The previous state for the device is used by the click count machinery
and we should not be overwriting it at every event; instead, we should
use a parallel storage for the current state coming from the windowing
system.
• The enter/leave event line should take into account the case where
the related field is set to NULL (meaning entering from off-stage
and leaving the stage).
• The ButtonRelease line shows the click count but uses the button; the
button *and* the click count should be displayed for both ButtonPress
and ButtonRelease, to verify they match.
The device manager does not need to update the state of the devices
when the user has disabled the delivery of motion events to actors:
the events will always be delivered as they are to the stage.
The LEAVE/ENTER event pairs should be queued during the InputDevice
update process, when we change the actor under the device pointer.
This commit cleans up the event emission code inside clutter-main.c
and the logic of the event processing.
The output of test-events is a bit of a mess; this patch should clean
it up a little bit - at least enough for it to be useful again during
visual inspection.
The InputDevice objects stores pointer coordinates, state, stage and
the actor under the cursor, so if the current backend provides us with
one attached to the Event structure then we want the InputDevice itself
to update its state and give us the ClutterActor underneath the
pointer's cursor.
Even when we are not using XInput we now have fallback devices; the
X11 backend should always assign the default devices when translating
the X events to Clutter events.
Use the device manager to store the input devices. Also, provide
two fallback devices when initializing the X11 backend: device 0
for the pointer and device 1 for the keyboard.
Previously the atlas textures were being created with whatever format
the first sub texture is in. Only three formats are supported so this
only matters if the first texture is a premultiplied alpha
texture. Instead it now masks out the premultiplied bit so that the
textures are always either RGB_888 or RGBA_8888.
The win32 backend now handles the WM_SETCURSOR message and sets a
fully transparent cursor if the cursor-visible property has been
cleared on the stage. The icon is stored in the library via a resource
file. The instance handle for the DLL is needed to load the resource
so there is now a DllMain function to grab the handle.
Otherwise the paint handler will still be run for the subsequent
tests. This ends up writing to the ‘state’ variable which used to be
on the stack so it will end up corrupting some stack variable. This
was causing test-cogl-premult to fail.
g_list_foreach has better protection against the current node being
removed. This will happen for example if someone calls
clutter_container_foreach(container, clutter_actor_destroy). This was
causing valgrind errors for the conformance tests which do just that.
When uploading texture data it was just calling cogl_texture_set_data
on the large texture. This would attempt to convert the data to the
format of the large texture. All of the textures with alpha channels
are stored together regardless of whether they are premultiplied so
this was causing premultiplied textures to be unpremultiplied
again. It now just uploads the data ignoring the premult bit of the
format so that it only gets converted once.
With the atlas texture backend ensuring the mipmaps can make it become
a completely different texture which will have different texture
coordinates or may even be sliced. Therefore we need to ensure the
mipmaps before deciding which quads to log in the journal. This adds a
new private function to cogl-material which ensures the mipmaps if
needed.
The sub texture backend doesn't work well as a completely general
texture backend because for example when rendering with cogl_polygon
it needs to be able to tranform arbitrary texture coordinates without
reference to the other coordintes. This can't be done when the texture
coordinates are a multiple of one because sometimes the coordinate
should represent the left or top edge and sometimes it should
represent the bottom or top edge. For example if the s coordinates are
0 and 1 then 1 represents the right edge but if they are 1 and 2 then
1 represents the left edge.
Instead the sub-textures are now documented not to support coordinates
outside the range [0,1]. The coordinates for the sub-region are now
represented as integers as this helps avoid rounding issues. The
region can no longer be a super-region of the texture as this
simplifies the code quite a lot.
There are two new texture virtual functions:
transform_quad_coords_to_gl - This transforms two pairs of coordinates
representing a quad. It will return FALSE if the coordinates can
not be transformed. The sub texture backend uses this to detect
coordinates that require repeating which causes cogl-primitives
to use manual repeating.
ensure_non_quad_rendering - This is used in cogl_polygon and
cogl_vertex_buffer to inform the texture backend that
transform_quad_to_gl is going to be used. The atlas backend
migrates the texture out of the atlas when it hits this.
When calculating the next integer position for negative coordinates it
would not increment if the position is already a multiple of one so we
need to manually add one.
This adds a test which renders a texture into a 1x1 pixel quad with
and without filters that use mipmaps. The pixel without mipmaps will
be one of the colors from the texture and the one with will be the
average of all the pixels in the texture.
When try_creating_fbo fails it returns 0 to report the error and if it
succeeds it returns ‘flags’. However cogl_offscreen_new_to_texture
also passes in 0 for the flags as the last fallback to create the fbo
with nothing but the color buffer. In that case it will return 0
regardless of whether it succeeded so the last fallback will always be
considered a failure.
To fix this it now just returns a gboolean to indicate whether it
succeeded and the flags used for each attempt is assigned when passing
the argument rather than from the return value of the function.
Also if the only configuration that succeeded was with flags==0 then
it would always try all combinations because last_working_flags would
also be zero. To avoid this it now uses a separate gboolean to mark
whether we found a successful set of flags.
http://bugzilla.openedhand.com/show_bug.cgi?id=1873
Use the newly-added profiling timers inside the master clock dispatch
function to see how much time we spend:
• in the whole function
• in the event processing for each stage
• in the timeline advancement
Reading back the texture data in unrealize does not seem like a
desirable feature any more, clutter has evolved a lot since it was
implemented.
What's wrong with it now:
* It takes *a lot* of time to read the data back with glReadPixel(),
* When several textures share the same CoglTexture, the same data can
be read back multiple times,
* If the underlying material uses multiple texture units, only the
first one was copied back,
* In ClutterCairoTexture, we end up having two separate copies of the
data,
* GL actually manages texture memory accross system/video memory
for us!
For all the reasons above, let's get rid of the glReadPixel() in
Texture::unrealize()
Fixes: OHB#1842
Since 755cce33a7 the framebuffer code is using the GL enums
GL_DEPTH_ATTACHMENT and GL_DEPTH_COMPONENT16. These aren't available
directly under GLES except with the OES suffix so we need to define
them manually as we do with the other framebuffer constants.
These macros used to define Cogl wrappers for the GLenum values. There are
now Cogl enums everywhere in the API where these were required so we
shouldn't need them anymore. They were in the public headers but as
they are not neccessary and were not in the API docs for Clutter 1.0
it should be safe to remove them.
Using the ::event signal to match the CLUTTER_DELETE event type (and
block the stage destruction) can be costly, since it means checking
every single event.
The ::delete-event signal is similar in spirit to any other specialized
signal handler dealing with events, and retains the same semantics.