE_EXPERIMENTAL_2_0_API is defined. Instead
the application needs to include cogl-egl.h so that we can avoid
polluting the global namespace with X defines. Clutter defines the 2.0
define in its configure.ac and it is relying on Cogl to include the
right EGL header in clutter-egl-headers.h so we need to change which
header it includes.
this fixes how clutter-device-manager-evdev.h is included to fix a build
problem caused by not being able to find the header.
Reviewed-by: Emmanuele Bassi <ebassi@linux.intel.com>
Create the device manager during the event initialization, where it
makes sense.
This allows us to get rid of the per-backend get_device_manager()
virtual function, and just store the DeviceManager pointer into the
ClutterBackend structure.
Instead of piggybacking on the EGL backend, let's create a small
ClutterBackend for the CEx100 platforms. This allows us to handle the
CEx100-specific details in a much cleaner way.
All the functionality that ClutterBackendCogl provided has been moved
into ClutterBackend itself, so there is no need to have this class
around in the source.
Cogl-based backends can derive directly from ClutterBackend.
Input backends are, in some cases, independent from the windowing system
backends; we can initialize input handling using a model similar to what
we use for windowing backends, including an environment variable and
compile-/run-time checks.
This model allows us to remove the backend-specific init_events(), and
use a generic implementation directly inside the base ClutterBackend
class, thus further reducing the backend-specific code that every
platform has to implement.
This requires some minor surgery to every single backend, to make sure
that the function exposed to initialize the event loop is similar and
performs roughly the same operations.
The Clutter backend split is opaque enough that should allow us to just
build all possible backends inside the same shared object, and select
the wanted backend at initialization time.
This requires some work in the build system, as well as the
initialization code, to remove duplicate functions that might cause
conflicts at build and link time. We also need to defer all the checks
of the internal state of the platform-specific API to run-time type
checks.
Previously, the Cogl backend was at times a subclass of the X11
backend, and at times a standalone one. Now it is the other way
round, with GDK and X11 backends providing the concrete classes,
layered on top of the generic Cogl backend. A new EglNative backend
was introduced for direct to framebuffer rendering. This greatly
simplifies the API design (at the expense of some casts needed)
and reduces the amount of #ifdefs, without duplicating code.
https://bugzilla.gnome.org/show_bug.cgi?id=657434
Since GLX and EGL are abstracted by Cogl the two backends are both
implementing everything using the Cogl API and they are almost
identical.
This updates the egl backend to support everything that the glx backend
supports. Now that EGL and GLX are abstracted by Cogl, the plan is that
we will squash the clutter-egl/glx backends into one. Since the EGL
backend in clutter can conditionally not depend on X11 we will use the
EGL backend as the starting point of our common backend.
https://bugzilla.gnome.org/show_bug.cgi?id=649826
We hadn't updated the egl backend inline with a change to the arguments
that cogl_onscreen_x11_set_foreign_window_xid would expect and that was
causing a compilation error.
The G_CONST_RETURN define in GLib is, and has always been, a bit fuzzy.
We always used it to conform to the platform, at least for public-facing
API.
At first I assumed it has something to do with brain-damaged compilers
or with weird platforms where const was not really supported; sadly,
it's something much, much worse: it's a define that can be toggled at
compile-time to remove const from the signature of public API. This is a
truly terrifying feature that I assume was added in the past century,
and whose inception clearly had something to do with massive doses of
absynthe and opium — because any other explanation would make the
existence of such a feature even worse than assuming drugs had anything
to do with it.
Anyway, and pleasing the gods, this dubious feature is being
removed/deprecated in GLib; see bug:
https://bugzilla.gnome.org/show_bug.cgi?id=644611
Before deprecation, though, we should just remove its usage from the
whole API. We should especially remove its usage from Cally's internals,
since there it never made sense in the first place.
The GDL API is used for example on intel ce4100 (aka Sodaville) based
systems as a way to allocate memory that can be composited using the
platforms overlay hardware. This updates the Cogl EGL winsys and the
support in Clutter so we can continue to support these platforms.
As was recently done for the GLX window system code, this commit moves
the EGL window system code down from the Clutter backend code into a
Cogl winsys.
Note: currently the cogl/configure.ac is hard coded to only build the GLX
winsys so currently this is only available when building Cogl as part
of Clutter.
This gives us a way to clearly track the internal Cogl API that Clutter
depends on. The aim is to split Cogl out from Clutter into a standalone
3D graphics API and eventually we want to get rid of any private
interfaces for Clutter so its useful to have a handle on that task.
Actually it's not as bad as I was expecting though.
Recently _cogl_swap_buffers_notify was added (in 142b229c5c26) so that
Cogl would be notified when Clutter performs a swap buffers request for
a given onscreen framebuffer. It was expected this would be required for
the recent cogl_read_pixel optimization that was implemented (ref
1bdb0e6e98db) but in the end it wasn't used.
Since it wasn't used in the end this patch removes the API.
In the future, we want event translators to be the way to handle events
in backends. For this reason, they should be a part of the base abstract
ClutterBackend class, and not an X11-only concept.
Instead of asking all backends to do that for us, we can call
ClutterStageWindow::redraw ourselves by default.
This changeset fixes all backends to actually do the right thing, and
move the stage implementation redraw inside the ClutterStageWindow
implementation itself.
Since we access it in order to get the X11 Display pointer, it makes
sense to have the ClutterBackendX11 already available inside the
ClutterStageX11 structure, and avoid the pattern:
ClutterBackend *backend = clutter_get_default_backend ();
ClutterBackendX11 *backend_x11 = CLUTTER_BACKEND_X11 (backend);
which costs us a function call, a type cast and an unused variable.
* xi2: (41 commits)
test-devices: Actually print the axis data
device-manager/xi2: Sync the stage of source devices
event: Clean up clutter_event_copy()
device: unset the axes array pointer when resetting
device-manager/xi2: Fix device hotplugging
glx: Clean up GLX implementation
device/x11: Store min/max keycode in the XI device class
x11: Hide all private symbols
docs: More documentation fixes for InputDevice
*/event: Never manipulate the event queue directly
win32: Update DeviceManager device creation
device: Allow enabling/disabling non-master devices
backend/eglx: Add newly created stages to the translators
device: Add more doc annotations
device: Use a double for translate_axis() argument
test-devices: Clean up and show axes data
event: Fix up clutter_event_copy()
device/xi2: Translate the axis data after setting devices
device: Add more accessors for properties
docs: Update API reference
...
This adds a stop-gap mechanism for Cogl to know when the window system
is requested to present the current backbuffer to the frontbuffer by
adding a _cogl_swap_buffers_notify function that backends are now
expected to call right after issuing the equivalent request to OpenGL
vie the platforms OpenGL binding layer. This (blindly) updates all the
backends to call this new function.
For now Cogl doesn't do anything with the notification but the intention
is to use it as part of a planned read-pixel optimization which will
need to reset some state at the start of each new frame.
The x11 backend exposes a lot of symbols that are meant to only be used
when implementing a subclassed backend, like the glx and eglx ones.
The uninstalled headers are also filled with cruft declarations of
functions long since removed.
Let's try to clean up this mess.
The ClutterStageX11 implementation does most of the heavy lifting, so
subclasses like ClutterStageGLX and ClutterStageEGL do not need to
handle things like creating the stage Window and selecting events; just
chaining up and using the internal API will suffice.
Since c6493885c3f18 when building the EGL backend for eglx there was
no fallback in the init_events implementation so the X11 backend init
function would never get called. This was stopping it from receiving
any X events so a lot of things broke. It now just chains up.
That what happens when you test things only with 2 configure options
instead of 3. The 2 tested compile, the third one breaks. Another good
catch for the eglx bot!
The device manager now fully owns the GSources corresponding to the
devices it manages. This will allow not only to remove the source when
udev signals a device removal but also handle read() errors gracefully
by removing the faulty device from the manager.
This backend is a event backend that can be enabled for EGL (for now).
It uses udev (gudev) to query input devices on a linux system, listens to
keyboard events from input devices and xkbcommon to translate raw key
codes into key keysyms.
This commit only supports key events, more to follow.
This tweaks the semantics of the has_redraw_clips vfunc so we can assume
that at the start of a new frame there is an implied, initial,
redraw_clip that clips everything (i.e. nothing would be redrawn) so in
that case we would expect the has_redraw_clips vfunc to return True at
the start of a new frame for backends that support clipping.
Previously there was an ambiguity when this function returned False
since it could either mean a full screen redraw had been queued or it
could mean that the clip state wasn't yet initialized for that frame.
This would result in _clutter_stage_has_full_redraw_queued() returning
True at the start of a new frame even before any actors have been
updated, which in turn meant we would incorrectly ignore queue_redraw
requests for actors, believing them to be redundant.
This adds egl backend support for handling clipped redraws. This uses
the EGL_NOK_swap_region extension to enable the EGL backend to present a
subregion from the back buffer to the front so we don't always have to
redraw the entire stage for small updates.
Move the private Backend API to a separate header.
This also allows us to finally move the class vtable and instance
structure to a separate file and plug the visibility hole that left
the Backend class bare for everyone to poke into.
This uses actor paint volumes to perform culling during
clutter_actor_paint.
When performing a clipped redraw (because only a few localized actors
changed) then as we traverse the scenegraph painting the actors we can
now ignore actors that don't intersect the clip region. Early testing
shows this can have a big performance benefit; e.g. 100% fps improvement
for test-state with culling enabled and we hope that there are even much
more compelling examples than that in the real world,
Most Clutter applications are 2Dish interfaces and have quite a lot of
actors that get continuously painted when anything is animated. The
dynamic actors are often localized to an area of user focus though so
with culling we can completely avoid painting any of the static actors
outside the current clip region.
Obviously the cost of culling has to be offset against the cost of
painting to determine if it's a win, but our (limited) testing suggests
it should be a win for most applications.
Note: we hope we will be able to also bring another performance bump
from culling with another iteration - hopefully in the 1.6 cycle - to
avoid doing the culling in screen space and instead do it in the stage's
model space. This will hopefully let us minimize the cost of
transforming the actor volumes for culling.
This is a fairly extensive second pass at exposing paint volumes for
actors.
The API has changed to allow clutter_actor_get_paint_volume to fail
since there are times - such as when an actor isn't a descendent of the
stage - when the volume can't be determined. Another example is when
something has connected to the "paint" signal of the actor and we simply
have no way of knowing what might be drawn in that handler.
The API has also be changed to return a const ClutterPaintVolume pointer
(transfer none) so we can avoid having to dynamically allocate the
volumes in the most common/performance critical code paths. Profiling was
showing the slice allocation of volumes taking about 1% of an apps time,
for some fairly basic tests. Most volumes can now simply be allocated on
the stack; for clutter_actor_get_paint_volume we return a pointer to
&priv->paint_volume and if we need a more dynamic allocation there is
now a _clutter_stage_paint_volume_stack_allocate() mechanism which lets
us allocate data which expires at the start of the next frame.
The API has been extended to make it easier to implement
get_paint_volume for containers by using
clutter_actor_get_transformed_paint_volume and
clutter_paint_volume_union. The first allows you to query the paint
volume of a child but transformed into parent actor coordinates. The
second lets you combine volumes together so you can union all the
volumes for a container's children and report that as the container's
own volume.
The representation of paint volumes has been updated to consider that
2D actors are the most common.
The effect apis, clutter-texture and clutter-group have been update
accordingly.