mutter/cogl/cogl-texture-rectangle.c

782 lines
26 KiB
C
Raw Normal View History

/*
* Cogl
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-21 20:28:54 -05:00
* A Low Level GPU Graphics and Utilities API
*
* Copyright (C) 2010 Intel Corporation.
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-21 20:28:54 -05:00
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-21 20:28:54 -05:00
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-21 20:28:54 -05:00
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*
*
* Authors:
* Neil Roberts <neil@linux.intel.com>
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "cogl-private.h"
#include "cogl-util.h"
#include "cogl-texture-private.h"
#include "cogl-texture-rectangle-private.h"
#include "cogl-texture-driver.h"
#include "cogl-context-private.h"
#include "cogl-object-private.h"
#include "cogl-journal-private.h"
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 13:54:57 -04:00
#include "cogl-pipeline-opengl-private.h"
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 14:28:27 -04:00
#include "cogl-error-private.h"
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 12:54:10 -05:00
#include "cogl-util-gl-private.h"
#include "cogl-gtype-private.h"
#include <string.h>
#include <math.h>
/* These aren't defined under GLES */
#ifndef GL_TEXTURE_RECTANGLE_ARB
#define GL_TEXTURE_RECTANGLE_ARB 0x84F5
#endif
#ifndef GL_CLAMP
#define GL_CLAMP 0x2900
#endif
#ifndef GL_CLAMP_TO_BORDER
#define GL_CLAMP_TO_BORDER 0x812D
#endif
static void _cogl_texture_rectangle_free (CoglTextureRectangle *tex_rect);
COGL_TEXTURE_DEFINE (TextureRectangle, texture_rectangle);
COGL_GTYPE_DEFINE_CLASS (TextureRectangle, texture_rectangle,
COGL_GTYPE_IMPLEMENT_INTERFACE (texture));
static const CoglTextureVtable cogl_texture_rectangle_vtable;
static CoglBool
can_use_wrap_mode (GLenum wrap_mode)
{
return (wrap_mode == GL_CLAMP ||
wrap_mode == GL_CLAMP_TO_EDGE ||
wrap_mode == GL_CLAMP_TO_BORDER);
}
static void
_cogl_texture_rectangle_gl_flush_legacy_texobj_wrap_modes (CoglTexture *tex,
GLenum wrap_mode_s,
GLenum wrap_mode_t,
GLenum wrap_mode_p)
{
CoglTextureRectangle *tex_rect = COGL_TEXTURE_RECTANGLE (tex);
CoglContext *ctx = tex->context;
/* Only set the wrap mode if it's different from the current value
to avoid too many GL calls. Texture rectangle doesn't make use of
the r coordinate so we can ignore its wrap mode */
if (tex_rect->gl_legacy_texobj_wrap_mode_s != wrap_mode_s ||
tex_rect->gl_legacy_texobj_wrap_mode_t != wrap_mode_t)
{
g_assert (can_use_wrap_mode (wrap_mode_s));
g_assert (can_use_wrap_mode (wrap_mode_t));
_cogl_bind_gl_texture_transient (GL_TEXTURE_RECTANGLE_ARB,
tex_rect->gl_texture,
tex_rect->is_foreign);
GE( ctx, glTexParameteri (GL_TEXTURE_RECTANGLE_ARB,
GL_TEXTURE_WRAP_S, wrap_mode_s) );
GE( ctx, glTexParameteri (GL_TEXTURE_RECTANGLE_ARB,
GL_TEXTURE_WRAP_T, wrap_mode_t) );
tex_rect->gl_legacy_texobj_wrap_mode_s = wrap_mode_s;
tex_rect->gl_legacy_texobj_wrap_mode_t = wrap_mode_t;
}
}
static void
_cogl_texture_rectangle_free (CoglTextureRectangle *tex_rect)
{
if (!tex_rect->is_foreign && tex_rect->gl_texture)
_cogl_delete_gl_texture (tex_rect->gl_texture);
/* Chain up */
_cogl_texture_free (COGL_TEXTURE (tex_rect));
}
static CoglBool
_cogl_texture_rectangle_can_create (CoglContext *ctx,
unsigned int width,
unsigned int height,
CoglPixelFormat internal_format,
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 14:28:27 -04:00
CoglError **error)
{
GLenum gl_intformat;
GLenum gl_format;
GLenum gl_type;
if (!cogl_has_feature (ctx, COGL_FEATURE_ID_TEXTURE_RECTANGLE))
{
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 14:28:27 -04:00
_cogl_set_error (error,
COGL_TEXTURE_ERROR,
COGL_TEXTURE_ERROR_TYPE,
"The CoglTextureRectangle feature isn't available");
return FALSE;
}
ctx->driver_vtable->pixel_format_to_gl (ctx,
internal_format,
&gl_intformat,
&gl_format,
&gl_type);
/* Check that the driver can create a texture with that size */
if (!ctx->texture_driver->size_supported (ctx,
GL_TEXTURE_RECTANGLE_ARB,
gl_intformat,
gl_format,
gl_type,
width,
height))
{
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 14:28:27 -04:00
_cogl_set_error (error,
COGL_TEXTURE_ERROR,
COGL_TEXTURE_ERROR_SIZE,
"The requested texture size + format is unsupported");
return FALSE;
}
return TRUE;
}
static void
_cogl_texture_rectangle_set_auto_mipmap (CoglTexture *tex,
CoglBool value)
{
/* Rectangle textures currently never support mipmapping so there's
no point in doing anything here */
}
static CoglTextureRectangle *
_cogl_texture_rectangle_create_base (CoglContext *ctx,
int width,
int height,
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
CoglPixelFormat internal_format,
CoglTextureLoader *loader)
{
CoglTextureRectangle *tex_rect = g_new (CoglTextureRectangle, 1);
CoglTexture *tex = COGL_TEXTURE (tex_rect);
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
_cogl_texture_init (tex, ctx, width, height,
internal_format, loader,
&cogl_texture_rectangle_vtable);
tex_rect->gl_texture = 0;
tex_rect->is_foreign = FALSE;
/* We default to GL_LINEAR for both filters */
tex_rect->gl_legacy_texobj_min_filter = GL_LINEAR;
tex_rect->gl_legacy_texobj_mag_filter = GL_LINEAR;
/* Wrap mode not yet set */
tex_rect->gl_legacy_texobj_wrap_mode_s = GL_FALSE;
tex_rect->gl_legacy_texobj_wrap_mode_t = GL_FALSE;
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 12:54:10 -05:00
return _cogl_texture_rectangle_object_new (tex_rect);
}
CoglTextureRectangle *
cogl_texture_rectangle_new_with_size (CoglContext *ctx,
int width,
int height)
{
CoglTextureLoader *loader = _cogl_texture_create_loader ();
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
loader->src_type = COGL_TEXTURE_SOURCE_TYPE_SIZED;
loader->src.sized.width = width;
loader->src.sized.height = height;
return _cogl_texture_rectangle_create_base (ctx, width, height,
COGL_PIXEL_FORMAT_RGBA_8888_PRE,
loader);
}
static CoglBool
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
allocate_with_size (CoglTextureRectangle *tex_rect,
CoglTextureLoader *loader,
CoglError **error)
{
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
CoglTexture *tex = COGL_TEXTURE (tex_rect);
CoglContext *ctx = tex->context;
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
CoglPixelFormat internal_format;
int width = loader->src.sized.width;
int height = loader->src.sized.height;
GLenum gl_intformat;
GLenum gl_format;
GLenum gl_type;
GLenum gl_error;
GLenum gl_texture;
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
internal_format =
_cogl_texture_determine_internal_format (tex, COGL_PIXEL_FORMAT_ANY);
if (!_cogl_texture_rectangle_can_create (ctx,
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
width,
height,
internal_format,
error))
return FALSE;
ctx->driver_vtable->pixel_format_to_gl (ctx,
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
internal_format,
&gl_intformat,
&gl_format,
&gl_type);
gl_texture =
Use GL_ARB_texture_swizzle to emulate GL_ALPHA textures The core profile of GL3 has removed support for component-alpha textures. Previously the GL3 driver would just ignore this and try to create them anyway. This would generate a GL error on Mesa. To fix this the GL texture driver will now create a GL_RED texture when GL_ALPHA textures are not supported natively. It will then set a texture swizzle using the GL_ARB_texture_swizzle extension so that the alpha component will be taken from the red component of the texture. The swizzle is part of the texture object state so it only needs to be set once when the texture is created. The ‘gen’ virtual function of the texture driver has been changed to also take the internal format as a parameter. The GL driver will now set the swizzle as appropriate here. The GL3 driver now reports an error if the texture swizzle extension is not available because Cogl can't really work properly without out it. The extension is part of GL 3.3 so it is quite likely that it has wide support from drivers. Eventually we could get rid of this requirement if we have our own GLSL front-end and we could generate the swizzle ourselves. When uploading or downloading texture data to or from a component-alpha texture, we can no longer rely on GL to do the conversion. The swizzle doesn't have any effect on the texture data functions. In these cases Cogl will now force an intermediate buffer to be used and it will manually do the conversion as it does for the GLES drivers. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 32bacf81ebaa3be21a8f26af07d8f6eed6607652)
2012-11-19 12:28:52 -05:00
ctx->texture_driver->gen (ctx,
GL_TEXTURE_RECTANGLE_ARB,
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
internal_format);
_cogl_bind_gl_texture_transient (GL_TEXTURE_RECTANGLE_ARB,
gl_texture,
tex_rect->is_foreign);
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 12:54:10 -05:00
/* Clear any GL errors */
while ((gl_error = ctx->glGetError ()) != GL_NO_ERROR)
;
ctx->glTexImage2D (GL_TEXTURE_RECTANGLE_ARB, 0, gl_intformat,
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
width, height, 0, gl_format, gl_type, NULL);
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 12:54:10 -05:00
if (_cogl_gl_util_catch_out_of_memory (ctx, error))
{
GE( ctx, glDeleteTextures (1, &gl_texture) );
return FALSE;
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 12:54:10 -05:00
}
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
tex_rect->internal_format = internal_format;
tex_rect->gl_texture = gl_texture;
tex_rect->gl_format = gl_intformat;
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
_cogl_texture_set_allocated (COGL_TEXTURE (tex_rect),
internal_format, width, height);
return TRUE;
}
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
static CoglBool
allocate_from_bitmap (CoglTextureRectangle *tex_rect,
CoglTextureLoader *loader,
CoglError **error)
{
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
CoglTexture *tex = COGL_TEXTURE (tex_rect);
CoglContext *ctx = tex->context;
CoglPixelFormat internal_format;
CoglBitmap *bmp = loader->src.bitmap.bitmap;
int width = cogl_bitmap_get_width (bmp);
int height = cogl_bitmap_get_height (bmp);
CoglBool can_convert_in_place = loader->src.bitmap.can_convert_in_place;
CoglBitmap *upload_bmp;
GLenum gl_intformat;
GLenum gl_format;
GLenum gl_type;
cogl-bitmap: Encapsulate the CoglBitmap even internally The CoglBitmap struct is now only defined within cogl-bitmap.c so that all of its members can now only be accessed with accessor functions. To get to the data pointer for the bitmap image you must first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map function takes the same arguments as cogl_pixel_array_map so that eventually we can make a bitmap optionally internally divert to a pixel array. There is a _cogl_bitmap_new_from_data function which constructs a new bitmap object and takes ownership of the data pointer. The function gets passed a destroy callback which gets called when the bitmap is freed. This is similar to how gdk_pixbuf_new_from_data works. Alternatively NULL can be passed for the destroy function which means that the caller will manage the life of the pointer (but must guarantee that it stays alive at least until the bitmap is freed). This mechanism is used instead of the old approach of creating a CoglBitmap struct on the stack and manually filling in the members. It could also later be used to create a CoglBitmap that owns a GdkPixbuf ref so that we don't necessarily have to copy the GdkPixbuf data when converting to a bitmap. There is also _cogl_bitmap_new_shared. This creates a bitmap using a reference to another CoglBitmap for the data. This is a bit of a hack but it is needed by the atlas texture backend which wants to divert the set_region virtual to another texture but it needs to override the format of the bitmap to ignore the premult flag.
2010-07-07 13:44:16 -04:00
internal_format =
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
_cogl_texture_determine_internal_format (tex, cogl_bitmap_get_format (bmp));
if (!_cogl_texture_rectangle_can_create (ctx,
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
width,
height,
internal_format,
error))
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
return FALSE;
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
upload_bmp = _cogl_bitmap_convert_for_upload (bmp,
internal_format,
can_convert_in_place,
error);
if (upload_bmp == NULL)
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
return FALSE;
ctx->driver_vtable->pixel_format_to_gl (ctx,
cogl_bitmap_get_format (upload_bmp),
NULL, /* internal format */
&gl_format,
&gl_type);
ctx->driver_vtable->pixel_format_to_gl (ctx,
internal_format,
&gl_intformat,
NULL,
NULL);
Use GL_ARB_texture_swizzle to emulate GL_ALPHA textures The core profile of GL3 has removed support for component-alpha textures. Previously the GL3 driver would just ignore this and try to create them anyway. This would generate a GL error on Mesa. To fix this the GL texture driver will now create a GL_RED texture when GL_ALPHA textures are not supported natively. It will then set a texture swizzle using the GL_ARB_texture_swizzle extension so that the alpha component will be taken from the red component of the texture. The swizzle is part of the texture object state so it only needs to be set once when the texture is created. The ‘gen’ virtual function of the texture driver has been changed to also take the internal format as a parameter. The GL driver will now set the swizzle as appropriate here. The GL3 driver now reports an error if the texture swizzle extension is not available because Cogl can't really work properly without out it. The extension is part of GL 3.3 so it is quite likely that it has wide support from drivers. Eventually we could get rid of this requirement if we have our own GLSL front-end and we could generate the swizzle ourselves. When uploading or downloading texture data to or from a component-alpha texture, we can no longer rely on GL to do the conversion. The swizzle doesn't have any effect on the texture data functions. In these cases Cogl will now force an intermediate buffer to be used and it will manually do the conversion as it does for the GLES drivers. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 32bacf81ebaa3be21a8f26af07d8f6eed6607652)
2012-11-19 12:28:52 -05:00
tex_rect->gl_texture =
ctx->texture_driver->gen (ctx,
GL_TEXTURE_RECTANGLE_ARB,
internal_format);
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 12:54:10 -05:00
if (!ctx->texture_driver->upload_to_gl (ctx,
GL_TEXTURE_RECTANGLE_ARB,
tex_rect->gl_texture,
FALSE,
upload_bmp,
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 12:54:10 -05:00
gl_intformat,
gl_format,
gl_type,
error))
{
cogl_object_unref (upload_bmp);
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
return FALSE;
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 12:54:10 -05:00
}
tex_rect->gl_format = gl_intformat;
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
tex_rect->internal_format = internal_format;
cogl_object_unref (upload_bmp);
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
_cogl_texture_set_allocated (COGL_TEXTURE (tex_rect),
internal_format, width, height);
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
return TRUE;
}
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
static CoglBool
allocate_from_gl_foreign (CoglTextureRectangle *tex_rect,
CoglTextureLoader *loader,
CoglError **error)
{
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
CoglTexture *tex = COGL_TEXTURE (tex_rect);
CoglContext *ctx = tex->context;
CoglPixelFormat format = loader->src.gl_foreign.format;
GLenum gl_error = 0;
GLint gl_compressed = GL_FALSE;
GLenum gl_int_format = 0;
if (!ctx->texture_driver->allows_foreign_gl_target (ctx,
GL_TEXTURE_RECTANGLE_ARB))
{
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 14:28:27 -04:00
_cogl_set_error (error,
COGL_SYSTEM_ERROR,
COGL_SYSTEM_ERROR_UNSUPPORTED,
"Foreign GL_TEXTURE_RECTANGLE textures are not "
"supported by your system");
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
return FALSE;
}
/* Make sure binding succeeds */
while ((gl_error = ctx->glGetError ()) != GL_NO_ERROR)
;
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
_cogl_bind_gl_texture_transient (GL_TEXTURE_RECTANGLE_ARB,
loader->src.gl_foreign.gl_handle, TRUE);
if (ctx->glGetError () != GL_NO_ERROR)
{
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 14:28:27 -04:00
_cogl_set_error (error,
COGL_SYSTEM_ERROR,
COGL_SYSTEM_ERROR_UNSUPPORTED,
"Failed to bind foreign GL_TEXTURE_RECTANGLE texture");
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
return FALSE;
}
/* Obtain texture parameters */
#ifdef HAVE_COGL_GL
if (_cogl_has_private_feature
(ctx, COGL_PRIVATE_FEATURE_QUERY_TEXTURE_PARAMETERS))
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
{
GLint val;
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
GE( ctx, glGetTexLevelParameteriv (GL_TEXTURE_RECTANGLE_ARB, 0,
GL_TEXTURE_COMPRESSED,
&gl_compressed) );
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
GE( ctx, glGetTexLevelParameteriv (GL_TEXTURE_RECTANGLE_ARB, 0,
GL_TEXTURE_INTERNAL_FORMAT,
&val) );
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
gl_int_format = val;
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
/* If we can query GL for the actual pixel format then we'll ignore
the passed in format and use that. */
if (!ctx->driver_vtable->pixel_format_from_gl_internal (ctx,
gl_int_format,
&format))
{
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 14:28:27 -04:00
_cogl_set_error (error,
COGL_SYSTEM_ERROR,
COGL_SYSTEM_ERROR_UNSUPPORTED,
"Unsupported internal format for foreign texture");
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
return FALSE;
}
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
}
else
#endif
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
{
/* Otherwise we'll assume we can derive the GL format from the
passed in format */
ctx->driver_vtable->pixel_format_to_gl (ctx,
format,
&gl_int_format,
NULL,
NULL);
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 15:44:56 -04:00
}
/* Compressed texture images not supported */
if (gl_compressed == GL_TRUE)
{
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 14:28:27 -04:00
_cogl_set_error (error,
COGL_SYSTEM_ERROR,
COGL_SYSTEM_ERROR_UNSUPPORTED,
"Compressed foreign textures aren't currently supported");
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
return FALSE;
}
/* Setup bitmap info */
tex_rect->is_foreign = TRUE;
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
tex_rect->gl_texture = loader->src.gl_foreign.gl_handle;
tex_rect->gl_format = gl_int_format;
/* Unknown filter */
tex_rect->gl_legacy_texobj_min_filter = GL_FALSE;
tex_rect->gl_legacy_texobj_mag_filter = GL_FALSE;
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
tex_rect->internal_format = format;
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
_cogl_texture_set_allocated (COGL_TEXTURE (tex_rect),
format,
loader->src.gl_foreign.width,
loader->src.gl_foreign.height);
return TRUE;
}
static CoglBool
_cogl_texture_rectangle_allocate (CoglTexture *tex,
CoglError **error)
{
CoglTextureRectangle *tex_rect = COGL_TEXTURE_RECTANGLE (tex);
CoglTextureLoader *loader = tex->loader;
_COGL_RETURN_VAL_IF_FAIL (loader, FALSE);
switch (loader->src_type)
{
case COGL_TEXTURE_SOURCE_TYPE_SIZED:
return allocate_with_size (tex_rect, loader, error);
case COGL_TEXTURE_SOURCE_TYPE_BITMAP:
return allocate_from_bitmap (tex_rect, loader, error);
case COGL_TEXTURE_SOURCE_TYPE_GL_FOREIGN:
return allocate_from_gl_foreign (tex_rect, loader, error);
default:
break;
}
g_return_val_if_reached (FALSE);
}
CoglTextureRectangle *
cogl_texture_rectangle_new_from_bitmap (CoglBitmap *bmp)
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
{
CoglTextureLoader *loader;
_COGL_RETURN_VAL_IF_FAIL (cogl_is_bitmap (bmp), NULL);
loader = _cogl_texture_create_loader ();
loader->src_type = COGL_TEXTURE_SOURCE_TYPE_BITMAP;
loader->src.bitmap.bitmap = cogl_object_ref (bmp);
loader->src.bitmap.can_convert_in_place = FALSE; /* TODO add api for this */
return _cogl_texture_rectangle_create_base (_cogl_bitmap_get_context (bmp),
cogl_bitmap_get_width (bmp),
cogl_bitmap_get_height (bmp),
cogl_bitmap_get_format (bmp),
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
loader);
}
CoglTextureRectangle *
cogl_texture_rectangle_new_from_foreign (CoglContext *ctx,
unsigned int gl_handle,
int width,
int height,
CoglPixelFormat format)
introduce texture loaders to make allocations lazy This introduces the internal idea of texture loaders that track the state for loading and allocating a texture. This defers a lot more work until the texture is allocated. There are several intentions to this change: - provides a means for extending how textures are allocated without requiring all the parameters to be supplied in a single _texture_new() function call. - allow us to remove the internal_format argument from all _texture_new() apis since using CoglPixelFormat is bad way of expressing the internal format constraints because it is too specific. For now the internal_format arguments haven't actually been removed but this patch does introduce replacement apis for controlling the internal format: cogl_texture_set_components() lets you specify what components your texture needs when it is allocated. cogl_texture_set_premultiplied() lets you specify whether a texture data should be interpreted as premultiplied or not. - Enable us to support asynchronous texture loading + allocation in the future. Of note, the _new_from_data() texture constructors all continue to allocate textures immediately so that existing code doesn't need to be adapted to manage the lifetime of the data being uploaded. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 6a83de9ef4210f380a31f410797447b365a8d02c) Note: Compared to the original patch, the ->premultipled state for textures isn't forced to be %TRUE in _cogl_texture_init since that effectively ignores the users explicitly given internal_format which was a mistake and on master that change should have been made in the patch that followed. The gtk-doc comments for cogl_texture_set_premultiplied() and cogl_texture_set_components() have also been updated in-line with this fix.
2013-06-23 11:18:18 -04:00
{
CoglTextureLoader *loader;
/* NOTE: width, height and internal format are not queriable in
* GLES, hence such a function prototype. Also in the case of full
* opengl the user may be creating a Cogl texture for a
* texture_from_pixmap object where glTexImage2D may not have been
* called and the texture_from_pixmap spec doesn't clarify that it
* is reliable to query back the size from OpenGL.
*/
/* Assert that it is a valid GL texture object */
_COGL_RETURN_VAL_IF_FAIL (ctx->glIsTexture (gl_handle), NULL);
/* Validate width and height */
_COGL_RETURN_VAL_IF_FAIL (width > 0 && height > 0, NULL);
loader = _cogl_texture_create_loader ();
loader->src_type = COGL_TEXTURE_SOURCE_TYPE_GL_FOREIGN;
loader->src.gl_foreign.gl_handle = gl_handle;
loader->src.gl_foreign.width = width;
loader->src.gl_foreign.height = height;
loader->src.gl_foreign.format = format;
return _cogl_texture_rectangle_create_base (ctx, width, height,
format, loader);
}
static int
_cogl_texture_rectangle_get_max_waste (CoglTexture *tex)
{
return -1;
}
static CoglBool
_cogl_texture_rectangle_is_sliced (CoglTexture *tex)
{
return FALSE;
}
static CoglBool
_cogl_texture_rectangle_can_hardware_repeat (CoglTexture *tex)
{
return FALSE;
}
static void
_cogl_texture_rectangle_transform_coords_to_gl (CoglTexture *tex,
float *s,
float *t)
{
*s *= tex->width;
*t *= tex->height;
}
static CoglTransformResult
_cogl_texture_rectangle_transform_quad_coords_to_gl (CoglTexture *tex,
float *coords)
{
CoglBool need_repeat = FALSE;
int i;
for (i = 0; i < 4; i++)
{
if (coords[i] < 0.0f || coords[i] > 1.0f)
need_repeat = TRUE;
coords[i] *= (i & 1) ? tex->height : tex->width;
}
return (need_repeat ? COGL_TRANSFORM_SOFTWARE_REPEAT
: COGL_TRANSFORM_NO_REPEAT);
}
static CoglBool
_cogl_texture_rectangle_get_gl_texture (CoglTexture *tex,
GLuint *out_gl_handle,
GLenum *out_gl_target)
{
CoglTextureRectangle *tex_rect = COGL_TEXTURE_RECTANGLE (tex);
if (out_gl_handle)
*out_gl_handle = tex_rect->gl_texture;
if (out_gl_target)
*out_gl_target = GL_TEXTURE_RECTANGLE_ARB;
return TRUE;
}
static void
_cogl_texture_rectangle_gl_flush_legacy_texobj_filters (CoglTexture *tex,
GLenum min_filter,
GLenum mag_filter)
{
CoglTextureRectangle *tex_rect = COGL_TEXTURE_RECTANGLE (tex);
CoglContext *ctx = tex->context;
if (min_filter == tex_rect->gl_legacy_texobj_min_filter
&& mag_filter == tex_rect->gl_legacy_texobj_mag_filter)
return;
/* Rectangle textures don't support mipmapping */
g_assert (min_filter == GL_LINEAR || min_filter == GL_NEAREST);
/* Store new values */
tex_rect->gl_legacy_texobj_min_filter = min_filter;
tex_rect->gl_legacy_texobj_mag_filter = mag_filter;
/* Apply new filters to the texture */
_cogl_bind_gl_texture_transient (GL_TEXTURE_RECTANGLE_ARB,
tex_rect->gl_texture,
tex_rect->is_foreign);
GE( ctx, glTexParameteri (GL_TEXTURE_RECTANGLE_ARB, GL_TEXTURE_MAG_FILTER,
mag_filter) );
GE( ctx, glTexParameteri (GL_TEXTURE_RECTANGLE_ARB, GL_TEXTURE_MIN_FILTER,
min_filter) );
}
static void
_cogl_texture_rectangle_pre_paint (CoglTexture *tex,
CoglTexturePrePaintFlags flags)
{
/* Rectangle textures don't support mipmaps */
g_assert ((flags & COGL_TEXTURE_NEEDS_MIPMAP) == 0);
}
static void
_cogl_texture_rectangle_ensure_non_quad_rendering (CoglTexture *tex)
{
/* Nothing needs to be done */
}
static CoglBool
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 12:54:10 -05:00
_cogl_texture_rectangle_set_region (CoglTexture *tex,
int src_x,
int src_y,
int dst_x,
int dst_y,
int dst_width,
int dst_height,
int level,
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 12:54:10 -05:00
CoglBitmap *bmp,
CoglError **error)
{
CoglBitmap *upload_bmp;
GLenum gl_format;
GLenum gl_type;
CoglContext *ctx = tex->context;
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 12:54:10 -05:00
CoglBool status;
upload_bmp =
_cogl_bitmap_convert_for_upload (bmp,
_cogl_texture_get_format (tex),
FALSE, /* can't convert in place */
error);
if (upload_bmp == NULL)
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 12:54:10 -05:00
return FALSE;
ctx->driver_vtable->pixel_format_to_gl (ctx,
cogl_bitmap_get_format (upload_bmp),
NULL, /* internal format */
&gl_format,
&gl_type);
/* Send data to GL */
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 12:54:10 -05:00
status =
ctx->texture_driver->upload_subregion_to_gl (ctx,
tex,
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 12:54:10 -05:00
FALSE,
src_x, src_y,
dst_x, dst_y,
dst_width, dst_height,
level,
upload_bmp,
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 12:54:10 -05:00
gl_format,
gl_type,
error);
cogl_object_unref (upload_bmp);
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 12:54:10 -05:00
return status;
}
static CoglBool
_cogl_texture_rectangle_get_data (CoglTexture *tex,
CoglPixelFormat format,
int rowstride,
uint8_t *data)
{
CoglTextureRectangle *tex_rect = COGL_TEXTURE_RECTANGLE (tex);
CoglContext *ctx = tex->context;
int bpp;
GLenum gl_format;
GLenum gl_type;
bpp = _cogl_pixel_format_get_bytes_per_pixel (format);
ctx->driver_vtable->pixel_format_to_gl (ctx,
format,
NULL, /* internal format */
&gl_format,
&gl_type);
ctx->texture_driver->prep_gl_for_pixels_download (ctx,
rowstride,
tex->width,
bpp);
_cogl_bind_gl_texture_transient (GL_TEXTURE_RECTANGLE_ARB,
tex_rect->gl_texture,
tex_rect->is_foreign);
return ctx->texture_driver->gl_get_tex_image (ctx,
GL_TEXTURE_RECTANGLE_ARB,
gl_format,
gl_type,
data);
}
static CoglPixelFormat
_cogl_texture_rectangle_get_format (CoglTexture *tex)
{
return COGL_TEXTURE_RECTANGLE (tex)->internal_format;
}
static GLenum
_cogl_texture_rectangle_get_gl_format (CoglTexture *tex)
{
return COGL_TEXTURE_RECTANGLE (tex)->gl_format;
}
static CoglBool
_cogl_texture_rectangle_is_foreign (CoglTexture *tex)
{
return COGL_TEXTURE_RECTANGLE (tex)->is_foreign;
}
static CoglTextureType
_cogl_texture_rectangle_get_type (CoglTexture *tex)
{
return COGL_TEXTURE_TYPE_RECTANGLE;
}
static const CoglTextureVtable
cogl_texture_rectangle_vtable =
{
TRUE, /* primitive */
_cogl_texture_rectangle_allocate,
_cogl_texture_rectangle_set_region,
_cogl_texture_rectangle_get_data,
NULL, /* foreach_sub_texture_in_region */
_cogl_texture_rectangle_get_max_waste,
_cogl_texture_rectangle_is_sliced,
_cogl_texture_rectangle_can_hardware_repeat,
_cogl_texture_rectangle_transform_coords_to_gl,
_cogl_texture_rectangle_transform_quad_coords_to_gl,
_cogl_texture_rectangle_get_gl_texture,
_cogl_texture_rectangle_gl_flush_legacy_texobj_filters,
_cogl_texture_rectangle_pre_paint,
_cogl_texture_rectangle_ensure_non_quad_rendering,
_cogl_texture_rectangle_gl_flush_legacy_texobj_wrap_modes,
_cogl_texture_rectangle_get_format,
_cogl_texture_rectangle_get_gl_format,
_cogl_texture_rectangle_get_type,
_cogl_texture_rectangle_is_foreign,
_cogl_texture_rectangle_set_auto_mipmap
};