mutter/cogl/winsys/cogl-winsys-egl.c

915 lines
29 KiB
C
Raw Normal View History

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2007,2008,2009,2010,2011 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see
* <http://www.gnu.org/licenses/>.
*
*
* Authors:
* Robert Bragg <robert@linux.intel.com>
*/
Intial Re-layout of the Cogl source code and introduction of a Cogl Winsys As part of an incremental process to have Cogl be a standalone project we want to re-consider how we organise the Cogl source code. Currently this is the structure I'm aiming for: cogl/ cogl/ <put common source here> winsys/ cogl-glx.c cogl-wgl.c driver/ gl/ gles/ os/ ? utils/ cogl-fixed cogl-matrix-stack? cogl-journal? cogl-primitives? pango/ The new winsys component is a starting point for migrating window system code (i.e. x11,glx,wgl,osx,egl etc) from Clutter to Cogl. The utils/ and pango/ directories aren't added by this commit, but they are noted because I plan to add them soon. Overview of the planned structure: * The winsys/ API is the API that binds OpenGL to a specific window system, be that X11 or win32 etc. Example are glx, wgl and egl. Much of the logic under clutter/{glx,osx,win32 etc} should migrate here. * Note there is also the idea of a winsys-base that may represent a window system for which there are multiple winsys APIs. An example of this is x11, since glx and egl may both be used with x11. (currently only Clutter has the idea of a winsys-base) * The driver/ represents a specific varient of OpenGL. Currently we have "gl" representing OpenGL 1.4-2.1 (mostly fixed function) and "gles" representing GLES 1.1 (fixed funciton) and 2.0 (fully shader based) * Everything under cogl/ should fundamentally be supporting access to the GPU. Essentially Cogl's most basic requirement is to provide a nice GPU Graphics API and drawing a line between this and the utility functionality we add to support Clutter should help keep this lean and maintainable. * Code under utils/ as suggested builds on cogl/ adding more convenient APIs or mechanism to optimize special cases. Broadly speaking you can compare cogl/ to OpenGL and utils/ to GLU. * clutter/pango will be moved to clutter/cogl/pango How some of the internal configure.ac/pkg-config terminology has changed: backendextra -> CLUTTER_WINSYS_BASE # e.g. "x11" backendextralib -> CLUTTER_WINSYS_BASE_LIB # e.g. "x11/libclutter-x11.la" clutterbackend -> {CLUTTER,COGL}_WINSYS # e.g. "glx" CLUTTER_FLAVOUR -> {CLUTTER,COGL}_WINSYS clutterbackendlib -> CLUTTER_WINSYS_LIB CLUTTER_COGL -> COGL_DRIVER # e.g. "gl" Note: The CLUTTER_FLAVOUR and CLUTTER_COGL defines are kept for apps As the first thing to take advantage of the new winsys component in Cogl; cogl_get_proc_address() has been moved from cogl/{gl,gles}/cogl.c into cogl/common/cogl.c and this common implementation first trys _cogl_winsys_get_proc_address() but if that fails then it falls back to gmodule.
2009-07-28 02:02:02 +01:00
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "cogl-util.h"
#include "cogl-winsys-egl-private.h"
#include "cogl-winsys-private.h"
#include "cogl-feature-private.h"
#include "cogl-context-private.h"
#include "cogl-framebuffer.h"
#include "cogl-onscreen-private.h"
#include "cogl-swap-chain-private.h"
#include "cogl-renderer-private.h"
#include "cogl-onscreen-template-private.h"
#include "cogl-gles2-context-private.h"
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 19:28:27 +01:00
#include "cogl-error-private.h"
#include "cogl-private.h"
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <glib/gi18n-lib.h>
#define MAX_EGL_CONFIG_ATTRIBS 30
/* Define a set of arrays containing the functions required from GL
for each winsys feature */
#define COGL_WINSYS_FEATURE_BEGIN(name, namespaces, extension_names, \
egl_private_flags) \
static const CoglFeatureFunction \
cogl_egl_feature_ ## name ## _funcs[] = {
#define COGL_WINSYS_FEATURE_FUNCTION(ret, name, args) \
{ G_STRINGIFY (name), G_STRUCT_OFFSET (CoglRendererEGL, pf_ ## name) },
#define COGL_WINSYS_FEATURE_END() \
{ NULL, 0 }, \
};
#include "cogl-winsys-egl-feature-functions.h"
/* Define an array of features */
#undef COGL_WINSYS_FEATURE_BEGIN
#define COGL_WINSYS_FEATURE_BEGIN(name, namespaces, extension_names, \
egl_private_flags) \
{ 255, 255, 0, namespaces, extension_names, \
0, egl_private_flags, \
0, \
cogl_egl_feature_ ## name ## _funcs },
#undef COGL_WINSYS_FEATURE_FUNCTION
#define COGL_WINSYS_FEATURE_FUNCTION(ret, name, args)
#undef COGL_WINSYS_FEATURE_END
#define COGL_WINSYS_FEATURE_END()
static const CoglFeatureData winsys_feature_data[] =
{
#include "cogl-winsys-egl-feature-functions.h"
};
static const char *
get_error_string (void)
{
switch (eglGetError()){
case EGL_BAD_DISPLAY:
return "Invalid display";
case EGL_NOT_INITIALIZED:
return "Display not initialized";
case EGL_BAD_ALLOC:
return "Not enough resources to allocate context";
case EGL_BAD_ATTRIBUTE:
return "Invalid attribute";
case EGL_BAD_CONFIG:
return "Invalid config";
case EGL_BAD_CONTEXT:
return "Invalid context";
case EGL_BAD_CURRENT_SURFACE:
return "Invalid current surface";
case EGL_BAD_MATCH:
return "Bad match";
case EGL_BAD_NATIVE_PIXMAP:
return "Invalid native pixmap";
case EGL_BAD_NATIVE_WINDOW:
return "Invalid native window";
case EGL_BAD_PARAMETER:
return "Invalid parameter";
case EGL_BAD_SURFACE:
return "Invalid surface";
default:
g_assert_not_reached ();
}
}
static CoglFuncPtr
_cogl_winsys_renderer_get_proc_address (CoglRenderer *renderer,
Don't use eglGetProcAddress to retrieve core functions According to the EGL spec, eglGetProcAddress should only be used to retrieve extension functions. It also says that returning non-NULL does not mean the extension is available so you could interpret this as saying that the function is allowed to return garbage for core functions. This seems to happen at least for the Android implementation of EGL. To workaround this the winsys's are now passed down a flag to say whether the function is from the core API. This information is already in the gl-prototypes headers as the minimum core GL version and as a pair of flags to specify whether it is available in core GLES1 and GLES2. If the function is in core the EGL winsys will now avoid using eglGetProcAddress and always fallback to querying the library directly with the GModule API. The GLX winsys is left alone because glXGetProcAddress apparently supports querying core API and extension functions. The WGL winsys could ideally be changed because wglGetProcAddress should also only be used for extension functions but the situation is slightly different because WGL considers anything from GL > 1.1 to be an extension so it would need a bit more information to determine whether to query the function directly from the library. The SDL winsys is also left alone because it's not as easy to portably determine which GL library SDL has chosen to load in order to resolve the symbols directly. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 72089730ad06ccdd38a344279a893965ae68cec1) Since we aren't able to break API on the 1.12 branch cogl_get_proc_address is still supported but isn't easily able to determine whether the given name corresponds to a core symbol or not. For now we just assume the symbol being queried isn't part of the core GL api and update the documentation accordingly.
2012-06-20 12:42:31 +01:00
const char *name,
CoglBool in_core)
Intial Re-layout of the Cogl source code and introduction of a Cogl Winsys As part of an incremental process to have Cogl be a standalone project we want to re-consider how we organise the Cogl source code. Currently this is the structure I'm aiming for: cogl/ cogl/ <put common source here> winsys/ cogl-glx.c cogl-wgl.c driver/ gl/ gles/ os/ ? utils/ cogl-fixed cogl-matrix-stack? cogl-journal? cogl-primitives? pango/ The new winsys component is a starting point for migrating window system code (i.e. x11,glx,wgl,osx,egl etc) from Clutter to Cogl. The utils/ and pango/ directories aren't added by this commit, but they are noted because I plan to add them soon. Overview of the planned structure: * The winsys/ API is the API that binds OpenGL to a specific window system, be that X11 or win32 etc. Example are glx, wgl and egl. Much of the logic under clutter/{glx,osx,win32 etc} should migrate here. * Note there is also the idea of a winsys-base that may represent a window system for which there are multiple winsys APIs. An example of this is x11, since glx and egl may both be used with x11. (currently only Clutter has the idea of a winsys-base) * The driver/ represents a specific varient of OpenGL. Currently we have "gl" representing OpenGL 1.4-2.1 (mostly fixed function) and "gles" representing GLES 1.1 (fixed funciton) and 2.0 (fully shader based) * Everything under cogl/ should fundamentally be supporting access to the GPU. Essentially Cogl's most basic requirement is to provide a nice GPU Graphics API and drawing a line between this and the utility functionality we add to support Clutter should help keep this lean and maintainable. * Code under utils/ as suggested builds on cogl/ adding more convenient APIs or mechanism to optimize special cases. Broadly speaking you can compare cogl/ to OpenGL and utils/ to GLU. * clutter/pango will be moved to clutter/cogl/pango How some of the internal configure.ac/pkg-config terminology has changed: backendextra -> CLUTTER_WINSYS_BASE # e.g. "x11" backendextralib -> CLUTTER_WINSYS_BASE_LIB # e.g. "x11/libclutter-x11.la" clutterbackend -> {CLUTTER,COGL}_WINSYS # e.g. "glx" CLUTTER_FLAVOUR -> {CLUTTER,COGL}_WINSYS clutterbackendlib -> CLUTTER_WINSYS_LIB CLUTTER_COGL -> COGL_DRIVER # e.g. "gl" Note: The CLUTTER_FLAVOUR and CLUTTER_COGL defines are kept for apps As the first thing to take advantage of the new winsys component in Cogl; cogl_get_proc_address() has been moved from cogl/{gl,gles}/cogl.c into cogl/common/cogl.c and this common implementation first trys _cogl_winsys_get_proc_address() but if that fails then it falls back to gmodule.
2009-07-28 02:02:02 +01:00
{
Don't use eglGetProcAddress to retrieve core functions According to the EGL spec, eglGetProcAddress should only be used to retrieve extension functions. It also says that returning non-NULL does not mean the extension is available so you could interpret this as saying that the function is allowed to return garbage for core functions. This seems to happen at least for the Android implementation of EGL. To workaround this the winsys's are now passed down a flag to say whether the function is from the core API. This information is already in the gl-prototypes headers as the minimum core GL version and as a pair of flags to specify whether it is available in core GLES1 and GLES2. If the function is in core the EGL winsys will now avoid using eglGetProcAddress and always fallback to querying the library directly with the GModule API. The GLX winsys is left alone because glXGetProcAddress apparently supports querying core API and extension functions. The WGL winsys could ideally be changed because wglGetProcAddress should also only be used for extension functions but the situation is slightly different because WGL considers anything from GL > 1.1 to be an extension so it would need a bit more information to determine whether to query the function directly from the library. The SDL winsys is also left alone because it's not as easy to portably determine which GL library SDL has chosen to load in order to resolve the symbols directly. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 72089730ad06ccdd38a344279a893965ae68cec1) Since we aren't able to break API on the 1.12 branch cogl_get_proc_address is still supported but isn't easily able to determine whether the given name corresponds to a core symbol or not. For now we just assume the symbol being queried isn't part of the core GL api and update the documentation accordingly.
2012-06-20 12:42:31 +01:00
void *ptr = NULL;
Don't use eglGetProcAddress to retrieve core functions According to the EGL spec, eglGetProcAddress should only be used to retrieve extension functions. It also says that returning non-NULL does not mean the extension is available so you could interpret this as saying that the function is allowed to return garbage for core functions. This seems to happen at least for the Android implementation of EGL. To workaround this the winsys's are now passed down a flag to say whether the function is from the core API. This information is already in the gl-prototypes headers as the minimum core GL version and as a pair of flags to specify whether it is available in core GLES1 and GLES2. If the function is in core the EGL winsys will now avoid using eglGetProcAddress and always fallback to querying the library directly with the GModule API. The GLX winsys is left alone because glXGetProcAddress apparently supports querying core API and extension functions. The WGL winsys could ideally be changed because wglGetProcAddress should also only be used for extension functions but the situation is slightly different because WGL considers anything from GL > 1.1 to be an extension so it would need a bit more information to determine whether to query the function directly from the library. The SDL winsys is also left alone because it's not as easy to portably determine which GL library SDL has chosen to load in order to resolve the symbols directly. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 72089730ad06ccdd38a344279a893965ae68cec1) Since we aren't able to break API on the 1.12 branch cogl_get_proc_address is still supported but isn't easily able to determine whether the given name corresponds to a core symbol or not. For now we just assume the symbol being queried isn't part of the core GL api and update the documentation accordingly.
2012-06-20 12:42:31 +01:00
if (!in_core)
ptr = eglGetProcAddress (name);
/* eglGetProcAddress doesn't support fetching core API so we need to
get that separately with GModule */
if (ptr == NULL)
g_module_symbol (renderer->libgl_module, name, &ptr);
return ptr;
Intial Re-layout of the Cogl source code and introduction of a Cogl Winsys As part of an incremental process to have Cogl be a standalone project we want to re-consider how we organise the Cogl source code. Currently this is the structure I'm aiming for: cogl/ cogl/ <put common source here> winsys/ cogl-glx.c cogl-wgl.c driver/ gl/ gles/ os/ ? utils/ cogl-fixed cogl-matrix-stack? cogl-journal? cogl-primitives? pango/ The new winsys component is a starting point for migrating window system code (i.e. x11,glx,wgl,osx,egl etc) from Clutter to Cogl. The utils/ and pango/ directories aren't added by this commit, but they are noted because I plan to add them soon. Overview of the planned structure: * The winsys/ API is the API that binds OpenGL to a specific window system, be that X11 or win32 etc. Example are glx, wgl and egl. Much of the logic under clutter/{glx,osx,win32 etc} should migrate here. * Note there is also the idea of a winsys-base that may represent a window system for which there are multiple winsys APIs. An example of this is x11, since glx and egl may both be used with x11. (currently only Clutter has the idea of a winsys-base) * The driver/ represents a specific varient of OpenGL. Currently we have "gl" representing OpenGL 1.4-2.1 (mostly fixed function) and "gles" representing GLES 1.1 (fixed funciton) and 2.0 (fully shader based) * Everything under cogl/ should fundamentally be supporting access to the GPU. Essentially Cogl's most basic requirement is to provide a nice GPU Graphics API and drawing a line between this and the utility functionality we add to support Clutter should help keep this lean and maintainable. * Code under utils/ as suggested builds on cogl/ adding more convenient APIs or mechanism to optimize special cases. Broadly speaking you can compare cogl/ to OpenGL and utils/ to GLU. * clutter/pango will be moved to clutter/cogl/pango How some of the internal configure.ac/pkg-config terminology has changed: backendextra -> CLUTTER_WINSYS_BASE # e.g. "x11" backendextralib -> CLUTTER_WINSYS_BASE_LIB # e.g. "x11/libclutter-x11.la" clutterbackend -> {CLUTTER,COGL}_WINSYS # e.g. "glx" CLUTTER_FLAVOUR -> {CLUTTER,COGL}_WINSYS clutterbackendlib -> CLUTTER_WINSYS_LIB CLUTTER_COGL -> COGL_DRIVER # e.g. "gl" Note: The CLUTTER_FLAVOUR and CLUTTER_COGL defines are kept for apps As the first thing to take advantage of the new winsys component in Cogl; cogl_get_proc_address() has been moved from cogl/{gl,gles}/cogl.c into cogl/common/cogl.c and this common implementation first trys _cogl_winsys_get_proc_address() but if that fails then it falls back to gmodule.
2009-07-28 02:02:02 +01:00
}
static void
_cogl_winsys_renderer_disconnect (CoglRenderer *renderer)
{
/* This function must be overridden by a platform winsys */
g_assert_not_reached ();
}
/* Updates all the function pointers */
static void
check_egl_extensions (CoglRenderer *renderer)
{
CoglRendererEGL *egl_renderer = renderer->winsys;
const char *egl_extensions;
Add a GL 3 driver This adds a new CoglDriver for GL 3 called COGL_DRIVER_GL3. When requested, the GLX, EGL and SDL2 winsyss will set the necessary attributes to request a forward-compatible core profile 3.1 context. That means it will have no deprecated features. To simplify the explosion of checks for specific combinations of context->driver, many of these conditionals have now been replaced with private feature flags that are checked instead. The GL and GLES drivers now initialise these private feature flags depending on which driver is used. The fixed function backends now explicitly check whether the fixed function private feature is available which means the GL3 driver will fall back to always using the GLSL progend. Since Rob's latest patches the GLSL progend no longer uses any fixed function API anyway so it should just work. The driver is currently lower priority than COGL_DRIVER_GL so it will not be used unless it is specificly requested. We may want to change this priority at some point because apparently Mesa can make some memory savings if a core profile context is used. In GL 3, getting the combined extensions string with glGetString is deprecated so this patch changes it to use glGetStringi to build up an array of extensions instead. _cogl_context_get_gl_extensions now returns this array instead of trying to return a const string. The caller is expected to free the array. Some issues with this patch: • GL 3 does not support GL_ALPHA format textures. We should probably make this a feature flag or something. Cogl uses this to render text which currently just throws a GL error and breaks so it's pretty important to do something about this before considering the GL3 driver to be stable. • GL 3 doesn't support client side vertex buffers. This probably doesn't matter because CoglBuffer won't normally use malloc'd buffers if VBOs are available, but it might but worth making malloc'd buffers a private feature and forcing it not to use them. • GL 3 doesn't support the default vertex array object. This patch just makes it create and bind a single non-default vertex array object which gets used just like the normal default object. Ideally it would be good to use vertex array objects properly and attach them to a CoglPrimitive to cache the state. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 66c9db993595b3a22e63f4c201ea468bc9b88cb6)
2012-09-26 20:32:36 +01:00
char **split_extensions;
int i;
egl_extensions = eglQueryString (egl_renderer->edpy, EGL_EXTENSIONS);
Add a GL 3 driver This adds a new CoglDriver for GL 3 called COGL_DRIVER_GL3. When requested, the GLX, EGL and SDL2 winsyss will set the necessary attributes to request a forward-compatible core profile 3.1 context. That means it will have no deprecated features. To simplify the explosion of checks for specific combinations of context->driver, many of these conditionals have now been replaced with private feature flags that are checked instead. The GL and GLES drivers now initialise these private feature flags depending on which driver is used. The fixed function backends now explicitly check whether the fixed function private feature is available which means the GL3 driver will fall back to always using the GLSL progend. Since Rob's latest patches the GLSL progend no longer uses any fixed function API anyway so it should just work. The driver is currently lower priority than COGL_DRIVER_GL so it will not be used unless it is specificly requested. We may want to change this priority at some point because apparently Mesa can make some memory savings if a core profile context is used. In GL 3, getting the combined extensions string with glGetString is deprecated so this patch changes it to use glGetStringi to build up an array of extensions instead. _cogl_context_get_gl_extensions now returns this array instead of trying to return a const string. The caller is expected to free the array. Some issues with this patch: • GL 3 does not support GL_ALPHA format textures. We should probably make this a feature flag or something. Cogl uses this to render text which currently just throws a GL error and breaks so it's pretty important to do something about this before considering the GL3 driver to be stable. • GL 3 doesn't support client side vertex buffers. This probably doesn't matter because CoglBuffer won't normally use malloc'd buffers if VBOs are available, but it might but worth making malloc'd buffers a private feature and forcing it not to use them. • GL 3 doesn't support the default vertex array object. This patch just makes it create and bind a single non-default vertex array object which gets used just like the normal default object. Ideally it would be good to use vertex array objects properly and attach them to a CoglPrimitive to cache the state. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 66c9db993595b3a22e63f4c201ea468bc9b88cb6)
2012-09-26 20:32:36 +01:00
split_extensions = g_strsplit (egl_extensions, " ", 0 /* max_tokens */);
COGL_NOTE (WINSYS, " EGL Extensions: %s", egl_extensions);
egl_renderer->private_features = 0;
for (i = 0; i < G_N_ELEMENTS (winsys_feature_data); i++)
if (_cogl_feature_check (renderer,
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 20:44:56 +01:00
"EGL", winsys_feature_data + i, 0, 0,
COGL_DRIVER_GL, /* the driver isn't used */
Add a GL 3 driver This adds a new CoglDriver for GL 3 called COGL_DRIVER_GL3. When requested, the GLX, EGL and SDL2 winsyss will set the necessary attributes to request a forward-compatible core profile 3.1 context. That means it will have no deprecated features. To simplify the explosion of checks for specific combinations of context->driver, many of these conditionals have now been replaced with private feature flags that are checked instead. The GL and GLES drivers now initialise these private feature flags depending on which driver is used. The fixed function backends now explicitly check whether the fixed function private feature is available which means the GL3 driver will fall back to always using the GLSL progend. Since Rob's latest patches the GLSL progend no longer uses any fixed function API anyway so it should just work. The driver is currently lower priority than COGL_DRIVER_GL so it will not be used unless it is specificly requested. We may want to change this priority at some point because apparently Mesa can make some memory savings if a core profile context is used. In GL 3, getting the combined extensions string with glGetString is deprecated so this patch changes it to use glGetStringi to build up an array of extensions instead. _cogl_context_get_gl_extensions now returns this array instead of trying to return a const string. The caller is expected to free the array. Some issues with this patch: • GL 3 does not support GL_ALPHA format textures. We should probably make this a feature flag or something. Cogl uses this to render text which currently just throws a GL error and breaks so it's pretty important to do something about this before considering the GL3 driver to be stable. • GL 3 doesn't support client side vertex buffers. This probably doesn't matter because CoglBuffer won't normally use malloc'd buffers if VBOs are available, but it might but worth making malloc'd buffers a private feature and forcing it not to use them. • GL 3 doesn't support the default vertex array object. This patch just makes it create and bind a single non-default vertex array object which gets used just like the normal default object. Ideally it would be good to use vertex array objects properly and attach them to a CoglPrimitive to cache the state. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 66c9db993595b3a22e63f4c201ea468bc9b88cb6)
2012-09-26 20:32:36 +01:00
split_extensions,
egl_renderer))
{
egl_renderer->private_features |=
winsys_feature_data[i].feature_flags_private;
}
Add a GL 3 driver This adds a new CoglDriver for GL 3 called COGL_DRIVER_GL3. When requested, the GLX, EGL and SDL2 winsyss will set the necessary attributes to request a forward-compatible core profile 3.1 context. That means it will have no deprecated features. To simplify the explosion of checks for specific combinations of context->driver, many of these conditionals have now been replaced with private feature flags that are checked instead. The GL and GLES drivers now initialise these private feature flags depending on which driver is used. The fixed function backends now explicitly check whether the fixed function private feature is available which means the GL3 driver will fall back to always using the GLSL progend. Since Rob's latest patches the GLSL progend no longer uses any fixed function API anyway so it should just work. The driver is currently lower priority than COGL_DRIVER_GL so it will not be used unless it is specificly requested. We may want to change this priority at some point because apparently Mesa can make some memory savings if a core profile context is used. In GL 3, getting the combined extensions string with glGetString is deprecated so this patch changes it to use glGetStringi to build up an array of extensions instead. _cogl_context_get_gl_extensions now returns this array instead of trying to return a const string. The caller is expected to free the array. Some issues with this patch: • GL 3 does not support GL_ALPHA format textures. We should probably make this a feature flag or something. Cogl uses this to render text which currently just throws a GL error and breaks so it's pretty important to do something about this before considering the GL3 driver to be stable. • GL 3 doesn't support client side vertex buffers. This probably doesn't matter because CoglBuffer won't normally use malloc'd buffers if VBOs are available, but it might but worth making malloc'd buffers a private feature and forcing it not to use them. • GL 3 doesn't support the default vertex array object. This patch just makes it create and bind a single non-default vertex array object which gets used just like the normal default object. Ideally it would be good to use vertex array objects properly and attach them to a CoglPrimitive to cache the state. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 66c9db993595b3a22e63f4c201ea468bc9b88cb6)
2012-09-26 20:32:36 +01:00
g_strfreev (split_extensions);
}
CoglBool
_cogl_winsys_egl_renderer_connect_common (CoglRenderer *renderer,
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 19:28:27 +01:00
CoglError **error)
{
CoglRendererEGL *egl_renderer = renderer->winsys;
if (!eglInitialize (egl_renderer->edpy,
&egl_renderer->egl_version_major,
&egl_renderer->egl_version_minor))
{
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 19:28:27 +01:00
_cogl_set_error (error, COGL_WINSYS_ERROR,
COGL_WINSYS_ERROR_INIT,
"Couldn't initialize EGL");
return FALSE;
}
check_egl_extensions (renderer);
return TRUE;
}
static CoglBool
_cogl_winsys_renderer_connect (CoglRenderer *renderer,
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 19:28:27 +01:00
CoglError **error)
{
/* This function must be overridden by a platform winsys */
g_assert_not_reached ();
}
static void
egl_attributes_from_framebuffer_config (CoglDisplay *display,
CoglFramebufferConfig *config,
EGLint *attributes)
{
CoglRenderer *renderer = display->renderer;
CoglRendererEGL *egl_renderer = renderer->winsys;
int i = 0;
/* Let the platform add attributes first */
if (egl_renderer->platform_vtable->add_config_attributes)
i = egl_renderer->platform_vtable->add_config_attributes (display,
config,
attributes);
if (config->need_stencil)
{
attributes[i++] = EGL_STENCIL_SIZE;
attributes[i++] = 2;
}
attributes[i++] = EGL_RED_SIZE;
attributes[i++] = 1;
attributes[i++] = EGL_GREEN_SIZE;
attributes[i++] = 1;
attributes[i++] = EGL_BLUE_SIZE;
attributes[i++] = 1;
attributes[i++] = EGL_ALPHA_SIZE;
attributes[i++] = config->swap_chain->has_alpha ? 1 : EGL_DONT_CARE;
attributes[i++] = EGL_DEPTH_SIZE;
attributes[i++] = 1;
attributes[i++] = EGL_BUFFER_SIZE;
attributes[i++] = EGL_DONT_CARE;
attributes[i++] = EGL_RENDERABLE_TYPE;
Add a GL 3 driver This adds a new CoglDriver for GL 3 called COGL_DRIVER_GL3. When requested, the GLX, EGL and SDL2 winsyss will set the necessary attributes to request a forward-compatible core profile 3.1 context. That means it will have no deprecated features. To simplify the explosion of checks for specific combinations of context->driver, many of these conditionals have now been replaced with private feature flags that are checked instead. The GL and GLES drivers now initialise these private feature flags depending on which driver is used. The fixed function backends now explicitly check whether the fixed function private feature is available which means the GL3 driver will fall back to always using the GLSL progend. Since Rob's latest patches the GLSL progend no longer uses any fixed function API anyway so it should just work. The driver is currently lower priority than COGL_DRIVER_GL so it will not be used unless it is specificly requested. We may want to change this priority at some point because apparently Mesa can make some memory savings if a core profile context is used. In GL 3, getting the combined extensions string with glGetString is deprecated so this patch changes it to use glGetStringi to build up an array of extensions instead. _cogl_context_get_gl_extensions now returns this array instead of trying to return a const string. The caller is expected to free the array. Some issues with this patch: • GL 3 does not support GL_ALPHA format textures. We should probably make this a feature flag or something. Cogl uses this to render text which currently just throws a GL error and breaks so it's pretty important to do something about this before considering the GL3 driver to be stable. • GL 3 doesn't support client side vertex buffers. This probably doesn't matter because CoglBuffer won't normally use malloc'd buffers if VBOs are available, but it might but worth making malloc'd buffers a private feature and forcing it not to use them. • GL 3 doesn't support the default vertex array object. This patch just makes it create and bind a single non-default vertex array object which gets used just like the normal default object. Ideally it would be good to use vertex array objects properly and attach them to a CoglPrimitive to cache the state. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 66c9db993595b3a22e63f4c201ea468bc9b88cb6)
2012-09-26 20:32:36 +01:00
attributes[i++] = ((renderer->driver == COGL_DRIVER_GL ||
renderer->driver == COGL_DRIVER_GL3) ?
EGL_OPENGL_BIT :
renderer->driver == COGL_DRIVER_GLES1 ?
EGL_OPENGL_ES_BIT :
EGL_OPENGL_ES2_BIT);
attributes[i++] = EGL_SURFACE_TYPE;
attributes[i++] = EGL_WINDOW_BIT;
if (config->samples_per_pixel)
{
attributes[i++] = EGL_SAMPLE_BUFFERS;
attributes[i++] = 1;
attributes[i++] = EGL_SAMPLES;
attributes[i++] = config->samples_per_pixel;
}
attributes[i++] = EGL_NONE;
g_assert (i < MAX_EGL_CONFIG_ATTRIBS);
}
EGLBoolean
_cogl_winsys_egl_make_current (CoglDisplay *display,
EGLSurface draw,
EGLSurface read,
EGLContext context)
{
CoglDisplayEGL *egl_display = display->winsys;
CoglRendererEGL *egl_renderer = display->renderer->winsys;
EGLBoolean ret;
if (egl_display->current_draw_surface == draw &&
egl_display->current_read_surface == read &&
egl_display->current_context == context)
return EGL_TRUE;
ret = eglMakeCurrent (egl_renderer->edpy,
draw,
read,
context);
egl_display->current_draw_surface = draw;
egl_display->current_read_surface = read;
egl_display->current_context = context;
return ret;
}
static void
cleanup_context (CoglDisplay *display)
{
CoglRenderer *renderer = display->renderer;
CoglDisplayEGL *egl_display = display->winsys;
CoglRendererEGL *egl_renderer = renderer->winsys;
if (egl_display->egl_context != EGL_NO_CONTEXT)
{
_cogl_winsys_egl_make_current (display,
EGL_NO_SURFACE, EGL_NO_SURFACE,
EGL_NO_CONTEXT);
eglDestroyContext (egl_renderer->edpy, egl_display->egl_context);
egl_display->egl_context = EGL_NO_CONTEXT;
}
if (egl_renderer->platform_vtable->cleanup_context)
egl_renderer->platform_vtable->cleanup_context (display);
}
static CoglBool
try_create_context (CoglDisplay *display,
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 19:28:27 +01:00
CoglError **error)
{
CoglRenderer *renderer = display->renderer;
CoglDisplayEGL *egl_display = display->winsys;
CoglRendererEGL *egl_renderer = renderer->winsys;
EGLDisplay edpy;
EGLConfig config;
EGLint config_count = 0;
EGLBoolean status;
Add a GL 3 driver This adds a new CoglDriver for GL 3 called COGL_DRIVER_GL3. When requested, the GLX, EGL and SDL2 winsyss will set the necessary attributes to request a forward-compatible core profile 3.1 context. That means it will have no deprecated features. To simplify the explosion of checks for specific combinations of context->driver, many of these conditionals have now been replaced with private feature flags that are checked instead. The GL and GLES drivers now initialise these private feature flags depending on which driver is used. The fixed function backends now explicitly check whether the fixed function private feature is available which means the GL3 driver will fall back to always using the GLSL progend. Since Rob's latest patches the GLSL progend no longer uses any fixed function API anyway so it should just work. The driver is currently lower priority than COGL_DRIVER_GL so it will not be used unless it is specificly requested. We may want to change this priority at some point because apparently Mesa can make some memory savings if a core profile context is used. In GL 3, getting the combined extensions string with glGetString is deprecated so this patch changes it to use glGetStringi to build up an array of extensions instead. _cogl_context_get_gl_extensions now returns this array instead of trying to return a const string. The caller is expected to free the array. Some issues with this patch: • GL 3 does not support GL_ALPHA format textures. We should probably make this a feature flag or something. Cogl uses this to render text which currently just throws a GL error and breaks so it's pretty important to do something about this before considering the GL3 driver to be stable. • GL 3 doesn't support client side vertex buffers. This probably doesn't matter because CoglBuffer won't normally use malloc'd buffers if VBOs are available, but it might but worth making malloc'd buffers a private feature and forcing it not to use them. • GL 3 doesn't support the default vertex array object. This patch just makes it create and bind a single non-default vertex array object which gets used just like the normal default object. Ideally it would be good to use vertex array objects properly and attach them to a CoglPrimitive to cache the state. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 66c9db993595b3a22e63f4c201ea468bc9b88cb6)
2012-09-26 20:32:36 +01:00
EGLint attribs[9];
EGLint cfg_attribs[MAX_EGL_CONFIG_ATTRIBS];
const char *error_message;
_COGL_RETURN_VAL_IF_FAIL (egl_display->egl_context == NULL, TRUE);
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 20:44:56 +01:00
Add a GL 3 driver This adds a new CoglDriver for GL 3 called COGL_DRIVER_GL3. When requested, the GLX, EGL and SDL2 winsyss will set the necessary attributes to request a forward-compatible core profile 3.1 context. That means it will have no deprecated features. To simplify the explosion of checks for specific combinations of context->driver, many of these conditionals have now been replaced with private feature flags that are checked instead. The GL and GLES drivers now initialise these private feature flags depending on which driver is used. The fixed function backends now explicitly check whether the fixed function private feature is available which means the GL3 driver will fall back to always using the GLSL progend. Since Rob's latest patches the GLSL progend no longer uses any fixed function API anyway so it should just work. The driver is currently lower priority than COGL_DRIVER_GL so it will not be used unless it is specificly requested. We may want to change this priority at some point because apparently Mesa can make some memory savings if a core profile context is used. In GL 3, getting the combined extensions string with glGetString is deprecated so this patch changes it to use glGetStringi to build up an array of extensions instead. _cogl_context_get_gl_extensions now returns this array instead of trying to return a const string. The caller is expected to free the array. Some issues with this patch: • GL 3 does not support GL_ALPHA format textures. We should probably make this a feature flag or something. Cogl uses this to render text which currently just throws a GL error and breaks so it's pretty important to do something about this before considering the GL3 driver to be stable. • GL 3 doesn't support client side vertex buffers. This probably doesn't matter because CoglBuffer won't normally use malloc'd buffers if VBOs are available, but it might but worth making malloc'd buffers a private feature and forcing it not to use them. • GL 3 doesn't support the default vertex array object. This patch just makes it create and bind a single non-default vertex array object which gets used just like the normal default object. Ideally it would be good to use vertex array objects properly and attach them to a CoglPrimitive to cache the state. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 66c9db993595b3a22e63f4c201ea468bc9b88cb6)
2012-09-26 20:32:36 +01:00
if (renderer->driver == COGL_DRIVER_GL ||
renderer->driver == COGL_DRIVER_GL3)
Dynamically load the GL or GLES library The GL or GLES library is now dynamically loaded by the CoglRenderer so that it can choose between GL, GLES1 and GLES2 at runtime. The library is loaded by the renderer because it needs to be done before calling eglInitialize. There is a new environment variable called COGL_DRIVER to choose between gl, gles1 or gles2. The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have been changed so that they don't assume the ifdefs are mutually exclusive. They haven't been removed entirely so that it's possible to compile the GLES backends without the the enums from the GL headers. When using GLX the winsys additionally dynamically loads libGL because that also contains the GLX API. It can't be linked in directly because that would probably conflict with the GLES API if the EGL is selected. When compiling with EGL support the library links directly to libEGL because it doesn't contain any GL API so it shouldn't have any conflicts. When building for WGL or OSX Cogl still directly links against the GL API so there is a #define in config.h so that Cogl won't try to dlopen the library. Cogl-pango previously had a #ifdef to detect when the GL backend is used so that it can sneakily pass GL_QUADS to cogl_vertex_buffer_draw. This is now changed so that it queries the CoglContext for the backend. However to get this to work Cogl now needs to export the _cogl_context_get_default symbol and cogl-pango needs some extra -I flags to so that it can include cogl-context-private.h
2011-07-07 20:44:56 +01:00
eglBindAPI (EGL_OPENGL_API);
egl_attributes_from_framebuffer_config (display,
&display->onscreen_template->config,
cfg_attribs);
edpy = egl_renderer->edpy;
status = eglChooseConfig (edpy,
cfg_attribs,
&config, 1,
&config_count);
if (status != EGL_TRUE || config_count == 0)
{
error_message = "Unable to find a usable EGL configuration";
goto fail;
}
egl_display->egl_config = config;
Add a GL 3 driver This adds a new CoglDriver for GL 3 called COGL_DRIVER_GL3. When requested, the GLX, EGL and SDL2 winsyss will set the necessary attributes to request a forward-compatible core profile 3.1 context. That means it will have no deprecated features. To simplify the explosion of checks for specific combinations of context->driver, many of these conditionals have now been replaced with private feature flags that are checked instead. The GL and GLES drivers now initialise these private feature flags depending on which driver is used. The fixed function backends now explicitly check whether the fixed function private feature is available which means the GL3 driver will fall back to always using the GLSL progend. Since Rob's latest patches the GLSL progend no longer uses any fixed function API anyway so it should just work. The driver is currently lower priority than COGL_DRIVER_GL so it will not be used unless it is specificly requested. We may want to change this priority at some point because apparently Mesa can make some memory savings if a core profile context is used. In GL 3, getting the combined extensions string with glGetString is deprecated so this patch changes it to use glGetStringi to build up an array of extensions instead. _cogl_context_get_gl_extensions now returns this array instead of trying to return a const string. The caller is expected to free the array. Some issues with this patch: • GL 3 does not support GL_ALPHA format textures. We should probably make this a feature flag or something. Cogl uses this to render text which currently just throws a GL error and breaks so it's pretty important to do something about this before considering the GL3 driver to be stable. • GL 3 doesn't support client side vertex buffers. This probably doesn't matter because CoglBuffer won't normally use malloc'd buffers if VBOs are available, but it might but worth making malloc'd buffers a private feature and forcing it not to use them. • GL 3 doesn't support the default vertex array object. This patch just makes it create and bind a single non-default vertex array object which gets used just like the normal default object. Ideally it would be good to use vertex array objects properly and attach them to a CoglPrimitive to cache the state. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 66c9db993595b3a22e63f4c201ea468bc9b88cb6)
2012-09-26 20:32:36 +01:00
if (display->renderer->driver == COGL_DRIVER_GL3)
{
if (!(egl_renderer->private_features &
COGL_EGL_WINSYS_FEATURE_CREATE_CONTEXT))
{
error_message = "Driver does not support GL 3 contexts";
goto fail;
}
/* Try to get a core profile 3.1 context with no deprecated features */
attribs[0] = EGL_CONTEXT_MAJOR_VERSION_KHR;
attribs[1] = 3;
attribs[2] = EGL_CONTEXT_MINOR_VERSION_KHR;
attribs[3] = 1;
attribs[4] = EGL_CONTEXT_FLAGS_KHR;
attribs[5] = EGL_CONTEXT_OPENGL_FORWARD_COMPATIBLE_BIT_KHR;
attribs[6] = EGL_CONTEXT_OPENGL_PROFILE_MASK_KHR;
attribs[7] = EGL_CONTEXT_OPENGL_CORE_PROFILE_BIT_KHR;
attribs[8] = EGL_NONE;
}
else if (display->renderer->driver == COGL_DRIVER_GLES2)
{
attribs[0] = EGL_CONTEXT_CLIENT_VERSION;
attribs[1] = 2;
attribs[2] = EGL_NONE;
}
else
attribs[0] = EGL_NONE;
egl_display->egl_context = eglCreateContext (edpy,
config,
EGL_NO_CONTEXT,
attribs);
Add a GL 3 driver This adds a new CoglDriver for GL 3 called COGL_DRIVER_GL3. When requested, the GLX, EGL and SDL2 winsyss will set the necessary attributes to request a forward-compatible core profile 3.1 context. That means it will have no deprecated features. To simplify the explosion of checks for specific combinations of context->driver, many of these conditionals have now been replaced with private feature flags that are checked instead. The GL and GLES drivers now initialise these private feature flags depending on which driver is used. The fixed function backends now explicitly check whether the fixed function private feature is available which means the GL3 driver will fall back to always using the GLSL progend. Since Rob's latest patches the GLSL progend no longer uses any fixed function API anyway so it should just work. The driver is currently lower priority than COGL_DRIVER_GL so it will not be used unless it is specificly requested. We may want to change this priority at some point because apparently Mesa can make some memory savings if a core profile context is used. In GL 3, getting the combined extensions string with glGetString is deprecated so this patch changes it to use glGetStringi to build up an array of extensions instead. _cogl_context_get_gl_extensions now returns this array instead of trying to return a const string. The caller is expected to free the array. Some issues with this patch: • GL 3 does not support GL_ALPHA format textures. We should probably make this a feature flag or something. Cogl uses this to render text which currently just throws a GL error and breaks so it's pretty important to do something about this before considering the GL3 driver to be stable. • GL 3 doesn't support client side vertex buffers. This probably doesn't matter because CoglBuffer won't normally use malloc'd buffers if VBOs are available, but it might but worth making malloc'd buffers a private feature and forcing it not to use them. • GL 3 doesn't support the default vertex array object. This patch just makes it create and bind a single non-default vertex array object which gets used just like the normal default object. Ideally it would be good to use vertex array objects properly and attach them to a CoglPrimitive to cache the state. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit 66c9db993595b3a22e63f4c201ea468bc9b88cb6)
2012-09-26 20:32:36 +01:00
if (egl_display->egl_context == EGL_NO_CONTEXT)
{
error_message = "Unable to create a suitable EGL context";
goto fail;
}
if (egl_renderer->platform_vtable->context_created &&
!egl_renderer->platform_vtable->context_created (display, error))
return FALSE;
return TRUE;
fail:
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 19:28:27 +01:00
_cogl_set_error (error, COGL_WINSYS_ERROR,
COGL_WINSYS_ERROR_CREATE_CONTEXT,
"%s", error_message);
cleanup_context (display);
return FALSE;
}
static void
_cogl_winsys_display_destroy (CoglDisplay *display)
{
CoglRendererEGL *egl_renderer = display->renderer->winsys;
CoglDisplayEGL *egl_display = display->winsys;
_COGL_RETURN_IF_FAIL (egl_display != NULL);
cleanup_context (display);
if (egl_renderer->platform_vtable->display_destroy)
egl_renderer->platform_vtable->display_destroy (display);
g_slice_free (CoglDisplayEGL, display->winsys);
display->winsys = NULL;
}
static CoglBool
_cogl_winsys_display_setup (CoglDisplay *display,
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 19:28:27 +01:00
CoglError **error)
{
CoglDisplayEGL *egl_display;
CoglRenderer *renderer = display->renderer;
CoglRendererEGL *egl_renderer = renderer->winsys;
_COGL_RETURN_VAL_IF_FAIL (display->winsys == NULL, FALSE);
egl_display = g_slice_new0 (CoglDisplayEGL);
display->winsys = egl_display;
#ifdef COGL_HAS_WAYLAND_EGL_SERVER_SUPPORT
if (display->wayland_compositor_display)
{
struct wl_display *wayland_display = display->wayland_compositor_display;
CoglRendererEGL *egl_renderer = display->renderer->winsys;
egl_renderer->pf_eglBindWaylandDisplay (egl_renderer->edpy,
wayland_display);
}
#endif
if (egl_renderer->platform_vtable->display_setup &&
!egl_renderer->platform_vtable->display_setup (display, error))
goto error;
if (!try_create_context (display, error))
goto error;
egl_display->found_egl_config = TRUE;
return TRUE;
error:
_cogl_winsys_display_destroy (display);
return FALSE;
}
static CoglBool
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 19:28:27 +01:00
_cogl_winsys_context_init (CoglContext *context, CoglError **error)
{
CoglRenderer *renderer = context->display->renderer;
CoglDisplayEGL *egl_display = context->display->winsys;
CoglRendererEGL *egl_renderer = renderer->winsys;
context->winsys = g_new0 (CoglContextEGL, 1);
_COGL_RETURN_VAL_IF_FAIL (egl_display->egl_context, FALSE);
memset (context->winsys_features, 0, sizeof (context->winsys_features));
check_egl_extensions (renderer);
if (!_cogl_context_update_features (context, error))
return FALSE;
if (egl_renderer->private_features & COGL_EGL_WINSYS_FEATURE_SWAP_REGION)
{
COGL_FLAGS_SET (context->winsys_features,
COGL_WINSYS_FEATURE_SWAP_REGION, TRUE);
COGL_FLAGS_SET (context->winsys_features,
COGL_WINSYS_FEATURE_SWAP_REGION_THROTTLE, TRUE);
}
/* NB: We currently only support creating standalone GLES2 contexts
* for offscreen rendering and so we need a dummy (non-visible)
* surface to be able to bind those contexts */
if (egl_display->dummy_surface != EGL_NO_SURFACE &&
context->driver == COGL_DRIVER_GLES2)
COGL_FLAGS_SET (context->features,
COGL_FEATURE_ID_GLES2_CONTEXT, TRUE);
if (egl_renderer->platform_vtable->context_init &&
!egl_renderer->platform_vtable->context_init (context, error))
return FALSE;
return TRUE;
}
static void
_cogl_winsys_context_deinit (CoglContext *context)
{
CoglRenderer *renderer = context->display->renderer;
CoglRendererEGL *egl_renderer = renderer->winsys;
if (egl_renderer->platform_vtable->context_deinit)
egl_renderer->platform_vtable->context_deinit (context);
g_free (context->winsys);
}
typedef struct _CoglGLES2ContextEGL
{
EGLContext egl_context;
EGLSurface dummy_surface;
} CoglGLES2ContextEGL;
static void *
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 19:28:27 +01:00
_cogl_winsys_context_create_gles2_context (CoglContext *ctx, CoglError **error)
{
CoglRendererEGL *egl_renderer = ctx->display->renderer->winsys;
CoglDisplayEGL *egl_display = ctx->display->winsys;
EGLint attribs[3];
EGLContext egl_context;
attribs[0] = EGL_CONTEXT_CLIENT_VERSION;
attribs[1] = 2;
attribs[2] = EGL_NONE;
egl_context = eglCreateContext (egl_renderer->edpy,
egl_display->egl_config,
egl_display->egl_context,
attribs);
if (egl_context == EGL_NO_CONTEXT)
{
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 19:28:27 +01:00
_cogl_set_error (error, COGL_WINSYS_ERROR,
COGL_WINSYS_ERROR_CREATE_GLES2_CONTEXT,
"%s", get_error_string ());
return NULL;
}
return (void *)egl_context;
}
static void
_cogl_winsys_destroy_gles2_context (CoglGLES2Context *gles2_ctx)
{
CoglContext *context = gles2_ctx->context;
CoglDisplay *display = context->display;
CoglDisplayEGL *egl_display = display->winsys;
CoglRenderer *renderer = display->renderer;
CoglRendererEGL *egl_renderer = renderer->winsys;
EGLContext egl_context = gles2_ctx->winsys;
_COGL_RETURN_IF_FAIL (egl_display->current_context != egl_context);
eglDestroyContext (egl_renderer->edpy, egl_context);
}
static CoglBool
_cogl_winsys_onscreen_init (CoglOnscreen *onscreen,
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 19:28:27 +01:00
CoglError **error)
{
CoglFramebuffer *framebuffer = COGL_FRAMEBUFFER (onscreen);
CoglContext *context = framebuffer->context;
CoglDisplay *display = context->display;
CoglDisplayEGL *egl_display = display->winsys;
CoglRenderer *renderer = display->renderer;
CoglRendererEGL *egl_renderer = renderer->winsys;
EGLint attributes[MAX_EGL_CONFIG_ATTRIBS];
EGLConfig egl_config;
EGLint config_count = 0;
EGLBoolean status;
_COGL_RETURN_VAL_IF_FAIL (egl_display->egl_context, FALSE);
egl_attributes_from_framebuffer_config (display,
&framebuffer->config,
attributes);
status = eglChooseConfig (egl_renderer->edpy,
attributes,
&egl_config, 1,
&config_count);
if (status != EGL_TRUE || config_count == 0)
{
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 19:28:27 +01:00
_cogl_set_error (error, COGL_WINSYS_ERROR,
COGL_WINSYS_ERROR_CREATE_ONSCREEN,
"Failed to find a suitable EGL configuration");
return FALSE;
}
/* Update the real number of samples_per_pixel now that we have
* found an egl_config... */
if (framebuffer->config.samples_per_pixel)
{
EGLint samples;
status = eglGetConfigAttrib (egl_renderer->edpy,
egl_config,
EGL_SAMPLES, &samples);
g_return_val_if_fail (status == EGL_TRUE, TRUE);
framebuffer->samples_per_pixel = samples;
}
onscreen->winsys = g_slice_new0 (CoglOnscreenEGL);
if (egl_renderer->platform_vtable->onscreen_init &&
!egl_renderer->platform_vtable->onscreen_init (onscreen,
egl_config,
error))
{
g_slice_free (CoglOnscreenEGL, onscreen->winsys);
return FALSE;
}
return TRUE;
}
static void
_cogl_winsys_onscreen_deinit (CoglOnscreen *onscreen)
{
CoglFramebuffer *framebuffer = COGL_FRAMEBUFFER (onscreen);
CoglContext *context = framebuffer->context;
CoglRenderer *renderer = context->display->renderer;
CoglRendererEGL *egl_renderer = renderer->winsys;
CoglOnscreenEGL *egl_onscreen = onscreen->winsys;
/* If we never successfully allocated then there's nothing to do */
if (egl_onscreen == NULL)
return;
if (egl_onscreen->egl_surface != EGL_NO_SURFACE)
{
if (eglDestroySurface (egl_renderer->edpy, egl_onscreen->egl_surface)
== EGL_FALSE)
g_warning ("Failed to destroy EGL surface");
egl_onscreen->egl_surface = EGL_NO_SURFACE;
}
if (egl_renderer->platform_vtable->onscreen_deinit)
egl_renderer->platform_vtable->onscreen_deinit (onscreen);
g_slice_free (CoglOnscreenEGL, onscreen->winsys);
onscreen->winsys = NULL;
}
static CoglBool
bind_onscreen_with_context (CoglOnscreen *onscreen,
EGLContext egl_context)
{
CoglFramebuffer *fb = COGL_FRAMEBUFFER (onscreen);
CoglContext *context = fb->context;
CoglOnscreenEGL *egl_onscreen = onscreen->winsys;
CoglBool status = _cogl_winsys_egl_make_current (context->display,
egl_onscreen->egl_surface,
egl_onscreen->egl_surface,
egl_context);
if (status)
{
CoglRenderer *renderer = context->display->renderer;
CoglRendererEGL *egl_renderer = renderer->winsys;
if (fb->config.swap_throttled)
eglSwapInterval (egl_renderer->edpy, 1);
else
eglSwapInterval (egl_renderer->edpy, 0);
}
return status;
}
static CoglBool
bind_onscreen (CoglOnscreen *onscreen)
{
CoglFramebuffer *fb = COGL_FRAMEBUFFER (onscreen);
CoglContext *context = fb->context;
CoglDisplayEGL *egl_display = context->display->winsys;
return bind_onscreen_with_context (onscreen, egl_display->egl_context);
}
static void
_cogl_winsys_onscreen_bind (CoglOnscreen *onscreen)
{
bind_onscreen (onscreen);
}
static void
_cogl_winsys_onscreen_swap_region (CoglOnscreen *onscreen,
const int *user_rectangles,
int n_rectangles)
{
CoglContext *context = COGL_FRAMEBUFFER (onscreen)->context;
CoglRenderer *renderer = context->display->renderer;
CoglRendererEGL *egl_renderer = renderer->winsys;
CoglOnscreenEGL *egl_onscreen = onscreen->winsys;
CoglFramebuffer *framebuffer = COGL_FRAMEBUFFER (onscreen);
int framebuffer_height = cogl_framebuffer_get_height (framebuffer);
int *rectangles = g_alloca (sizeof (int) * n_rectangles * 4);
int i;
/* eglSwapBuffersRegion expects rectangles relative to the
* bottom left corner but we are given rectangles relative to
* the top left so we need to flip them... */
memcpy (rectangles, user_rectangles, sizeof (int) * n_rectangles * 4);
for (i = 0; i < n_rectangles; i++)
{
int *rect = &rectangles[4 * i];
rect[1] = framebuffer_height - rect[1] - rect[3];
}
/* At least for eglSwapBuffers the EGL spec says that the surface to
swap must be bound to the current context. It looks like Mesa
also validates that this is the case for eglSwapBuffersRegion so
we must bind here too */
_cogl_framebuffer_flush_state (COGL_FRAMEBUFFER (onscreen),
COGL_FRAMEBUFFER (onscreen),
COGL_FRAMEBUFFER_STATE_BIND);
if (egl_renderer->pf_eglSwapBuffersRegion (egl_renderer->edpy,
egl_onscreen->egl_surface,
n_rectangles,
rectangles) == EGL_FALSE)
g_warning ("Error reported by eglSwapBuffersRegion");
}
static void
_cogl_winsys_onscreen_swap_buffers (CoglOnscreen *onscreen)
{
CoglContext *context = COGL_FRAMEBUFFER (onscreen)->context;
CoglRenderer *renderer = context->display->renderer;
CoglRendererEGL *egl_renderer = renderer->winsys;
CoglOnscreenEGL *egl_onscreen = onscreen->winsys;
/* The specification for EGL (at least in 1.4) says that the surface
needs to be bound to the current context for the swap to work
although it may change in future. Mesa explicitly checks for this
and just returns an error if this is not the case so we can't
just pretend this isn't in the spec. */
_cogl_framebuffer_flush_state (COGL_FRAMEBUFFER (onscreen),
COGL_FRAMEBUFFER (onscreen),
COGL_FRAMEBUFFER_STATE_BIND);
eglSwapBuffers (egl_renderer->edpy, egl_onscreen->egl_surface);
}
static void
_cogl_winsys_onscreen_update_swap_throttled (CoglOnscreen *onscreen)
{
CoglContext *context = COGL_FRAMEBUFFER (onscreen)->context;
CoglDisplayEGL *egl_display = context->display->winsys;
CoglOnscreenEGL *egl_onscreen = onscreen->winsys;
if (egl_display->current_draw_surface != egl_onscreen->egl_surface)
return;
egl_display->current_draw_surface = EGL_NO_SURFACE;
_cogl_winsys_onscreen_bind (onscreen);
}
static EGLDisplay
_cogl_winsys_context_egl_get_egl_display (CoglContext *context)
{
CoglRendererEGL *egl_renderer = context->display->renderer->winsys;
return egl_renderer->edpy;
}
static void
_cogl_winsys_save_context (CoglContext *ctx)
{
CoglContextEGL *egl_context = ctx->winsys;
CoglDisplayEGL *egl_display = ctx->display->winsys;
egl_context->saved_draw_surface = egl_display->current_draw_surface;
egl_context->saved_read_surface = egl_display->current_read_surface;
}
static CoglBool
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 19:28:27 +01:00
_cogl_winsys_set_gles2_context (CoglGLES2Context *gles2_ctx, CoglError **error)
{
CoglContext *ctx = gles2_ctx->context;
CoglDisplayEGL *egl_display = ctx->display->winsys;
CoglBool status;
if (gles2_ctx->write_buffer &&
cogl_is_onscreen (gles2_ctx->write_buffer))
status =
bind_onscreen_with_context (COGL_ONSCREEN (gles2_ctx->write_buffer),
gles2_ctx->winsys);
else
status = _cogl_winsys_egl_make_current (ctx->display,
egl_display->dummy_surface,
egl_display->dummy_surface,
gles2_ctx->winsys);
if (!status)
{
Adds CoglError api Although we use GLib internally in Cogl we would rather not leak GLib api through Cogl's own api, except through explicitly namespaced cogl_glib_ / cogl_gtype_ feature apis. One of the benefits we see to not leaking GLib through Cogl's public API is that documentation for Cogl won't need to first introduce the Glib API to newcomers, thus hopefully lowering the barrier to learning Cogl. This patch provides a Cogl specific typedef for reporting runtime errors which by no coincidence matches the typedef for GError exactly. If Cogl is built with --enable-glib (default) then developers can even safely assume that a CoglError is a GError under the hood. This patch also enforces a consistent policy for when NULL is passed as an error argument and an error is thrown. In this case we log the error and abort the application, instead of silently ignoring it. In common cases where nothing has been implemented to handle a particular error and/or where applications are just printing the error and aborting themselves then this saves some typing. This also seems more consistent with language based exceptions which usually cause a program to abort if they are not explicitly caught (which passing a non-NULL error signifies in this case) Since this policy for NULL error pointers is stricter than the standard GError convention, there is a clear note in the documentation to warn developers that are used to using the GError api. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46) Note: Since we can't change the Cogl 1.x api the patch was changed to not rename _error_quark() functions to be _error_domain() functions and although it's a bit ugly, instead of providing our own CoglError type that's compatible with GError we simply #define CoglError to GError unless Cogl is built with glib disabled. Note: this patch does technically introduce an API break since it drops the cogl_error_get_type() symbol generated by glib-mkenum (Since the CoglError enum was replaced by a CoglSystemError enum) but for now we are assuming that this will not affect anyone currently using the Cogl API. If this does turn out to be a problem in practice then we would be able to fix this my manually copying an implementation of cogl_error_get_type() generated by glib-mkenum into a compatibility source file and we could also define the original COGL_ERROR_ enums for compatibility too. Note: another minor concern with cherry-picking this patch to the 1.14 branch is that an api scanner would be lead to believe that some APIs have changed, and for example the gobject-introspection parser which understands the semantics of GError will not understand the semantics of CoglError. We expect most people that have tried to use gobject-introspection with Cogl already understand though that it is not well suited to generating bindings of the Cogl api anyway and we aren't aware or anyone depending on such bindings for apis involving GErrors. (GnomeShell only makes very-very minimal use of Cogl via the gjs bindings for the cogl_rectangle and cogl_color apis.) The main reason we have cherry-picked this patch to the 1.14 branch even given the above concerns is that without it it would become very awkward for us to cherry-pick other beneficial patches from master.
2012-08-31 19:28:27 +01:00
_cogl_set_error (error,
COGL_WINSYS_ERROR,
COGL_WINSYS_ERROR_MAKE_CURRENT,
"Failed to make gles2 context current");
return FALSE;
}
return TRUE;
}
static void
_cogl_winsys_restore_context (CoglContext *ctx)
{
CoglContextEGL *egl_context = ctx->winsys;
CoglDisplayEGL *egl_display = ctx->display->winsys;
_cogl_winsys_egl_make_current (ctx->display,
egl_context->saved_draw_surface,
egl_context->saved_read_surface,
egl_display->egl_context);
}
static CoglWinsysVtable _cogl_winsys_vtable =
{
.constraints = COGL_RENDERER_CONSTRAINT_USES_EGL |
COGL_RENDERER_CONSTRAINT_SUPPORTS_COGL_GLES2,
/* This winsys is only used as a base for the EGL-platform
winsys's so it does not have an ID or a name */
.renderer_get_proc_address = _cogl_winsys_renderer_get_proc_address,
.renderer_connect = _cogl_winsys_renderer_connect,
.renderer_disconnect = _cogl_winsys_renderer_disconnect,
.display_setup = _cogl_winsys_display_setup,
.display_destroy = _cogl_winsys_display_destroy,
.context_init = _cogl_winsys_context_init,
.context_deinit = _cogl_winsys_context_deinit,
.context_egl_get_egl_display =
_cogl_winsys_context_egl_get_egl_display,
.context_create_gles2_context =
_cogl_winsys_context_create_gles2_context,
.destroy_gles2_context = _cogl_winsys_destroy_gles2_context,
.onscreen_init = _cogl_winsys_onscreen_init,
.onscreen_deinit = _cogl_winsys_onscreen_deinit,
.onscreen_bind = _cogl_winsys_onscreen_bind,
.onscreen_swap_buffers = _cogl_winsys_onscreen_swap_buffers,
.onscreen_swap_region = _cogl_winsys_onscreen_swap_region,
.onscreen_update_swap_throttled =
_cogl_winsys_onscreen_update_swap_throttled,
/* CoglGLES2Context related methods */
.save_context = _cogl_winsys_save_context,
.set_gles2_context = _cogl_winsys_set_gles2_context,
.restore_context = _cogl_winsys_restore_context,
};
/* XXX: we use a function because no doubt someone will complain
* about using c99 member initializers because they aren't portable
* to windows. We want to avoid having to rigidly follow the real
* order of members since some members are #ifdefd and we'd have
* to mirror the #ifdefing to add padding etc. For any winsys that
* can assume the platform has a sane compiler then we can just use
* c99 initializers for insane platforms they can initialize
* the members by name in a function.
*/
const CoglWinsysVtable *
_cogl_winsys_egl_get_vtable (void)
{
return &_cogl_winsys_vtable;
}
#ifdef EGL_KHR_image_base
EGLImageKHR
_cogl_egl_create_image (CoglContext *ctx,
EGLenum target,
EGLClientBuffer buffer,
const EGLint *attribs)
{
CoglDisplayEGL *egl_display = ctx->display->winsys;
CoglRendererEGL *egl_renderer = ctx->display->renderer->winsys;
EGLContext egl_ctx;
_COGL_RETURN_VAL_IF_FAIL (egl_renderer->pf_eglCreateImage, EGL_NO_IMAGE_KHR);
/* The EGL_KHR_image_pixmap spec explicitly states that EGL_NO_CONTEXT must
* always be used in conjunction with the EGL_NATIVE_PIXMAP_KHR target */
#ifdef EGL_KHR_image_pixmap
if (target == EGL_NATIVE_PIXMAP_KHR)
egl_ctx = EGL_NO_CONTEXT;
else
#endif
egl_ctx = egl_display->egl_context;
return egl_renderer->pf_eglCreateImage (egl_renderer->edpy,
egl_ctx,
target,
buffer,
attribs);
}
void
_cogl_egl_destroy_image (CoglContext *ctx,
EGLImageKHR image)
{
CoglRendererEGL *egl_renderer = ctx->display->renderer->winsys;
_COGL_RETURN_IF_FAIL (egl_renderer->pf_eglDestroyImage);
egl_renderer->pf_eglDestroyImage (egl_renderer->edpy, image);
}
#endif