The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
The idea is that CoglPixelBuffer should just be a buffer that can be
used for pixel data and it has no idea about the details of any images
that are stored in it. This is analogous to CoglAttributeBuffer which
itself does not have any information about the attributes. When you
want to use a pixel buffer you should create a CoglBitmap which points
to a region of the attribute buffer and provides the extra needed
information such as the width, height and format. That way it is also
possible to use a single CoglPixelBuffer with multiple bitmaps.
The changes that are made are:
• cogl_pixel_buffer_new_with_size has been removed and in its place is
cogl_bitmap_new_with_size. This will create a pixel buffer at the
right size and rowstride for the given width/height/format and
immediately create a single CoglBitmap to point into it. The old
function had an out-parameter for the stride of the image but with
the new API this should be queriable from the bitmap (although there
is no function for this yet).
• There is now a public cogl_pixel_buffer_new constructor. This takes
a size in bytes and data pointer similarly to
cogl_attribute_buffer_new.
• cogl_texture_new_from_buffer has been removed. If you want to create
a texture from a pixel buffer you should wrap it up in a bitmap
first. There is already API to create a texture from a bitmap.
This patch also does a bit of header juggling because cogl-context.h
was including cogl-texture.h and cogl-framebuffer.h which were causing
some circular dependencies when cogl-bitmap.h includes cogl-context.h.
These weren't actually needed in cogl-context.h itself but a few other
headers were relying on them being included so this adds the #includes
where necessary.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
The cogl.h header is meant to be the public header for including the 1.x
api used by Clutter so we should stop using that as a convenient way to
include all likely prototypes and typedefs. Actually we already do a
good job of listing the specific headers we depend on in each of the .c
files we have so mostly this patch just strip out the redundant
includes for cogl.h with a few fixups where that broke the build.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This moves _cogl_get_format_bpp from cogl-bitmap.c to cogl.c and renames
it to _cogl_pixel_format_get_bytes_per_pixel. This makes it clearer that
it doesn't return bits per pixel and makes the naming consistent with
other cogl api. The prototype has been moved to cogl-private.h since it
seems we should be aiming to get rid of cogl-internal.h at some point.
The patch also adds a simple gtk-doc comment since we might want to make
this api public.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
All CoglBuffer constructors now take an explicit CoglContext
constructor. This is part of the on going effort to adapt to Cogl API so
it no longer depends on a global, default context.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Cogl provides a consistent public interface regardless of whether the
underlying GL driver supports PBOs so it doesn't make much sense to have
this feature as part of the public api. We can't break the api by
removing the enum but at least we no longer ever set the feature flag.
We now have a replacement private feature flag COGL_PRIVATE_FEATURE_PBOS
which cogl now checks for internally.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
cogl-ext-functions.h now contains definitions for all of the core GL
and GLES functions that we would normally link to directly. All of the
code has changed to access them through the cogl context pointer. The
GE macro now takes an extra parameter to specify the context because
the macro itself needs to make GL calls but various points in the Cogl
source use different names for the context variable.
This is part of a broader cleanup of some of the experimental Cogl API.
One of the reasons for this particular rename is to switch away from
using the term "Array" which implies a regular, indexable layout which
isn't the case. We also want to strongly imply a relationship between
CoglBuffers and CoglPixelBuffers and be consistent with the
CoglAttributeBuffer and CoglIndexBuffer APIs.
Instead of having to extend cogl_is_buffer with new buffer types
manually this now adds a new COGL_BUFFER_DEFINE macro to be used instead
of COGL_OBJECT_DEFINE for CoglBuffer subclasses. This macro will
automatically register the new type with ctx->buffer_types which will
iterated by cogl_is_buffer. This is the same coding pattern used for
CoglTexture.
We had several different ways of exposing experimental API, in one case
the symbols had no special suffix, in two other ways the symbols were
given an _EXP suffix but in different ways.
This makes all experimental API have an _EXP suffix which is handled
using #defines in the header so the prototypes in the .c and .h files
don't have the suffix.
The documented reason for the suffix is so that anyone watching Cogl for
ABI changes who sees symbols disappear will hopefully understand what's
going on.
As part of an effort to improve the architecture of CoglMaterial
internally this overhauls how we flush layer state to OpenGL by adding a
formal backend abstraction for fragment processing and further
formalizing the CoglTextureUnit abstraction.
There are three backends: "glsl", "arbfp" and "fixed". The fixed backend
uses the OpenGL fixed function APIs to setup the fragment processing,
the arbfp backend uses code generation to handle fragment processing
using an ARBfp program, and the GLSL backend is currently only there as
a formality to handle user programs associated with a material. (i.e.
the glsl backend doesn't yet support code generation)
The GLSL backend has highest precedence, then arbfp and finally the
fixed. If a backend can't support some particular CoglMaterial feature
then it will fallback to the next backend.
This adds three new COGL_DEBUG options:
* "disable-texturing" as expected should disable all texturing
* "disable-arbfp" always make the arbfp backend fallback
* "disable-glsl" always make the glsl backend fallback
* "show-source" show code generated by the arbfp/glsl backends
Since using addresses that might change is something that finally
the FSF acknowledge as a plausible scenario (after changing address
twice), the license blurb in the source files should use the URI
for getting the license in case the library did not come with it.
Not that URIs cannot possibly change, but at least it's easier to
set up a redirection at the same place.
As a side note: this commit closes the oldes bug in Clutter's bug
report tool.
http://bugzilla.openedhand.com/show_bug.cgi?id=521
We've had complaints that our Cogl code/headers are a bit "special" so
this is a first pass at tidying things up by giving them some
consistency. These changes are all consistent with how new code in Cogl
is being written, but the style isn't consistently applied across all
code yet.
There are two parts to this patch; but since each one required a large
amount of effort to maintain tidy indenting it made sense to combine the
changes to reduce the time spent re indenting the same lines.
The first change is to use a consistent style for declaring function
prototypes in headers. Cogl headers now consistently use this style for
prototypes:
return_type
cogl_function_name (CoglType arg0,
CoglType arg1);
Not everyone likes this style, but it seems that most of the currently
active Cogl developers agree on it.
The second change is to constrain the use of redundant glib data types
in Cogl. Uses of gint, guint, gfloat, glong, gulong and gchar have all
been replaced with int, unsigned int, float, long, unsigned long and char
respectively. When talking about pixel data; use of guchar has been
replaced with guint8, otherwise unsigned char can be used.
The glib types that we continue to use for portability are gboolean,
gint{8,16,32,64}, guint{8,16,32,64} and gsize.
The general intention is that Cogl should look palatable to the widest
range of C programmers including those outside the Gnome community so
- especially for the public API - we want to minimize the number of
foreign looking typedefs.
OpenGL ES has no PBO extension, so we fallback to using a malloc'ed
buffer. Make sure the OpenGL-only defines don't leak into the OpenGL ES
compilation.
First, let's add a new public feature called, surprisingly,
COGL_FEATURE_PBOS to check the availability of PBOs and provide a
fallback path when running on older GL implementations or on OpenGL ES
In case the underlying OpenGL implementation does not provide PBOs, we
need a fallback path (a malloc'ed buffer). The CoglPixelBufer
constructors will instanciate a subclass of CoglBuffer that handles
map/unmap and set_data() with a malloc'ed buffer.
The public feature is useful to check before using set_data() on a
buffer as it will mean doing a memcpy() when not supporting PBOs (in
that case, it's better to create the texture directly instead of using a
CoglBuffer).
This subclass of CoglBuffer aims at wrapping PBOs or other system
surfaces like DRM buffer objects. Two constructors are available:
cogl_pixel_buffer_new() with a size when you only care about the size of
the buffer (such a buffer can be used to store several texture data such
as the three planes of a I420 frame).
cogl_pixel_buffer_new_full() is more a 1:1 mapping between the data and
an underlying surface, with the possibility of having access to a low
level memory buffer that may have a stride.