The shadow was disabled for the X11 client as it was far to unreliable
when comparing sizes.
It seems that the Wayland backend has been somewhat unreliable as well,
where some race condition causing incorrect sizes thus a flaky test.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1288
A "show" command calls gtk_window_show() and gdk_display_sync(), then
returns. This means that the X11 window objects are guaranteed to have
been created in the X11 server.
After that, the test runner will look up the window's associated
MetaWindow and wait for it to be shown.
What this doesn't account for is if mutter didn't get enough CPU time to
see the new window. When this happens, the 'default-size' stacking test
sometimes failed after hiding and showing the X11 window.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1288
wait_reconfigure ensures that the whole configure back and forth
completes before continuing. Doing this after every state change ensures
that we always end up with the expected state, thus fixes flakyness of
the restore-position stacking test.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1279
It's very useful to have common functions for easily creating a monitor
test setup for all kinds of tests, so move create_monitor_test_setup()
and check_monitor_configuration() and all the structs those are using to
monitor-test-utils.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1243
We're going to move some structs from monitor-unit-tests.c to
monitor-test-utils.h and some names are currently clashing with the
struct names here, so rename those to be specific to the
MonitorStoreUnitTests.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1243
check_monitor_test_clients_state() is a function that's only meant to be
used in the monitor-unit-tests, and since we're going to move the
functions for creating MonitorTestSetups into a common file, this
function is going to be in the way of that. So move the checking of the
test client state outside of check_monitor_test_clients_state().
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1243
We're going to move the functions for building MonitorTestSetups to the
common monitor-test-utils.c file.
To make building test setups a bit more straightforward in case no
TestCaseExpect is wanted, change create_monitor_test_setup() to take a
MonitorTestCaseSetup instead of a MonitorTestCase as an argument.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1243
Commit e06daa58c3 changed the tested values to use corresponding valid
enum values instead of negative ones. Unfortunately that made one value
become a duplicate of an existing one and also in part defeated the original
intention of checking the implementation of
`meta_output_crtc_to_logical_transform`.
Use `meta_monitor_transform_invert` to fix both shortcomings.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1242
The test tests that (for both X11 and Wayland) that:
* The client unmaximizes after mapping maximized to a predictable size
* That the client unmaximizes to the same size after toggling maximize
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
This makes sure that a client has properly responded to a configure
event it itself triggered. In practice, this is just two 'wait'
commands, with a 'dispatch' in between, which is needed because a single
one does not reliably include the two way round trip happening when e.g.
responding to a unmaximize configure event triggered by a unmaximize
request.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
The 'assert_size' command checks that the size of the window, both
client side and compositor side, corresponds to an expected size set by
the test case.
The size comparison can only be done when the window is using 'csd', in
order for both the client and server to have the same amount of
understanding of the title bar. For ssd, the client cannot know how
large the title bar, thus cannot verify the full window size.
Sizes can be specified to mean the size of the monitor divided by a
number. This is that one can make sure a window is maximized or
fullscreened correctly.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
Gtk is quite buggy and "fluid" in how it handles the shadow margins for
windows under X11. The "size" of the window fluctuate between including and
excluding a shadow margin in a way that causes issues, as there are no
atomic update of any state going on.
In order to avoid running into those particular issues now, lets get rid
of shadows so the margins are always zero, when the client is using the
X11 backend.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
To get some kind of consistency between what 'resize' means for the
compositor and the client, make the size correspond to the "frame rect"
of the window, i.e. the window geometry in the Wayland case, and the
window size including the titlebar in the X11 case.
This is so that the window size later can be reliably compared both in
the compositor and in the client using the same expected dimensions.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
When toying with the test client to try to reproduce issues (e.g.
writing commands on stdin to create and manipulate windows), when you
write a command incorrectly you'll get a warning printed to standard
out. The problem, however, is that it doesn't include a line break in
the end, meaning when you type the correct command, it won't be on a new
line.
Fix this minor annoyance by adding line breaks to all warning messages.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
The test client could already understand the resize command, but they
could not be added to metatests as the command was not properly plumbed
via the test runner. Establish the plumbing for the resize command so
that resize tests can be added.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
This removes ClutterAnimation and related tests. ClutterAnimation has
been deprecated for a long time, and replacements exist and are used by
e.g. GNOME Shell since a while back.
This also disables a few relatively unrelated interactive tests, as they
rely on ClutterAnimation to implement some animations they use to
illustrate what they actually test.
As interactive tests currently are more or less untestable due to any
interaction with them crashing, as well as they in practice means
rewriting the tests using non-deprecated animation APIs, they are not
ported right now. To actually port the interactive tests, it needs to be
possible to fist interact with them.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1192
When memfd_create isn't used, the file isn't sealed. Therefore, we
should skip test_readonly_seals on the fallback case. This fixes
compilation error on FreeBSD 12, which does not support memfd_create.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1229
Test the two modes of MetaAnonymousFile, MAPMODE_SHARED and
MAPMODE_PRIVATE and make sure they don't leak data to other FDs when
writing to an FD provided by `meta_anonymous_file_get_fd` even though
the data of both FDs is residing in the same chunk of memory.
We do all the reading tests using mmap instead of read() since using
read() on shared FDs is going to move the read cursor of the fd. That
means using read() once on the shared FD returned by
meta_anonymous_file_get_fd() in MAPMODE_PRIVATE breaks every subsequent
read() call.
Also test the fallback code of MetaAnonymousFile in case `memfd_create`
isn't used for the same issues.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1012
Previously the tile coordinate was used to offset a CRTC scanout
coordinate within a larger framebuffer. Since 3.36 we're always
scanning out from (0, 0) as we always have one framebuffer per CRTC; we
instead use the tile coordinate to calculate the coordinate the tile has
in the stage view. Adapt calculation to fulfil this promise instead of
the old one.
This also corrects the tiled custom monitor test case.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1199
test_client_new might return early if conditions are not met, leaving some
allocated data around without freeing it.
Since we're not using the client before, there's no need to initialize it early
and just initialize it when it's going to be returned.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1195
Picking now only happens on allocated actors, but the
callback in the actor-pick test is not waiting for the
stage to run an allocation cycle. Ideally, we'd wait
for this cycle, but for now, forcing an allocation works
as well.
Allocate the overlay actor in the actor-pick test.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1169
When calculating the resource scale of a clone source, we might end up
in situations where we fail to do so, even though we're in a paint. A
real world example when this may happen if this happens:
* A client creates a toplevel window
* A client creates a modal dialog for said toplevel window
* Said client commits a buffer to the modal before the toplevel
If GNOME Shell is in overview mode, the window group is hidden, and the
toplevel window actor is hidden. When the clone tries to paint, it fails
to calculate the resource scale, as the parent of the parent (window
group) is not currently mapped. It would have succeeded if only the
clone source was unmapped, as it deals with the unmapped actor painting
by setting intermediate state while painting, but this does not work
when the *parent* of the source is unmapped as well.
Fix this by inheriting the unmapped clone paint even when calculating
the resource scale.
This also adds a test case that mimics the sequence of events otherwise
triggered by a client. We can't add a Wayland client to test this, where
we actually crash is in the offscreen redirect effect used by the window
dimming feature in GNOME Shell.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/808https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1147
MetaGravity is an enum, where the values match the X11 macros used for
gravity, with the exception that `ForgetGravity` was renamed
`META_GRAVITY_NONE` to have less of a obscure name.
The motivation for this is to rely less on libX11 data types and macros
in generic code.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
With Xwayland initialization going async, these errors will seep
into the parts controlled by g_test*(), resulting in the harmless
errors about DBus names not acquired turned fatal.
Set an error log handler, and specifically ignore those.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/944
It might not be available right on initialization time if X11 is started
asynchronously. As this is a requirement for our tests, ensure it is there
before proceeding with the test.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/944
To make it more reliable to distinguish between values that are read
from the backend implementation (which is likely to be irrelevant for
anything but the backend implementation), split out those values (e.g.
layout).
This changes the meaning of what was MetaCrtc::rect, to a
MetaCrtcConfig::layout which is the layout the CRTC has in the global
coordinate space.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1042
Which offscreens actor rendering only in cases where it hasn't changed for
2 frames or more. This avoids the performance penalty of offscreening an
actor whose content is trying to animate at full frame rate. It will
switch automatically.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1069
Without 'wayland/surface-actor: Reset and sync subsurface state when
resetting' this test would fail.
This also adds a simple framework for testing lower level Wayland
semantics.
In contrast to the test-client and test-driver framework, which uses
gtk and tests mostly window management related things, this framework is
aimed to run Wayland clients made to test a particular protocol flow,
thus will likely consist of manual lower level Wayland mechanics.
A private protocol is added in order to help out clients do things they
cannot do by themself. The protocol currently only consists of a request
meant to be used for getting a callback when the actor of a given
surface is eventually destroyed. This is different from the wl_surface
being destroyed due to window destroy animations taking an arbitrary
amount of time. It'll be used by the first test added in the next
commit.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/961
Instead of using cogl_polygon(), which uses deprecated API, implement
polygon drawing using the CoglPrimitive API family. While the test might
have been used to explicitly test cogl_polygon() it could still be
useful to test the non-deprecated way of rendering polygons.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/935
Port tests to use API such as cogl_framebuffer_push_matrix() instead of
cogl_push_matrix() all over the Clutter tests, with one exception:
cogl_polygon(). It'll be ported over in a separate commit, as it is less
straight forward.
Implicitly set CoglMaterial properties are changed to explicitly created
and destructed CoglPipelines with the equivalent properties set.
cogl_push|pop_framebuffer() is replaced by explicitly passing the right
framebuffer, but tests still rely on cogl_get_draw_framebuffer() to get
the target framebuffer.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/935
When painting, actors rely on semi global state tracked by the state to
get various things needed for painting, such as the current draw
framebuffer. Having state hidden in such ways can be very deceiving as
it's hard to follow changes spread out, and adding more and more state
that should be tracked during a paint gets annoying as they will not
change in isolation but one by one in their own places. To do this
better, introduce a paint context that is passed along in paint calls
that contains the necessary state needed during painting.
The paint context implements a framebuffer stack just as Cogl works,
which is currently needed for offscreen rendering used by clutter.
The same context is passed around for paint nodes, contents and effects
as well.
In this commit, the context is only introduced, but not used. It aims to
replace the Cogl framebuffer stack, and will allow actors to know what
view it is currently painted on.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/935
This is inspired by 98892391d7 where the usage of
`g_signal_handler_disconnect()` without resetting the corresponding
handler id later resulted in a bug. Using `g_clear_signal_handler()`
makes sure we avoid similar bugs and is almost always the better
alternative. We use it for new code, let's clean up the old code to
also use it.
A further benefit is that it can get called even if the passed id is
0, allowing us to remove a lot of now unnessecary checks, and the fact
that `g_clear_signal_handler()` checks for the right type size, forcing us
to clean up all places where we used `guint` instead of `gulong`.
No functional changes intended here and all changes should be trivial,
thus bundled in one big commit.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/940
ClutterTexture is going to be removed, so remove interactive tests that
stand in the way for that. Some test texture features, while some makes
heavy use of ClutterTexture to implement their testing. Remove these
tests to prepare for the removal of ClutterTexture.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/932
ClutterTexture is deprecated, lets remove the trivial usage with a
simple gdk-pixbuf using constructor putting pixel contents into a
ClutterImage then putting said image in a plain ClutterActor.
Tested partially, as the interactive tests cannot be properly run at the
moment.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/932
As was with the tests run via meson test, for the interactive tests we
too need to configure the mutter backend and initialize things in order
to be able to run any tests.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/932
Java applications might use override-redirect windows as parent windows for
top-level windows, although this is not following the standard [1].
In such case, the first non-override-redirect child window that is created
was marked as being on_all_workspaces since the call to
should_be_on_all_workspaces() returns TRUE for its parent, and this even
though the on_all_workspaces_requested bit is unset.
When a further child of this window was added, it was set as not having a
workspace and not being on_all_workspaces, since the call to
should_be_on_all_workspaces() for its parent would return FALSE (unless if
it is in a different monitor, and the multiple-monitors workspaces are
disabled).
Since per commit 09bab98b we don't recompute the workspace if the
on_all_workspaces bit is unset, we could end up in a case where a window can
be nor in all the workspaces or in a specific workspace.
So let's just ignore the transient_for bit for a window if that points to an
override-redirect, using the x11 root window instead.
Add a stacking test to verify this scenario (was failing before of this
commit).
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/885https://gitlab.gnome.org/GNOME/mutter/merge_requests/895
[1] https://standards.freedesktop.org/wm-spec/wm-spec-latest.html#idm140200472512128
Graphene uses C99 and includes stdbool.h, which adds a
new 'bool' type. Clutter has an a11y test that names a
variable as 'bool' too, and they do not play well together.
Rename this variable to boolean.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/458
Fog is explicitly deprecated in favour of CoglSnippet API,
and in nowhere we are using this deprecated feature, which
means we can simply drop it without any sort of replacement.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/458
Clutter had support for internal children in its early revisions, but they
were deprecated for long time (commit f41061b8df, more than 7 years ago) and
no one is using them in both clutter and in gnome-shell.
So remove any alternative code path that uses internal children.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/816
This is for all intents and purposes the same as
`cogl_object_ref/unref`, but still refers to handles rather than
objects (while we're trying to get rid of the former) so it's a bit of
unnecessary redundant API.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/451
Clutter actors might emit property changes in dispose, while unparenting.
However we assume that the ::destroy signal is the last one we emit for an
actor, and that starting from this moment the object is not valid anymore,
and so we don't expect any signal emission from it.
To avoid this, freeze the object notifications on an actor during its
disposition, just before the ::destroy signal emission.
Update the actor-destroy test to verify this behavior.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/769
Clutter actors unset their parent on dispose, after emitting the ::destroy
signal, however this could cause ::parent-set signal emission. Since we
assume that after the destruction has been completed the actor isn't valid
anymore, and that during the destroy phase we do all the signal / source
disconnections, this might create unwanted behaviors, as in the signal
callbacks we always assume that the actor isn't in disposed yet.
To avoid this, don't emit ::parent-set signal if the actor is being
destroyed.
Update the actor-destroy test to verify this behavior.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/769
Currently, Clutter does picking by drawing with Cogl and reading
the pixel that's beneath the given point. Since Cogl has a journal
that records drawing operations, and has optimizations to read a
single pixel from a list of rectangle, it would be expected that
we would hit this fast path and not flush the journal while picking.
However, that's not the case: dithering, clipping with scissors, etc,
can all flush the journal, issuing commands to the GPU and making
picking slow. On NVidia-based systems, this glReadPixels() call is
extremely costly.
Introduce geometric picking, and avoid using the Cogl journal entirely.
Do this by introducing a stack of actors in ClutterStage. This stack
is cached, but for now, don't use the cache as much as possible.
The picking routines are still tied to painting.
When projecting the actor vertexes, do it manually and take the modelview
matrix of the framebuffer into account as well.
CPU usage on an Intel i7-7700, tested with two different GPUs/drivers:
| | Intel | Nvidia |
| ------: | --------: | -----: |
| Moving the mouse: |
| Before | 10% | 10% |
| After | 6% | 6% |
| Moving a window: |
| Before | 23% | 81% |
| After | 19% | 40% |
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/154,
https://gitlab.gnome.org/GNOME/mutter/issues/691
Helps significantly with: https://gitlab.gnome.org/GNOME/mutter/issues/283,
https://gitlab.gnome.org/GNOME/mutter/issues/590,
https://gitlab.gnome.org/GNOME/mutter/issues/700
v2: Fix code style issues
Simplify quadrilateral checks
Remove the 0.5f hack
Differentiate axis-aligned rectangles
https://gitlab.gnome.org/GNOME/mutter/merge_requests/189
Add a function to check whether a point is inside a quadrilateral
by checking the cross product of vectors with the quadrilateral
points, and the point being checked.
If the passed quadrilateral is zero-sized, no point is ever reported
to be inside it.
This will be used by the next commit when comparing the transformed
actor vertices.
[feaneron: add a commit message and remove unecessary code]
https://gitlab.gnome.org/GNOME/mutter/merge_requests/189
Since Clutter's backend relies on MetaBackend now, initialzation has
to go through meta_init(), both in mutter and in gnome-shell.
However the compositor enum and backend gtype used to enforce the
environment used for tests are private, so instead expose a test
initialization function that can be used from both mutter and
gnome-shell.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/750
Since Clutter's backend relies on MetaBackend now, initialzation has
to go through meta_init(), both in mutter and in gnome-shell.
However the compositor enum and backend gtype used to enforce the
environment used for tests are private, so instead expose a test
initialization function that can be used from both mutter and
gnome-shell.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/750
And add the necessary glue so those initialize a X11 clutter backend.
This should get Clutter tests that are dependent on windowing to work
again, thus they were enabled back again.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/672
As per commit f71151a5 we focus an input window if no take-focus-window accepts
it. This might lead to an infinite loop if there are various focusable but
non-input windows in the stack.
When the current focus window is unmanaging and we're trying to focus a
WM_TAKE_FOCUS window, we intent to give the focus to the first focusable input
window in the stack.
However, if an application (such as the Java ones) only uses non-input
WM_TAKE_FOCUS windows, are not requesting these ones to get the focus. This
might lead to a state where no window is focused, or a wrong one is.
So, instead of only focus the first eventually input window available, try to
request to all the take-focus windows that are in the stack between the
destroyed one and the first input one to acquire the input focus.
Use a queue to keep track of those windows, that is passed around stealing
ownership, while we protect for unmanaged queued windows.
Also, reduce the default timeout value, as the previous one might lead to an
excessive long wait.
Added metatests verifying these situations.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/660https://gitlab.gnome.org/GNOME/mutter/merge_requests/669
When used it setups an X11 event monitor that replies to WM_TAKE_FOCUS
ClientMessage's with a XSetInputFocus request.
It can only be used by x11 clients on windows that have WM_TAKE_FOCUS atom set
and that does not accept input.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/669
When using gtk under X11 some WM related events are always filtered and not
delivered when using the gdk Window filters.
So, add a new one with higher priority than the GTK events one so that we can
pick those events before than Gtk itself.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/669
As per commit f71151a5 we were ignoring WM_TAKE_FOCUS-only windows as focus
targets, however this might end-up in an infinite loop if there are multiple
non-input windows stacked.
So, accept any focusable window as fallback focus target even if it's a
take-focus one (that might not reply to the request).
Added a stacking test to verify this.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/660https://gitlab.gnome.org/GNOME/mutter/merge_requests/669
When requesting to a take-focus window to acquire the input, the client may or
may not respond with a SetInputFocus (this doesn't happen for no-input gtk
windows in fact [to be fixed there too]), in such case we were unsetting the
focus while waiting the reply.
In case the client won't respond, we wait for a small delay (set to 250 ms) for
the take-focus window to grab the input focus before setting it to the default
window.
Added a test for this behavior and for the case in which a window takes the
focus meanwhile we're waiting to focus the default window.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/307
This allows to sleep for a given timeout in milliseconds.
Rename test_case_before_redraw to test_case_loop_quit since it's a generic
function and use it for the timeout too.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/307
This allows to verify which window should have the focus, which might not
be the same as the top of the stack.
It's possible to assert the case where there's no focused window using
"NONE" as parameter.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/307
Allow to set/unset WM_TAKE_FOCUS from client window.
This is added by default by gtk, but this might not happen in other toolkits,
so add an ability to (un)set this.
So fetch the protocols with XGetWMProtocols and unset the atom.
test-client now needs to depend on Xlib directly in meson build.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/307
This fixes the following compiler warning:
In file included from /usr/include/glib-2.0/glib.h:114,
from ../src/tests/test-utils.h:23,
from ../src/tests/test-utils.c:22:
../src/tests/test-utils.c: In function ‘test_init’:
/usr/include/glib-2.0/glib/glib-autocleanups.h:28:3: warning: ‘basename’ may be used uninitialized in this function [-Wmaybe-uninitialized]
28 | g_free (*pp);
| ^~~~~~~~~~~~
../src/tests/test-utils.c:73:24: note: ‘basename’ was declared here
73 | g_autofree char *basename;
| ^~~~~~~~
https://gitlab.gnome.org/GNOME/mutter/merge_requests/627
When running in slow or busy machines (hey CI!) or under valgrind headless
tests could fail because of a non fatal warning during initialization.
So define a fatal handler that ignores the frame counter warning.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/581
Creating a window could take some time, causing false-positive failures when
running in slower or busy hardware like:
window 1/2 isn't known to Mutter
So before we proceed in doing any operation on it, wait for the client.
Do this in the test runner instead of repeating the same in every .metatest.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/581
GList's used in legacy code were free'd using a g_slist_foreach + g_slist_free,
while we can just use g_slist_free_full as per GLib 2.28.
So replace code where we were using this legacy codepath.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/576
Don't launch the stacking tests in one single shot, to allow better debugging
and being able to launch just one single test using meson test.
Those tests can now be all launched with:
meson test --suite stacking [single-test-name]
https://gitlab.gnome.org/GNOME/mutter/merge_requests/442
This test forgot to specify the existing CRTC routings in the setup. For the
first output the default 0 was ok, now it is -1 to ensure that the code will
assign it correctly. For the second output the default 0 was incorrect, because
possible_crtcs does not include 0. Now that CRTC is initialized to off
instead, because the second output is hotplugged later and running a CRTC
without an output does not make sense.
This fix will keep this test passing when a future patch attempts to preserve
existing CRTC routings. Assuming that any existing routing is valid, such
routing will be kept. In this test case the existing routing was illegal, it
should have been impossible, which then causes that future patch to fail the
test by assigning the wrong CRTC.
https://gitlab.gnome.org/GNOME/mutter/issues/373
This is the last remaining feature necessary to achieve
parity with the Autotools build.
A few changes were made to the install locations of the
tests, in order to better acomodate them in Meson:
* Tests are now installed under a versioned folder (e.g.
/usr/share/installed-tests/mutter-4)
* The mutter-cogl.test file is now generated from an .in
file, instead of a series of $(echo)s from within Makefile.
Notice that those tests need very controlled environments
to run correctly. Mutter installed tests, for example, will
failed when running under a regular session due to D-Bus
failing to acquire the ScreenCast and/or RemoteScreen names.
We already ran a Wayland client to test various Wayland paths. What was
missing to also run a X11 client was to hook in the X11 async waiter
wires, so do that and run both types of clients.
https://bugzilla.gnome.org/show_bug.cgi?id=790207
As with the Wayland display name, to avoid clashes with already an
running Xwayland or Xorg instance, override the X11 display name to
something less likely to cause a clash.
https://gitlab.gnome.org/GNOME/mutter/issues/193
Meson uses the 'dependencies' field to determine and
parallelize build steps, but that isn't entirely true
with 'link_with'; this might cause a race condition
when generating header files while trying to build
them.
Fix that by only using 'dependencies' instead of 'link_with'.
This commit adds meson build support to mutter. It takes a step away
from the three separate code bases with three different autotools setups
into a single meson build system. There are still places that can be
unified better, for example by removing various "config.h" style files
from cogl and clutter, centralizing debug C flags and other configurable
macros, and similar artifacts that are there only because they were once
separate code bases.
There are some differences between the autotools setup and the new
meson. Here are a few:
The meson setup doesn't generate wrapper scripts for various cogl and
clutter test cases. What these tests did was more or less generate a
tiny script that called an executable with a test name as the argument.
To run particular tests, just run the test executable with the name of
the test as the argument.
The meson setup doesn't install test files anymore. The autotools test
suite was designed towards working with installed tests, but it didn't
really still, and now with meson, it doesn't install anything at all,
but instead makes sure that everything runs with the uninstalled input
files, binaries and libraries when running the test suite. Installable
tests may come later.
Tests from cogl, clutter and mutter are run on 'meson test'. In
autotools, only cogl and clutter tests were run on 'make check'.
This is the filename convention you get when you define a shared module
in meson, and since there is no particular reason to not include the
"lib" prefix, lets make it easier to port it over. While at it,
de-duplicate the retrieval of the plugin name.
The order and way include macros were structured was chaotic, with no
real common thread between files. Try to tidy up the mess with some
common scheme, to make things look less messy.
testboxes was a binary that did unit testing, but it wasn't integrated
to the test system, so in effect, it was never run. Instead integrate it
into the other mutter unit tests. This includes changing a few of
meta_warning()s into g_warning()s so that the GTest framework can handle
them.